

Large Graph Mining: Patterns, Cascades, Fraud Detection, and Algorithms

Christos Faloutsos CMU

Thank you!

• Prof. Chin-Wan Chung

Thank you!

• Prof. Chin-Wan Chung

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Patterns in graphs
- Part#2: time-evolving graphs; tensors
- Part#3: Cascades and immunization
- Conclusions

Carnegie Mellon

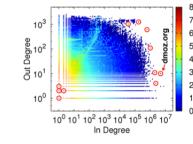
Graphs - why should we care?

~1B nodes (web sites) ~6B edges (http links) 'YahooWeb graph'

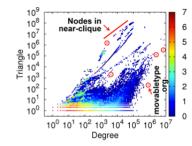
WWW, Seoul

Carnegie Mellon

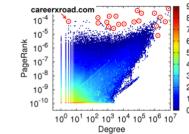
Graphs - why should we care?



YahooWeb: (a) In-degree vs. Out-degree



(b) Degree vs. Triangles



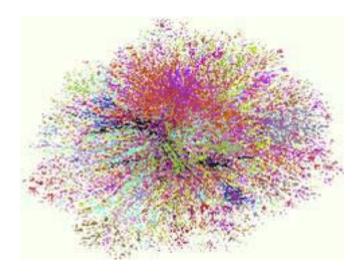
(c) Degree vs. PageRank

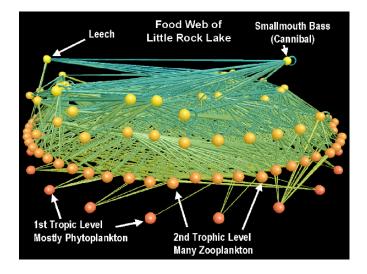
~1B nodes (web sites) ~6B edges (http links) 'YahooWeb graph'

U Kang, Jay-Yoon Lee, DanaiKoutra, and Christos Faloutsos. *Net-Ray: Visualizing and Mining Billion-Scale Graphs* PAKDD 2014, Tainan, Taiwan.

Graphs - why should we care? Linkedin. >\$10B; ~1B users

Graphs - why should we care?



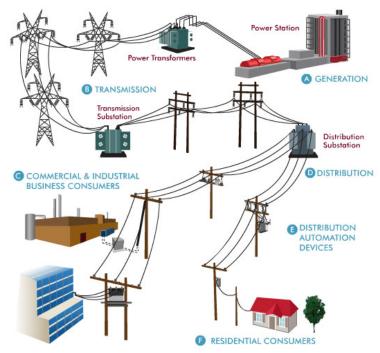


Internet Map [lumeta.com]

Food Web [Martinez '91]

Graphs - why should we care?

- Power-grid!
 - Nodes: (plants/consumers)
 - Edges: power lines



Graphs - why should we care?

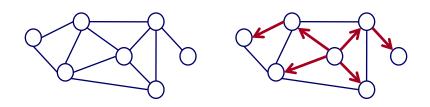
- web-log ('blog') news propagation YAHOO! вLOG
- computer network security: email/IP traffic and anomaly detection
- Recommendation systems

• Many-to-many db relationship -> graph

Motivating problems

• P1: patterns? Fraud detection?

- P2: patterns in time-evolving graphs / tensors
- P3: cascades whom to immunize?



Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Patterns in graphs
 - Part#2: time-evolving graphs; tensors
 - Part#3: Cascades and immunization
 - Conclusions

Carnegie Mellon

Part 1: Patterns, & fraud detection

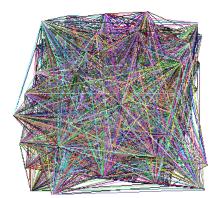
WWW, Seoul

(c) 2014, C. Faloutsos

13

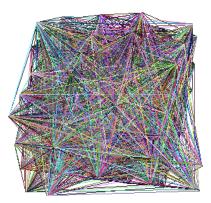
Laws and patterns

• Q1: Are real graphs random?



Laws and patterns

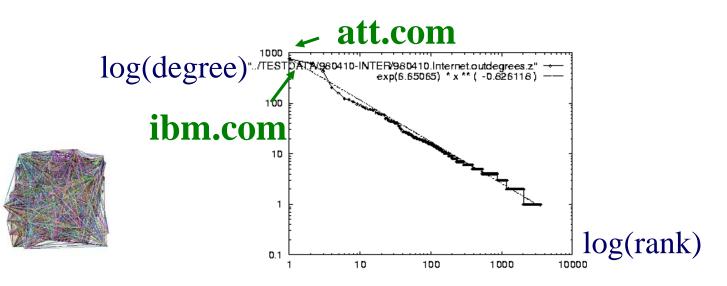
- Q1: Are real graphs random?
- A1: NO!!
 - Diameter ('6 degrees'; 'Kevin Bacon')
 - in- and out- degree distributions
 - other (surprising) patterns
- So, let's look at the data



Solution# S.1

• Power law in the degree distribution [SIGCOMM99]

