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Roadmap

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Patterns in graphs
• Part#2: time-evolving graphs; tensors
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Graphs - why should we care?

WWW, Seoul

U Kang, Jay-Yoon Lee, DanaiKoutra, and Christos
Faloutsos. Net-Ray: Visualizing and Mining Billion-Scale
Graphs PAKDD 2014, Tainan, Taiwan.

~1B nodes (web sites)
~6B edges (http links)
‘YahooWeb graph’
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Graphs - why should we care?

>$10B; ~1B users

WWW, Seoul
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Graphs - why should we care?

Internet Map 
[lumeta.com]

Food Web 
[Martinez ’91]

WWW, Seoul



CMU SCS

(c) 2014, C. Faloutsos 9

Graphs - why should we care?

WWW, Seoul

• Power-grid!
– Nodes: 

(plants/consumers)
– Edges: power lines
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Graphs - why should we care?
• web-log (‘blog’) news propagation
• computer network security: email/IP traffic and 

anomaly detection
• Recommendation systems
• ....

• Many-to-many db relationship -> graph

WWW, Seoul
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Motivating problems
• P1: patterns? Fraud detection?

• P2: patterns in time-evolving graphs / 
tensors

• P3: cascades – whom to immunize?

WWW, Seoul (c) 2014, C. Faloutsos 11

time

destination
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Roadmap
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Part 1:
Patterns, &

fraud detection
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Laws and patterns
• Q1: Are real graphs random?

WWW, Seoul
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Laws and patterns
• Q1: Are real graphs random?
• A1: NO!!

– Diameter (‘6 degrees’; ‘Kevin Bacon’)
– in- and out- degree distributions
– other (surprising) patterns

• So, let’s look at the data

WWW, Seoul
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Solution# S.1

• Power law in the degree distribution 
[SIGCOMM99]

log(rank)

log(degree)

internet domains

att.com

ibm.com

WWW, Seoul
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Solution# S.1

• Q: So what?
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Solution# S.1

• Q: So what?
• A1: # of two-step-away pairs:

log(rank)

log(degree)

-0.82

internet domains

att.com

ibm.com
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Solution# S.1

• Q: So what?
• A1: # of two-step-away pairs: 100^2 * N= 10 Trillion

log(rank)

log(degree)

-0.82

internet domains

att.com

ibm.com
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Solution# S.1

• Q: So what?
• A1: # of two-step-away pairs: 100^2 * N= 10 Trillion
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Solution# S.1

• Q: So what?
• A1: # of two-step-away pairs: O(d_max ^2) ~ 10M^2

log(rank)

log(degree)

-0.82

internet domains

att.com

ibm.com

WWW, Seoul

~0.8PB ->
a data center(!)

DCO @ CMU

Gaussian trap
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Solution# S.1

• Q: So what?
• A1: # of two-step-away pairs: O(d_max ^2) ~ 10M^2

log(rank)
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-0.82

internet domains

att.com

ibm.com

WWW, Seoul

~0.8PB ->
a data center(!)

Gaussian trap
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Observation – big-data:
• O(N2) algorithms are ~intractable  - N=1B

• N2 seconds = 31B years (>2x age of 
universe)

WWW, Seoul (c) 2014, C. Faloutsos 24

1B

1B
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Solution# S.2: Eigen Exponent E

• A2: power law in the eigenvalues of the adjacency 
matrix (‘eig()’)

E = -0.48

Exponent = slope

Eigenvalue

Rank of decreasing eigenvalue

May 2001

WWW, Seoul

A x = λx
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Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs

– Patterns: Degree; Triangles
– Anomaly/fraud detection
– Graph understanding

• Part#2: time-evolving graphs; tensors
• Part#3: Cascades and immunization
• Conclusions

WWW, Seoul
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Solution# S.3: Triangle ‘Laws’

• Real social networks have a lot of triangles 

WWW, Seoul
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Solution# S.3: Triangle ‘Laws’

• Real social networks have a lot of triangles
– Friends of friends are friends 

• Any patterns?
– 2x the friends, 2x the triangles ?

