Web mining

The multitude of rich information sources available on the Web today provides wonderful opportunities and challenges to Web mining for a diverse range of applications: constructing large knowledge bases, predicting the future, finding trends and epidemic in a population, marketing and recommendation, as well as filtering and cleaning Web content to improve the experience of users consuming it. This track covers data analysis for a wide variety of Web data including tweets, tags, links, logs, images, videos, and other multimodal data. We welcome submissions of original high-quality research papers related to all aspects of Web Mining, including, but not limited to, the topics below.

Topics

  • Association analysis, clustering, classification and other mining and analysis of Web data
  • Big data analysis integrated with Web data
  • Change detection and monitoring methods
  • Data integration and data cleaning
  • Detecting Web spam, opinion spam and fake reviews
  • Distributed and parallel algorithms for large scale data mining
  • Machine learning and data mining techniques for data analysis
  • Predicting the future using Web data
  • Recommendation systems
  • Query log, click trail, and traffic data mining
  • Structured data extraction from Web data
  • Other novel Web mining applications and algorithms such as deep learning

Area Chairs

  • Rajeev Rastogi (Amazon)
  • Yutaka Matsuo (University of Tokyo)

TPC Members

  • Azin Ashkan (University of Waterloo)
  • Smriti Bhagat (Technicolor)
  • Mikhail Bilenko (Microsoft Research)
  • Michael Cafarella (University of Michigan)
  • Rui Cai (Microsoft Research Asia)
  • Vineet Chaoji (Amazon)
  • Sanjay Chawla (University of Sydney)
  • Yun Chi (NEC Labs)
  • Bee-Chung Chen (LinkedIn)
  • Brian Davison (Lehigh University)
  • Eduard Dragut (Temple University)
  • Minos Garofalakis (Technical University of Crete, Chania)
  • Natalie Glance (Google)
  • Qi He (LinkedIn)
  • Ralf Herbrich (Amazon)
  • Daxin Jiang (Microsoft Research Asia)
  • Jaewoo Kang (Korea University)
  • Anitha Kannan (Microsoft Research)
  • Evangelos Kanoulas (Google)
  • Sang-Wook Kim (Hanyang University)
  • Yehuda Koren (Google)
  • Christian Arnd Konig (Microsoft Research)
  • Nick Koudas (University of Toronto)
  • Mayank Lahiri (University of Illinois, Chicago)
  • Wai Lam (Chinese University of Hong Kong)
  • Hady Lauw (Singapore Management University)
  • Chengkai Li (University of Texas, Arlington)
  • Xiaoli Li (Institute for Infocomm Research)
  • Ee-Peng Lim (Singapore Management University)
  • Huan Liu (Arizona State University)
  • Yue Lu (University of Illinois, Urbana Champaign)
  • Michael Lyu (Chinese University of Hong Kong)
  • Hao Ma (Microsoft Research)
  • Srujana Merugu (Amazon)
  • Vahab Mirrokni (Google)
  • Bamshad Mobasher (DePaul University)
  • Arjun Mukherjee (University of Illinois, Chicago)
  • Zaiqing Nie (Microsoft Research Asia)
  • Alexandros Ntoulas (Microsoft Research)
  • Umut Ozertem (Microsoft Research)
  • Rina Panigrahy (Microsoft Research)
  • Nish Parikh (Ebay Research Labs)
  • Srinivasan Parthasarthy (Ohio State University)
  • Jian Pei (Simon Fraser University)
  • Simone Ponzetto (Universitat Mannheim)
  • Kira Radinsky (Technion)
  • Naren Ramakrishnan (Virginia Tech)
  • B. Ravindran (IIT Madras)
  • Mark Sandler (Google)
  • Sunita Sarawagi (IIT Bombay)
  • Venu Satuluri (Twitter)
  • Dou Shen (Microsoft Adcenter Labs)
  • Myra Spiliopoulou (U. Magdeburg)
  • Jaideep Srivastava (University of Minnesota)
  • Neel Sundaresan (Ebay Research Labs)
  • Lei Tang (Walmart Labs)
  • Masashi Toyoda (University of Tokyo)
  • Michalis Vazirgiannis (AUEB)
  • S. V. N. Vishwanathan (Purdue University)
  • Jianyong Wang (Tsinghua University)
  • Ke Wang (Simon Fraser University)
  • Michael Wurst (TU Dortmund)
  • Hui Xiong (Rutgers University)
  • Shuang-Hong Yang (Twitter)
  • Emine Yilmaz (Microsoft Researchv)
  • Jeffery Xu Yu (Chinese University of Hong Kong)
  • Philip Yu (University of Illinois, Chicago)
  • Mohammed Zaki (RPI)
  • Lei Zhang (University of Illinois, Chicago)
  • Zhe Zhao (University of Michigan)
  • Feida Zhu (Singapore Management University)
Menu