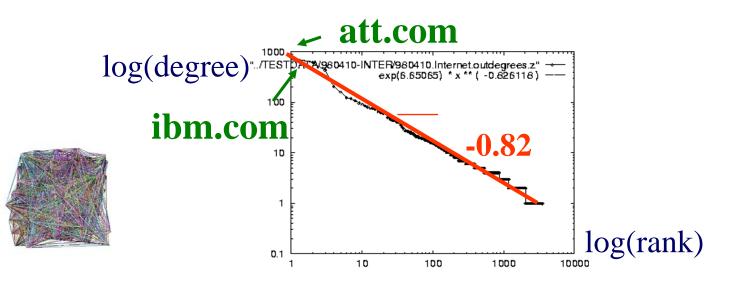
internet domains



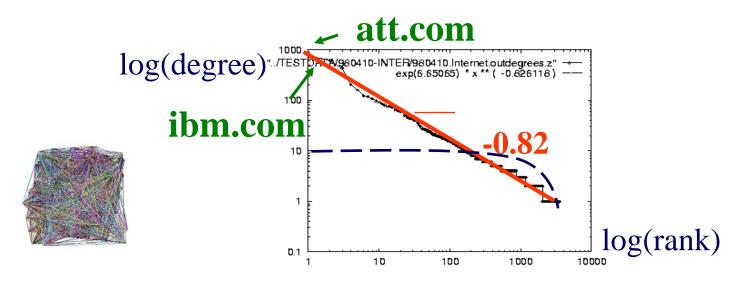
Solution# S.1

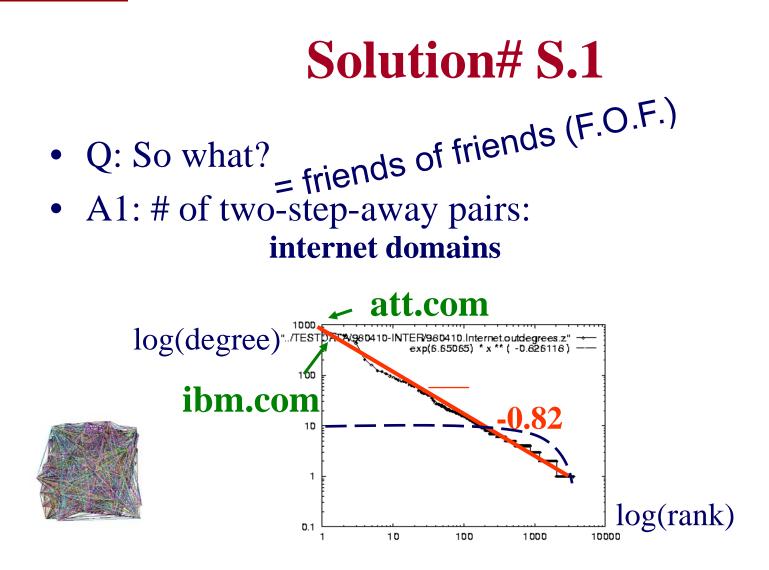
• Power law in the degree distribution [SIGCOMM99]

