

One Query, One Graph: Large Scale Application Development at LinkedIn

Bogdan Arsintescu

Director of Engineering

Scott Meyer

Distinguished Engineer

April 2022

LinkedIn's Economic Graph

A digital representation of the global economy.

810M Members

58M Companies

120K Schools

38K Skills

Economic Graph Application Development

A view of a vicinity in the graph

Application Development: Graph Traversals

Members accessing the Economic Graph

Edges

All bi-directional relationship in the graph.

QPS

All LinkedIn application and web traffic.

Latency

Fast access to the graph.

- Create a Graph Index that Scales to Hundreds of Joins
- Scale out with a Distributed Graph
- SCOLE 3 Enable Fast Grow for New Data
 - Add and Modify Queries Fast
 - 5 Simplify Operations

Graph Index Scales to xx Joins

Works at Scale, Concurrently

- In-memory relational system on hashed storage
- Wait-free data structures
- Single writer shared memory
- Writers: process isolation, read-only shared memory, pinned to core
- → Memory bandwidth linear throughput to 50+ cores (current workload)

Log Structure

- Serialized graph; compaction on demand
- Branches: what-if queries
- Point in time queries
- 1.5TB RAM graph shards

Scale out with a Distributed Graph

One Graph: multiple shards

Graph distributed in a cluster (aka a graph replica)

- Eventual consistency: each shard updated independently
- Hash based sharding
- > 250B bi-directional edges

HA through replication

Scale-out throughput with multiple replicas

 Repair through periodic snapshot & spare nodes "at ready"

- Multi-zone deployment
- 99.99+% available

Enable Fast Grow for New Data

Declarative transformation

- Constant time schema evolution
- New datasets can be appended to an existing index

Add and Modify Queries Fast

Datalog: Declarative & Modular

- Constant time schema evolution
- New datasets can be appended to an existing index

Basic Ingredient: Triples

```
Edge ("member: 01", "name", "George").
Edge ("member: 02", "name", "Bogdan").
Edge(x, "name", y)?
         "member:01", "name", "George"
         "member:02", "name", "Bogdan"
```

Edge ("member: 02", "name", "Bogdan").

Dev Dream: Composable Rules

```
Member (id, name, date) :-
  Edge(id, "name", name), Edge(id, "joined", date).
Member ('member: 02", )?
       "member:02", "Bogdan", 1995
Member(, _, 1995)?
GoldMember (id, name, Date) :-
    Member (id, name, date), Edge (member, "status", "Gold").
```


N-ary relationships

```
Edge("SchoolAttendance", "liquid/compound predicate", "student"),
Edge ("SchoolAttendance", "liquid/compound predicate", "school"),
Edge("SchoolAttendance", "liquid/compound predicate", "matriculated"),
Edge ("SchoolAttendance", "liquid/is literal compound", "false").
SchoolAttendance@(cid=x, matriculated="1984", school="school:01",
student="member:03").
SchoolAttendance@(cid= , matriculated= , school= , student= )?
   "{matriculated:1984,school:school:01,student:member:03}",
"matriculated", "1984"
DegreeGranted(d, m, sc, st) :-
     SchoolAttendance@(cid=x, matriculated=m, school=sc, student=st),
                                                                 Linked in
     Edge (x, "degree", d).
                                                                 Systems Lab
```

Simplify Operations

Automate everything

- Throughput management
- State-machine controller
- Self-repair
- Image and snapshot lifecycle
- Continuous correctness checks
- Continuous utilization metrics

... monitor toil and automate it.

Use the LinkedIn app, make our day!

100% in production since Nov 2020 99.99x% available

Summary: A Scale-out Graph Index System

- Build a global view graph: Index heterogeneous data as a homogeneous graph with xxxB edges
- Build one-query apps: declarative, composable queries with yy joins
- Scale your application to millions of QPS.
- Serve it with 99.99+% availability
- Iterate quickly

LinkedIn Systems Lab designs, develops, and evaluates novel technologies in the areas of distributed systems, high-performance computing, and databases.

We focus on identifying and applying the most innovative ideas to LinkedIn's data systems infrastructure while engaging with the academic and research communities.

Thankyou