WWW, Seoul
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Triangle Law: #S.3 
[Tsourakakis ICDM 2008]

SNReuters

Epinions X-axis: degree
Y-axis: mean # triangles
n friends -> ~n1.6 triangles

WWW, Seoul
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Triangle Law: Computations 
[Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algos) – O(dmax

2)
Q: Can we do that quickly?
A:

details

WWW, Seoul
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Triangle Law: Computations 
[Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algos) – O(dmax

2)
Q: Can we do that quickly?
A: Yes!
#triangles = 1/6 Sum ( λi

3 )
(and, because of skewness (S2) , 
we only need the top few eigenvalues! - O(E)

details

WWW, Seoul

A x = λx
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

32WWW, Seoul 32(c) 2014, C. Faloutsos

? ?

?
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

35WWW, Seoul 35(c) 2014, C. Faloutsos
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MORE Graph Patterns

WWW, Seoul (c) 2014, C. Faloutsos 36

✔
✔
✔

RTG: A Recursive Realistic Graph Generator using Random 
Typing Leman Akoglu and Christos Faloutsos. PKDD’09. 
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MORE Graph Patterns

WWW, Seoul (c) 2014, C. Faloutsos 37

• Mary McGlohon, Leman Akoglu, Christos 
Faloutsos. Statistical Properties of Social 
Networks. in "Social Network Data Analytics” (Ed.: 
CharuAggarwal)

• Deepayan Chakrabarti and Christos Faloutsos, 
Graph Mining: Laws, Tools, and Case StudiesOct. 
2012, Morgan Claypool. 

http://www.morganclaypool.com/doi/abs/10.2200/S00449ED1V01Y201209DMK006�
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Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs

– Patterns
– Anomaly / fraud detection
– Graph understanding

• Part#2: time-evolving graphs; tensors
• Part#3: Cascades and immunization
• Conclusions

WWW, Seoul
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Fraud
• Given

– Who ‘likes’ what page, and 
when

• Find
– Suspicious users and suspicious 

products

WWW, Seoul (c) 2014, C. Faloutsos 39

CopyCatch: Stopping Group Attacks by Spotting
Lockstep Behavior in Social Networks, Alex Beutel,
WanhongXu, VenkatesanGuruswami, Christopher Palow,
Christos Faloutsos WWW, 2013.
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Fraud
• Given
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when

• Find
– Suspicious users and suspicious 

products
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CopyCatch: Stopping Group Attacks by Spotting
Lockstep Behavior in Social Networks, Alex Beutel,
WanhongXu, VenkatesanGuruswami, Christopher Palow,
Christos Faloutsos WWW, 2013.

Likes
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Ill-gotten Facebook Pages 
Likes

▪ Popular Page = $

▪ Fake ‘likes’ through 
unethical means:

▪ Fake accounts

▪ Malware

▪ Credential stealing

▪ Social Engineering
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Our intuition
▪ Lockstep behavior: Same Likes, same time

Graph Patterns and Lockstep 
Behavior

Likes
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Our intuition
▪ Lockstep behavior: Same Likes, same time

Graph Patterns and Lockstep 
Behavior

Suspicious Lockstep Behavior
Likes



CMU SCS

MapReduce Overview
▪ Use Hadoop to search for 

many clusters in parallel:

1. Start with randomly seed

2. Update set of Pages and 
center Like times for 
each cluster

3. Repeatuntil convergence

Likes
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Deployment at Facebook
▪ CopyCatchruns regularly (along with many other 

security mechanisms, and a large Site Integrity 
team)

3 months of CopyCatch@ Facebook

#users
caught

time
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Deployment at Facebook

Manually labeled 22 randomly selected
clustersfrom February 2013

Most clusters (77%) come from 
real but compromised users

Fake acct
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Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs

– Patterns
– Anomaly / fraud detection
– Graph understanding

• Part#2: time-evolving graphs; tensors
• Part#3: Cascades and immunization
• Conclusions

WWW, Seoul
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Wikipedia - editors

WWW, Seoul (c) 2014, C. Faloutsos 49

• Nodes: editors
• Edge A->B: ‘A’ changed ‘B’ Any pattern?
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VoG:Summarizing and Understanding Large 
Graphs

DanaiKoutra, 
U Kang, 
JillesVreeken, 
Christos Faloutsos.

SDM 2014, Philadelphia, PA, April 2014.