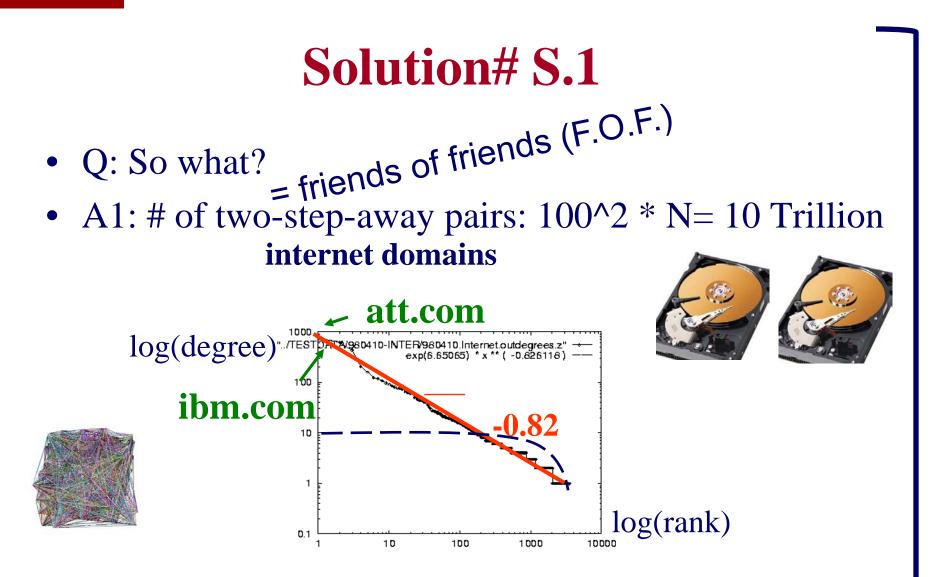
internet domains

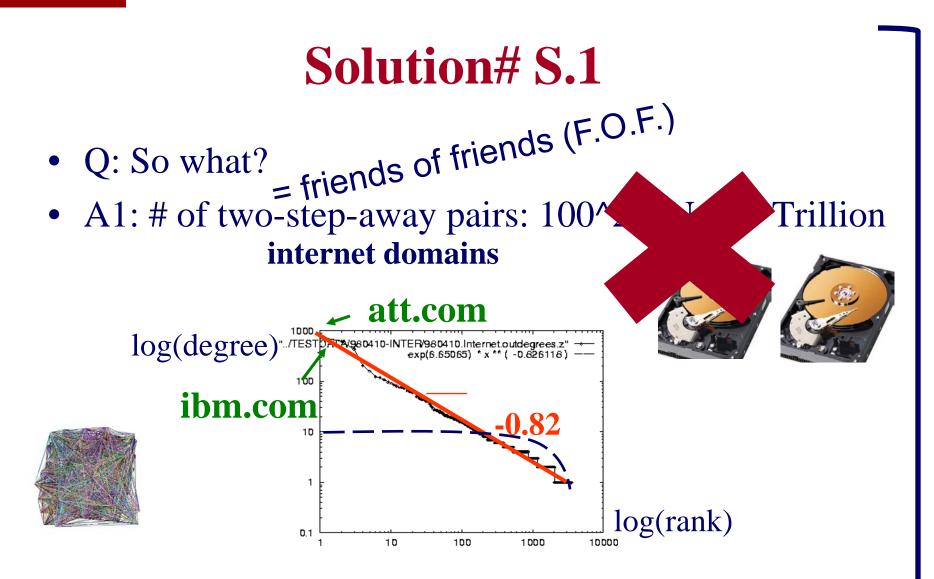


• Q: So what?







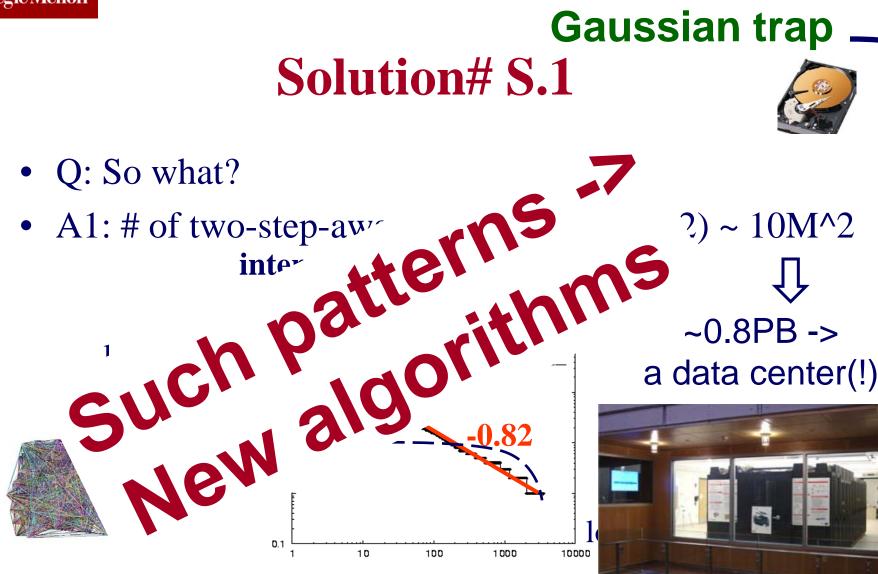




(c) 2014, C. Faloutsos

22

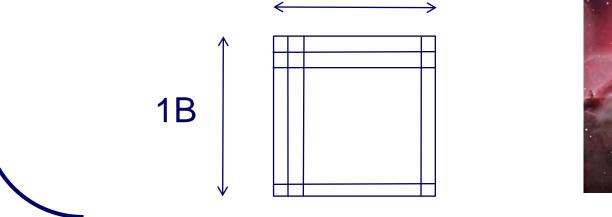
DCO @ CMU



Observation – big-data:

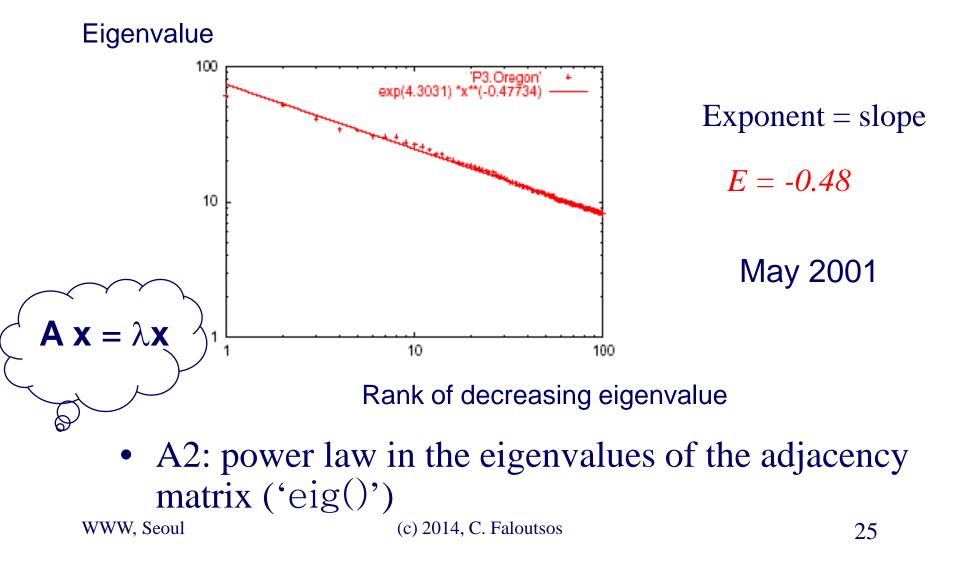
• $O(N^2)$ algorithms are ~intractable - N=1B

• N^2 seconds = 31B years (>2x age of universe) 1B



(c) 2014, C. Faloutsos

Solution# S.2: Eigen Exponent E



Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns: Degree; Triangles
 - Anomaly/fraud detection
 - Graph understanding
- Part#2: time-evolving graphs; tensors
- Part#3: Cascades and immunization
- Conclusions

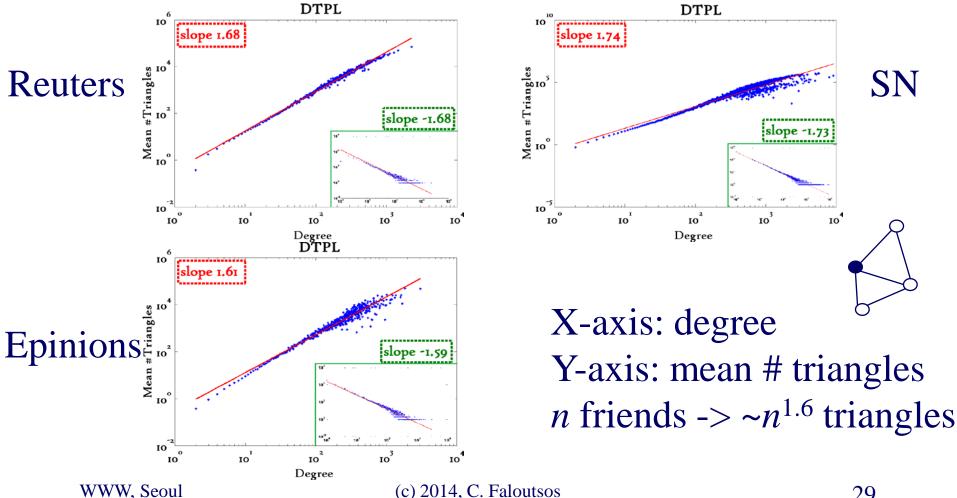
Solution# S.3: Triangle 'Laws'

• Real social networks have a lot of triangles

Solution# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles
 - Friends of friends are friends
- Any patterns?
 - 2x the friends, 2x the triangles ?

Triangle Law: #S.3 [Tsourakakis ICDM 2008]



Carnegie Mellon

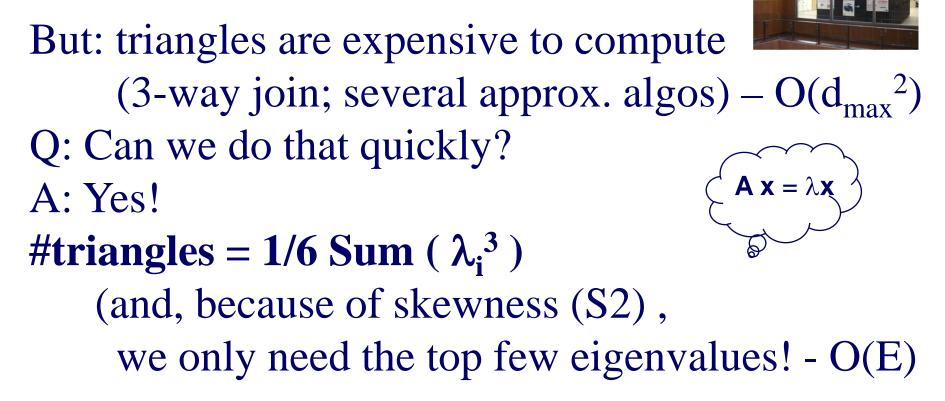
Triangle Law: Computations [Tsourakakis ICDM 2008]

details

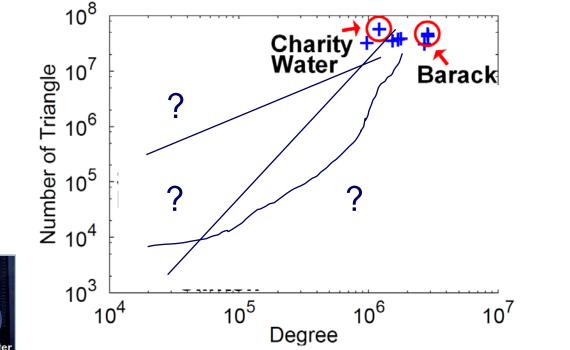
But: triangles are expensive to compute (3-way join; several approx. algos) – O(d_{max}²)
Q: Can we do that quickly?
A:

Carnegie Mellon

Triangle Law: Computations [Tsourakakis ICDM 2008]