WWW, Seoul (c) 2014, C. Faloutsos 50

Code: www.cs.cmu.edu/~dkoutra/CODE/vog.tar
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VoG: Summarizing Wiki-controversy 

top-8 star 
structures: 

admins, heavy 
wiki users, bots

Ditto, between 
vandals

warring factions
changing each-

other's edits. 
(Kiev vs Kiyv)

WWW, Seoul 51(c) 2014, C. Faloutsos
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VoG: Summarizing Graphs using 
Rich Vocabularies

Main Ideas:
(1)Use `vocabulary' of subgraphtypes

(2) Minimum Description Length (MDL)  and 
above vocabulary, to summarize graph

…
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Summary of Part#1
• *many* patterns in real graphs

– Power-laws everywhere
– Gaussian trap

• Avg<< Max

WWW, Seoul (c) 2014, C. Faloutsos 53
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Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs
• Part#2: time-evolving graphs; tensors

– P2.1: time-evolving graphs
– P2.2: with side information (‘coupled’ M.T.F.)
– Speed

• Part#3: Cascades and immunization
• Conclusions

WWW, Seoul
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Part 2:
Time evolving 
graphs; tensors
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Graphs over time -> tensors!
• Problem #2.1:

– Given who calls whom, and when
– Find patterns / anomalies

WWW, Seoul (c) 2014, C. Faloutsos 56

smith
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Graphs over time -> tensors!
• Problem #2.1:

– Given who calls whom, and when
– Find patterns / anomalies
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Mon
Tue
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Graphs over time -> tensors!
• Problem #2.1:

– Given who calls whom, and when
– Find patterns / anomalies

WWW, Seoul (c) 2014, C. Faloutsos 59
callee

caller



CMU SCS

Graphs over time -> tensors!
• Problem #2.1’:

– Given author-keyword-date
– Find patterns / anomalies

WWW, Seoul (c) 2014, C. Faloutsos 60
keyword

author

MANY more settings,
with >2 ‘modes’



CMU SCS

Graphs over time -> tensors!
• Problem #2.1’’:

– Given subject – verb – object facts
– Find patterns / anomalies

WWW, Seoul (c) 2014, C. Faloutsos 61
object

subject

MANY more settings,
with >2 ‘modes’
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Graphs over time -> tensors!
• Problem #2.1’’’:

– Given <triplets>
– Find patterns / anomalies

WWW, Seoul (c) 2014, C. Faloutsos 62
mode2

mode1

MANY more settings,
with >2 ‘modes’
(and 4, 5, etc modes)
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Graphs & side info
• Problem #2.2: coupled (eg., side info)

– Given subject – verb – object facts
• And voxel-activity for each subject-word

– Find patterns / anomalies

WWW, Seoul (c) 2014, C. Faloutsos 63
object

subject

fMRIvoxel activity
`apple tastes sweet’
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Graphs & side info
• Problem #2.2: coupled (eg., side info)

– Given subject – verb – object facts
• And voxel-activity for each subject-word

– Find patterns / anomalies

WWW, Seoul (c) 2014, C. Faloutsos 64
‘sweet’

‘apple’

fMRIvoxel activity
`apple tastes sweet’

‘apple’
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Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs
• Part#2: time-evolving graphs; tensors

– P2.1: time-evolving graphs
– P2.2: with side information (‘coupled’ M.T.F.)
– Speed

• Part#3: Cascades and immunization
• Conclusions

WWW, Seoul
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Answer to both: tensor 
factorization

• Recall: (SVD) matrix factorization: finds 
blocks

WWW, Seoul (c) 2014, C. Faloutsos 66

N 
users

M
products

‘meat-eaters’
‘steaks’

‘vegetarians’
‘plants’

‘kids’
‘cookies’

~ + +
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Answer to both: tensor 
factorization

• PARAFAC decomposition

WWW, Seoul (c) 2014, C. Faloutsos 67

= + +subject

object

politicians artists athletes
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Answer: tensor factorization
• PARAFAC decomposition
• Results for who-calls-whom-when

– 4M x 15 days

WWW, Seoul (c) 2014, C. Faloutsos 68

= + +caller

callee

?? ?? ??
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Anomaly detection in time-
evolving graphs

• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!

1 caller 5 receivers 4 days of activity

WWW, Seoul 69(c) 2014, C. Faloutsos

=
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Anomaly detection in time-
evolving graphs

• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!