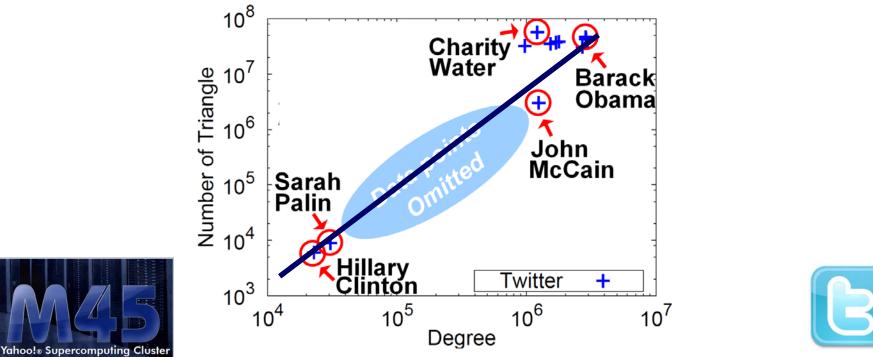


details



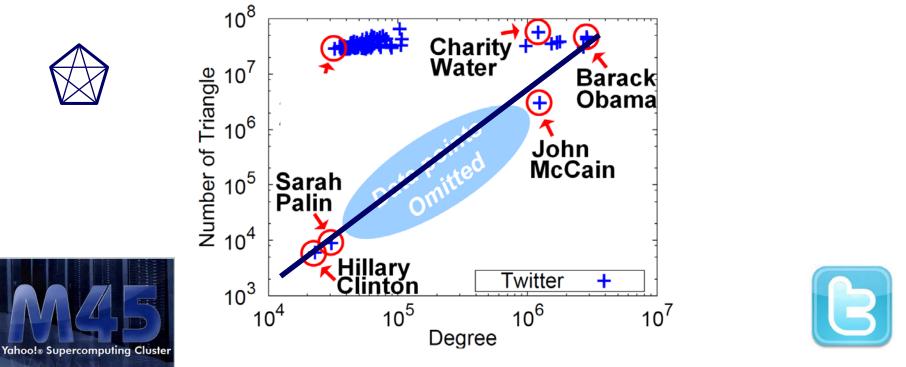
Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

WWW, Seoul



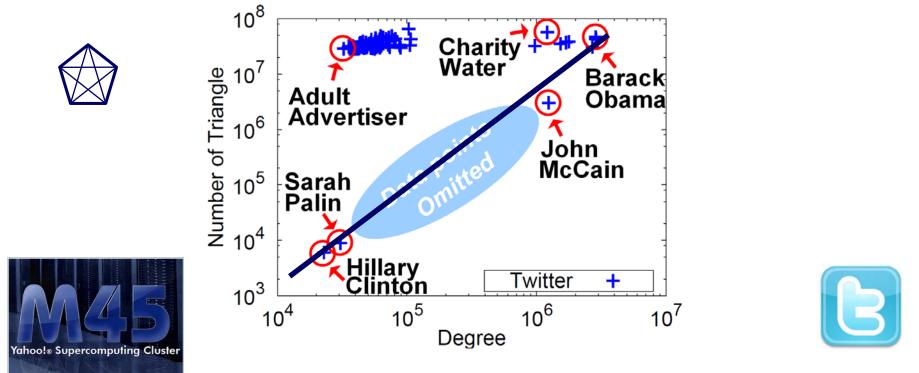
Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

WWW, Seoul



Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

WWW, Seoul



Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

WWW, Seoul

Carnegie Mellon

MORE Graph Patterns

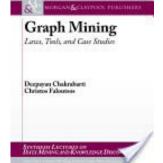
	Unweighted	Weighted
Static	 Faloutsos et al. '99, Chakrabarti et al. '04, Newman '04] Faloutsos et al. '99, Chakrabarti et al. '04, Newman '04] Triangle Power Law (TPL) [Tsourakakis '08] Eigenvalue Power Law (EPL) [Siganos et al. '03] Community structure [Flake et al. '02, Girvan and Newman '02] 	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]
Dynamic	L05. Densification Power Law (DPL) [Leskovec et al. `05] L06. Small and shrinking diameter [Albert and Barabási `99, Leskovec et al. `05] L07. Constant size 2^{nd} and 3^{rd} connected components [McGlohon et al. `08] L08. Principal Eigenvalue Power Law (λ_1 PL) [Akoglu et al. `08] L09. Bursty/self-similar edge/weight additions [Gomez and Santonja `98, Gribble et al. `98, Crovella and	L11. Weight Power Law (WPL) [McGlohon et al. `08]
TG: A Recursive Realistic Graph Generator using Random		

RTG: A Recursive Realistic Graph Generator using Random Typing Leman Akoglu and Christos Faloutsos. PKDD'09.

MORE Graph Patterns

	Unweighted	Weighted
Static	L01. Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] L02. Triangle Power Law (TPL) [Tsourakakis '08] L03. Eigenvalue Power Law (EPL) [Siganos et al. '03] L04. Community structure [Flake et al. '02, Girvan and Newman '02]	L10. Snapshot Power Law (SPL) [McGlohon et al. '08]
Dynamic	$ \begin{array}{l} \textbf{L05. Densification Power Law (DPL) [Leskovec et al. '05] \\ \textbf{L06. Small and shrinking diameter [Albert and Barabási '99, Leskovec et al. '05] \\ \textbf{L07. Constant size 2^{rd} and 3^{rd} connected components [McGlohon et al. '08] \\ \textbf{L08. Principal Eigenvalue Power Law (\lambda_1PL) [Akoglu et al. '08] \\ \textbf{L09. Bursty/self-similar edge/weight additions [Gomez and Santonja '98, Gribble et al. '08] \\ \text{Bestavros '99, McGlohon et al. '08] } \end{array} $	L11. Weight Power Law (WPL) [McGlohon et al. '08]

- Mary McGlohon, Leman Akoglu, Christos
 Faloutsos. Statistical Properties of Social
 Networks. in "Social Network Data Analytics" (Ed.: CharuAggarwal)
- Deepayan Chakrabarti and Christos Faloutsos, <u>Graph Mining: Laws, Tools, and Case Studies</u>Oct.
 2012, Morgan Claypool.



Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns
 - Anomaly / fraud detection
 - Graph understanding
- Part#2: time-evolving graphs; tensors
- Part#3: Cascades and immunization
- Conclusions

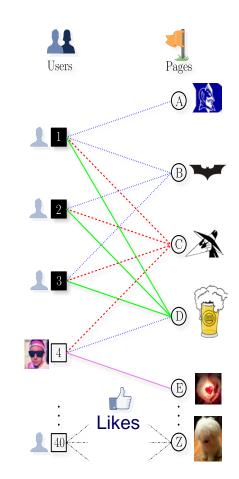
Fraud

- Given
 - Who 'likes' what page, and when
- Find
 - Suspicious users and suspicious products

CopyCatch: Stopping Group Attacks by Spotting Lockstep Behavior in Social Networks, Alex Beutel, WanhongXu, VenkatesanGuruswami, Christopher Palow, Christos Faloutsos *WWW*, 2013.

Fraud

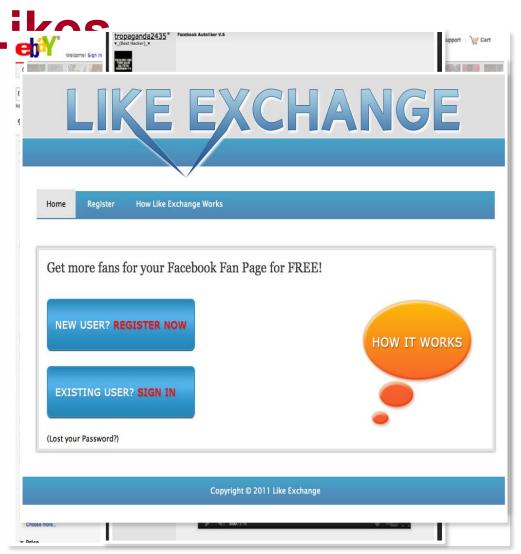
- Given
 - Who 'likes' what page, and when
- Find
 - Suspicious users and suspicious products



CopyCatch: Stopping Group Attacks by Spotting Lockstep Behavior in Social Networks, Alex Beutel, WanhongXu, VenkatesanGuruswami, Christopher Palow, Christos Faloutsos *WWW*, 2013.

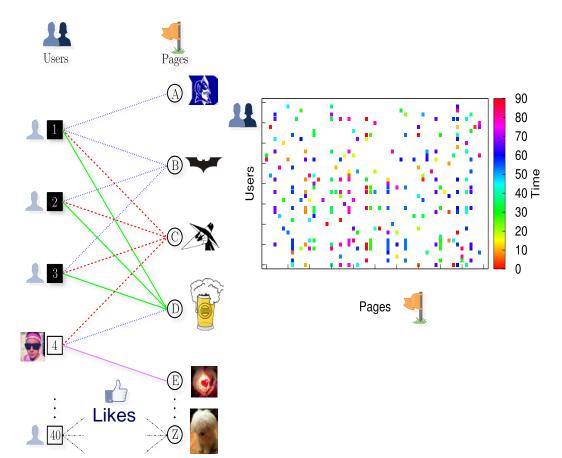
Ill-gotten Facebook Pages

- Popular Page = \$
- Fake 'likes' through unethical means:
 - Fake accounts
 - Malware
 - Credential stealing
 - Social Engineering



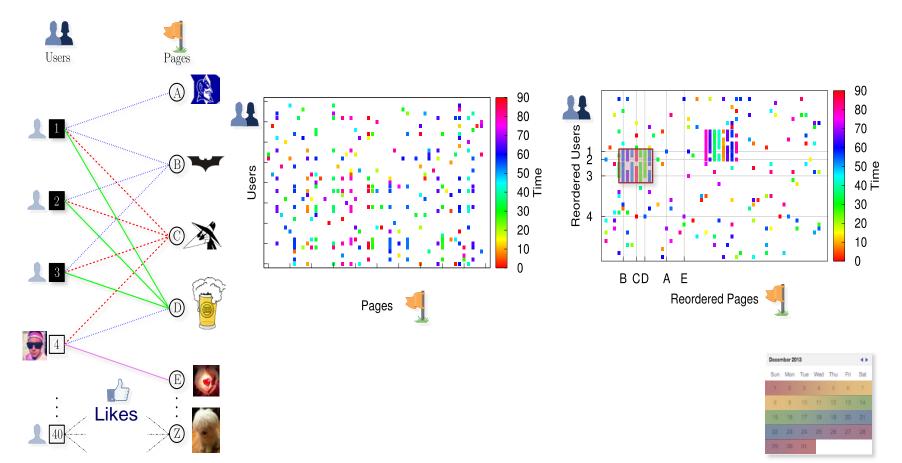
Graph Patterns and Lockstep Our intuition Behavior

Lockstep behavior: Same Likes, same time



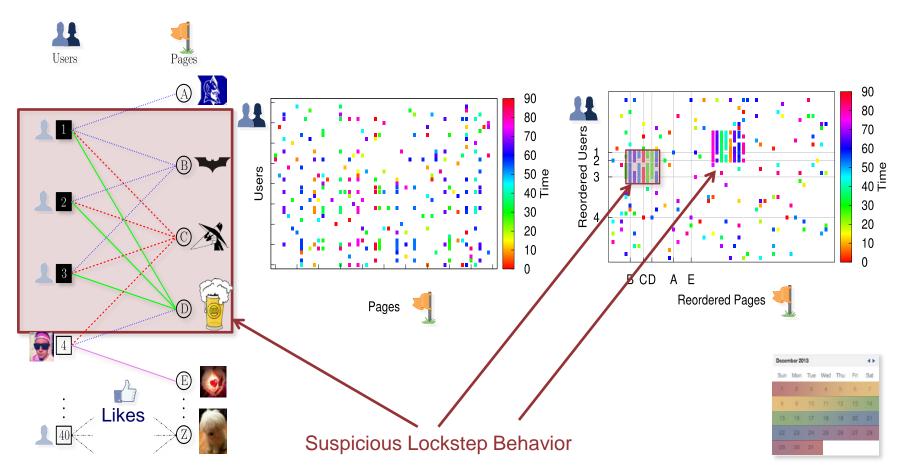
Graph Patterns and Lockstep Our intuition Behavior

Lockstep behavior: Same Likes, same time



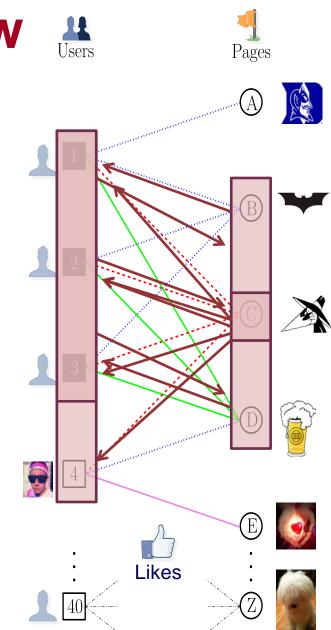
Graph Patterns and Lockstep Our intuition Behavior

Lockstep behavior: Same Likes, same time



MapReduce Overview

- Use Hadoop to search for many clusters in parallel:
 - 1. Start with randomly seed
 - Update set of Pages and center Like times for each cluster
 - 3. Repeatuntil convergence

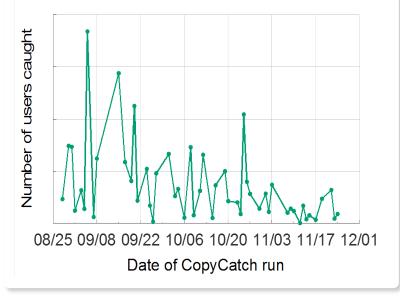


Deployment at Facebook

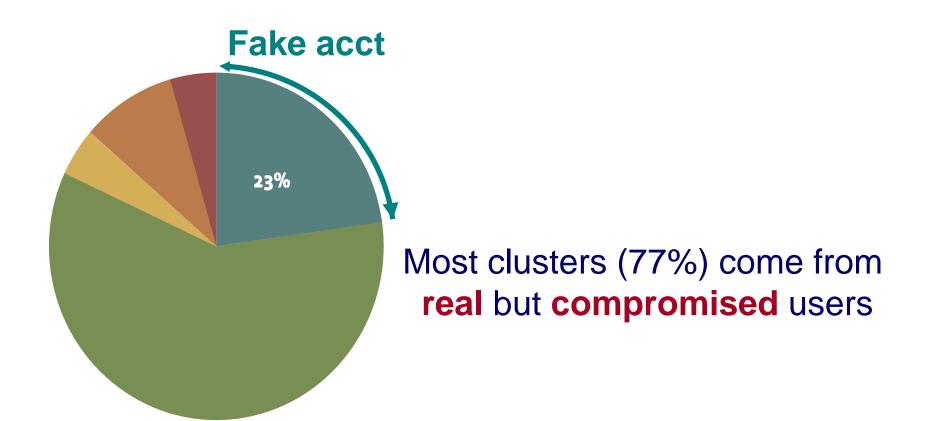
 CopyCatchruns regularly (along with many other security mechanisms, and a large Site Integrity team)

3 months of CopyCatch@ Facebook

#users caught



Deployment at Facebook

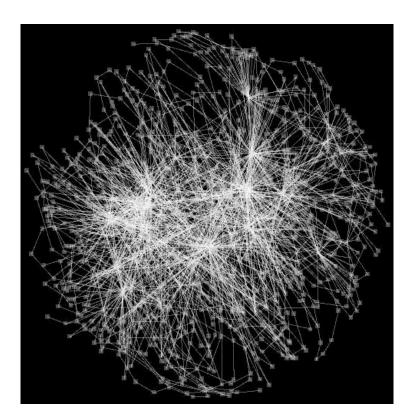


Manually labeled 22 randomly selected *clusters*from February 2013

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns
 - Anomaly / fraud detection
 - Graph understanding
- Part#2: time-evolving graphs; tensors
- Part#3: Cascades and immunization
- Conclusions

Wikipedia - editors



- Nodes: editors
- Edge A->B: 'A' changed 'B'

Any pattern?