1 caller 5 receivers 4 days of activity
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Anomaly detection in time-
evolving graphs

• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!
WWW, Seoul 71(c) 2014, C. Faloutsos

=

Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann,
Christos Faloutsos, PrithwishBasu, Ananthram Swami,
EvangelosPapalexakis, DanaiKoutra. Com2: Fast Automatic
Discovery of Temporal (Comet) Communities. PAKDD 2014,
Tainan, Taiwan.
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Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs
• Part#2: time-evolving graphs; tensors

– P2.1: Discoveries @ phonecall network
– P2.2: Discoveries in  neuro-semantics
– Speed

• Part#3: Cascades and immunization
• Conclusions

WWW, Seoul
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Coupled Matrix-Tensor Factorization 
(CMTF)

Y X

a1 aF

b1 bF

c1 cF

a1 aF

d1 dF

WWW, Seoul 73(c) 2014, C. Faloutsos

+

+
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Neuro-semantics
• Brain Scan Data*

• 9 persons
• 60 nouns

• Questions
• 218 questions
• ‘is it alive?’, ‘can 

you eat it?’

WWW, Seoul 74(c) 2014, C. Faloutsos

*Mitchell et al. Predicting human brain activity
associated with the meanings of nouns. Science,2008.
Data@ www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html

http://www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html�
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http://www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html�
http://www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html�
http://www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html�
http://www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html�
http://www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html�
http://www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html�
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Neuro-semantics
• Brain Scan Data*

• 9 persons
• 60 nouns

• Questions
• 218 questions
• ‘is it alive?’, ‘can 

you eat it?’

WWW, Seoul 75(c) 2014, C. Faloutsos

Patterns?
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Neuro-semantics
• Brain Scan Data*

• 9 persons
• 60 nouns

• Questions
• 218 questions
• ‘is it alive?’, ‘can 

you eat it?’

…

airplane

dog

no
un

s

questions

voxels
WWW, Seoul 76(c) 2014, C. Faloutsos

Patterns?
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Neuro-semantics

77WWW, Seoul (c) 2014, C. Faloutsos

=
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Neuro-semantics

78WWW, Seoul (c) 2014, C. Faloutsos

Small items ->
Premotor cortex

=
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Neuro-semantics

79WWW, Seoul (c) 2014, C. Faloutsos

EvangelosPapalexakis, Tom Mitchell, Nicholas Sidiropoulos,
Christos Faloutsos, ParthaPratimTalukdar, Brian Murphy,
Turbo-SMT: Accelerating Coupled Sparse Matrix-Tensor
Factorizations by 200x, SDM 2014

Small items ->
Premotor cortex
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Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs
• Part#2: time-evolving graphs; tensors

– P2.1: Discoveries @ phonecall network
– P2.2: Discoveries in  neuro-semantics
– Speed

• Part#3: Cascades and immunization
• Conclusions

WWW, Seoul
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Speed of tensor/CMTF analysis
• Q1: Can we make it fast?
• Q2: Does it work for large, disk-based data?

WWW, Seoul (c) 2014, C. Faloutsos 81
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A1: Turbo-SMT

82WWW, Seoul (c) 2014, C. Faloutsos

EvangelosPapalexakis, Tom Mitchell, Nicholas Sidiropoulos,
Christos Faloutsos, Partha Pratim Talukdar, Brian Murphy,
Turbo-SMT: Accelerating Coupled Sparse Matrix-Tensor
Factorizations by 200x, SDM 2014

200x faster

Relative run time

Relative
cost

Ideal
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A1: Turbo-SMT

83WWW, Seoul (c) 2014, C. Faloutsos

200x faster

Relative run timeIdeal

Relative
cost

baseline
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Q2: spilling to the disk?

Reminder: tensor (eg., Subject-verb-object)
144M non-zeros

NELL (Never Ending 
Language Learner) 

@CMU 

WWW, Seoul 84(c) 2014, C. Faloutsos

26M

26M

48M
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A2: GigaTensor

Reminder: tensor (eg., Subject-verb-object)
26M x 48M x 26M, 144M non-zeros

NELL (Never Ending 
Language 

Learner)@CMU

WWW, Seoul 85(c) 2014, C. Faloutsos

U Kang, Evangelos E. Papalexakis, AbhayHarpale, Christos
Faloutsos, GigaTensor: Scaling Tensor Analysis Up By 100
Times - Algorithms and Discoveries, KDD’12
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A2: GigaTensor

• GigaTensor solves 100x larger problem

Number of 
nonzero
= I / 50

(J)

(I)

(K)

GigaTensor

Out of
Memory

100x

WWW, Seoul 86(c) 2014, C. Faloutsos
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Part 2: Conclusions

• Time-evolving / heterogeneous graphs -> 
tensors

• PARAFAC finds patterns
• Turbo-SMT; GigaTensor -> fast & scalable

WWW, Seoul 87(c) 2014, C. Faloutsos

=
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Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs
• Part#2: time-evolving graphs; tensors
• Part#3: Cascades and immunization
• Conclusions

WWW, Seoul
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Part 3:
Cascades &

Immunization
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Why do we care?
• Information Diffusion
• Viral Marketing
• Epidemiology and Public Health
• Cyber Security
• Human mobility 
• Games and Virtual Worlds 
• Ecology
• ........

(c) 2014, C. Faloutsos 90WWW, Seoul
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Roadmap

• A case for cross-disciplinarity
• Introduction – Motivation
• Part#1: Patterns in graphs
• Part#2: Cascade analysis

– (Fractional) Immunization
– Epidemic thresholds

• Conclusions

WWW, Seoul



CMU SCS

Fractional Immunization of Networks
B. Aditya Prakash, 
LadaAdamic, 
Theodore Iwashyna (M.D.), 

Hanghang Tong, 
Christos Faloutsos
SDM 2013, Austin, TX 

(c) 2014, C. Faloutsos 92WWW, Seoul
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Whom to immunize?
• Dynamical Processes over networks

•Each circle is a hospital
• ~3,000 hospitals
• More than 30,000 patients 
transferred  

[US-MEDICARE 
NETWORK 2005]

Problem: Given k units of 
disinfectant, whom to immunize?

(c) 2014, C. Faloutsos 93WWW, Seoul
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Whom to immunize?

CURRENT PRACTICE OUR METHOD

[US-MEDICARE 
NETWORK 2005]

~6x 
fewer!

(c) 2014, C. Faloutsos 94WWW, Seoul

Hospital-acquired inf. : 99K+ lives, $5B+ per year



CMU SCS

Fractional Asymmetric Immunization

Hospital Another 
Hospital

Drug-resistant Bacteria 
(like XDR-TB) 

(c) 2014, C. Faloutsos 95WWW, Seoul
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Fractional Asymmetric Immunization

Hospital Another 
Hospital

Problem:
Given k units of disinfectant,
distribute them
to maximize hospitals saved
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Fractional Asymmetric Immunization

Hospital Another 
Hospital

Problem:
Given k units of disinfectant,
distribute them
to maximize hospitals saved @ 365 days

(c) 2014, C. Faloutsos 99WWW, Seoul

15%
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Running Time

Simulations SMART-ALLOC

> 1 week
Wall-Clock 

Time≈

14 secs

> 30,000x 
speed-up!

better

(c) 2014, C. Faloutsos 104WWW, Seoul
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Experiments 

K = 120

better

(c) 2014, C. Faloutsos 105WWW, Seoul

# epochs

# infected
uniform

SMART-ALLOC
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What is the ‘silver bullet’?
A: Try to decrease connectivity of graph

Q: how to measure connectivity?
– Avg degree? Max degree?
– Std degree / avg degree ?
– Diameter?
– Modularity?
– ‘Conductance’ (~min cut size)?
– Some combination of above?

WWW, Seoul (c) 2014, C. Faloutsos 106

≈
14 

secs

> 
30,000x 
speed-

up!



CMU SCS

What is the ‘silver bullet’?
A: Try to decrease connectivity of graph

Q: how to measure connectivity?
A: first eigenvalue of adjacency matrix

Q1: why??
(Q2: dfn& intuition of eigenvalue ? )

WWW, Seoul (c) 2014, C. Faloutsos 107

Avg degree
Max degree
Diameter
Modularity
‘Conductance’
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Why eigenvalue?
A1: ‘G2’ theorem and ‘eigen-drop’:

• For (almost) any type of virus
• For any network
• -> no epidemic, if small-enough first 

eigenvalue  (λ1 ) of adjacency matrix

• Heuristic: for immunization, try to min λ1

• The smaller λ1, the closer to extinction.
WWW, Seoul (c) 2014, C. Faloutsos 108

Threshold Conditions for Arbitrary Cascade Models on 
Arbitrary Networks, B. Aditya Prakash, Deepayan 
Chakrabarti, Michalis Faloutsos, Nicholas Valler, 
Christos Faloutsos, ICDM 2011, Vancouver, Canada
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Why eigenvalue?
A1: ‘G2’ theorem and ‘eigen-drop’:

• For (almost) any type of virus
• For any network
• -> no epidemic, if small-enough first 

eigenvalue  (λ1 ) of adjacency matrix

• Heuristic: for immunization, try to min λ1

• The smaller λ1, the closer to extinction.
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Threshold Conditions for Arbitrary Cascade 
Models on Arbitrary Networks
B. Aditya Prakash, Deepayan Chakrabarti, 
Michalis Faloutsos, Nicholas Valler, 
Christos Faloutsos
IEEE ICDM 2011, Vancouver

extended version, in arxiv
http://arxiv.org/abs/1004.0060

G2 theorem

~10 pages proof



CMU SCS

Our thresholds for some models
• s = effective strength
• s< 1 : below threshold

(c) 2014, C. Faloutsos 111WWW, Seoul

Models Effective Strength 
(s)

Threshold (tipping 
point)

SIS, SIR, SIRS, 
SEIR s = λ .   

s = 1
SIV, SEIV s = λ .   

(H.I.V.) s = λ .   
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Our thresholds for some models
• s = effective strength
• s< 1 : below threshold
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Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs
• Part#2: Cascade analysis

– (Fractional) Immunization
– intuition behind λ1

• Conclusions

WWW, Seoul
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Intuition for λ

“Official” definitions:
• Let A be the adjacency 

matrix. Then λ is the root 
with the largest magnitude of 
the characteristic polynomial 
of A [det(A – λI)].

• Also:  Ax = λx

Neither gives much intuition!

“Un-official” Intuition 
• For ‘homogeneous’ 

graphs, λ == degree

• λ ~ avg degree
– done right, for 

skewed degree 
distributions

(c) 2014, C. Faloutsos 114WWW, Seoul
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Largest Eigenvalue (λ)

λ ≈ 2 λ =   N λ = N-1

N = 1000 nodes
λ ≈ 2 λ= 31.67 λ= 999

better connectivity         higher λ

(c) 2014, C. Faloutsos 115WWW, Seoul
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Largest Eigenvalue (λ)

λ ≈ 2 λ =   N λ = N-1

N = 1000 nodes
λ ≈ 2 λ= 31.67 λ= 999

better connectivity         higher λ
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Examples: Simulations – SIR (mumps) 
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(a) Infection profile                 (b) “Take-off” plot
PORTLAND graph: synthetic population, 

31 million links, 6 million nodes
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Examples: Simulations – SIRS 
(pertusis) 
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(a) Infection profile                 (b) “Take-off” plot
PORTLAND graph: synthetic population, 

31 million links, 6 million nodes
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Part3: Immunization - conclusion
In (almost any) immunization setting,
• Allocate resources, such that to
• Minimize λ1

• (regardless of virus specifics)

• Conversely, in a market penetration 
setting
– Allocate resources to
– Maximize  λ1WWW, Seoul (c) 2014, C. Faloutsos 119
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Roadmap

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Patterns in graphs
• Part#2: time-evolving graphs; tensors
• Part#3: Cascades and immunization
• Future directions
• Conclusions

WWW, Seoul



CMU SCS
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Brain connectivity
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Roadmap

• Introduction – Motivation
– Why study (big) graphs?

• Part#1: Patterns in graphs
• Part#2: time-evolving graphs; tensors
• Part#3: Cascades and immunization
• Future directions
• Acknowledgements and Conclusions

WWW, Seoul
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Thanks

WWW, Seoul

Thanks to: NSF IIS-0705359, IIS-0534205, 
CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, 
Google, INTEL, HP, iLab

Disclaimer: All opinions are mine; not necessarily reflecting 
the opinions of the funding agencies
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Project info: PEGASUS

WWW, Seoul

www.cs.cmu.edu/~pegasus
Results on large graphs: with Pegasus + 

hadoop + M45
Apache license
Code, papers, manual, video

Prof. U Kang Prof. Polo Chau

http://www.cs.cmu.edu/~pegasus�
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CONCLUSION#1 – Big data

• Large datasets reveal patterns/outliers that 
are invisible otherwise

WWW, Seoul
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CONCLUSION#2 – tensors

• powerful tool

WWW, Seoul

=



CMU SCS

(c) 2014, C. Faloutsos 129

CONCLUSION#3 – eigen-drop

• Cascades & immunization: G2 theorem 
&eigenvalue

WWW, Seoul

CURRENT PRACTICE OUR METHOD

[US-MEDICARE 
NETWORK 2005]

~6x 
fewer!

≈
14 

secs

> 
30,000x 
speed-

up!
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TAKE HOME MESSAGE:

Cross-disciplinarity
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TAKE HOME MESSAGE:

Cross-disciplinarity
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Thank you! Questions?
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