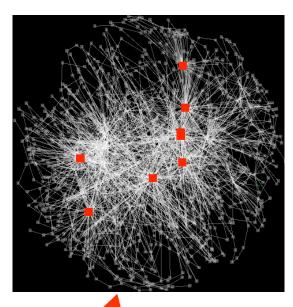
WWW, Seoul

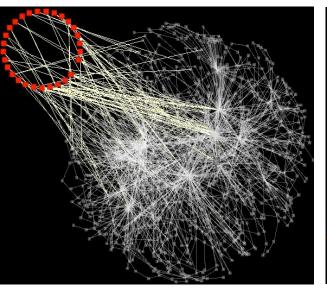
(c) 2014, C. Faloutsos

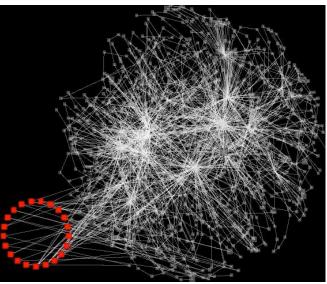
VoG:Summarizing and Understanding Large Graphs DanaiKoutra, U Kang, JillesVreeken, Christos Faloutsos. SDM 2014, Philadelphia, PA, April 2014.

Code: www.cs.cmu.edu/~dkoutra/CODE/vog.tar

VoG: Summarizing Wiki-controversy







top-8 star structures: admins, heavy wiki users, bots warring factions changing eachother's edits. (Kiev vs Kiyv)

(c) 2014, C. Faloutsos

Ditto, between vandals

VoG: Summarizing Graphs using Rich Vocabularies

Main Ideas:

(1)Use `vocabulary' of subgraphtypes

(2) Minimum Description Length (MDL) and above vocabulary, to summarize graph

Summary of Part#1

- *many* patterns in real graphs
 - Power-laws everywhere
 - Gaussian trap
 - Avg<< Max

Roadmap

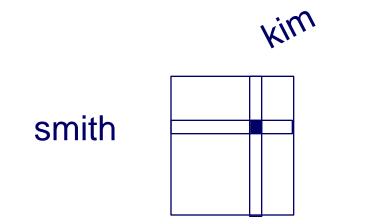
- Introduction Motivation
- Part#1: Patterns in graphs

- Part#2: time-evolving graphs; tensors
 - P2.1: time-evolving graphs
 - P2.2: with side information ('coupled' M.T.F.)
 - Speed
- Part#3: Cascades and immunization
- Conclusions

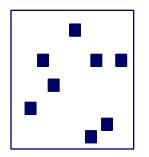
Part 2: Time evolving graphs; tensors

WWW, Seoul

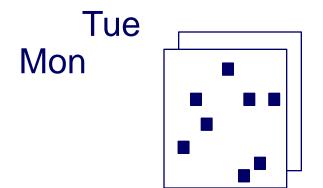
- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies



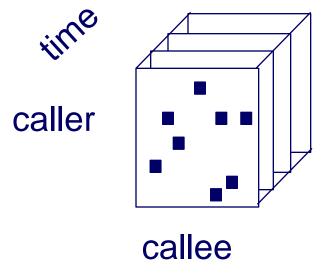
- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies



- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies



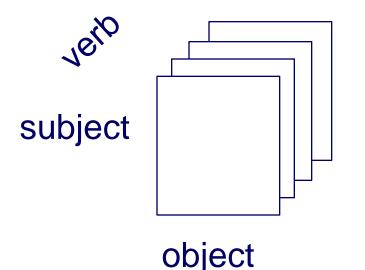
- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies



- Problem #2.1':
 - Given author-keyword-date
 - Find patterns / anomalies

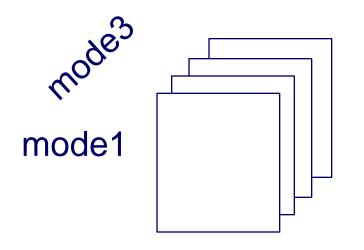
MANY more settings, with >2 'modes'

- Problem #2.1'':
 - Given subject verb object facts
 - Find patterns / anomalies



MANY more settings, with >2 'modes'

- Problem #2.1''':
 - Given <triplets>
 - Find patterns / anomalies



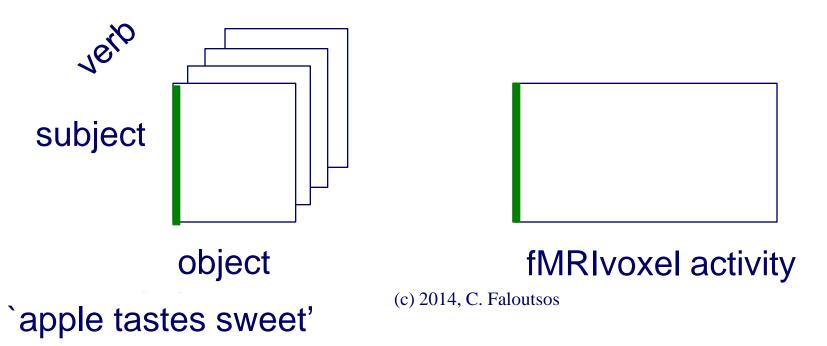
MANY more settings, with >2 'modes' (and 4, 5, etc modes)

mode2

WWW, Seoul

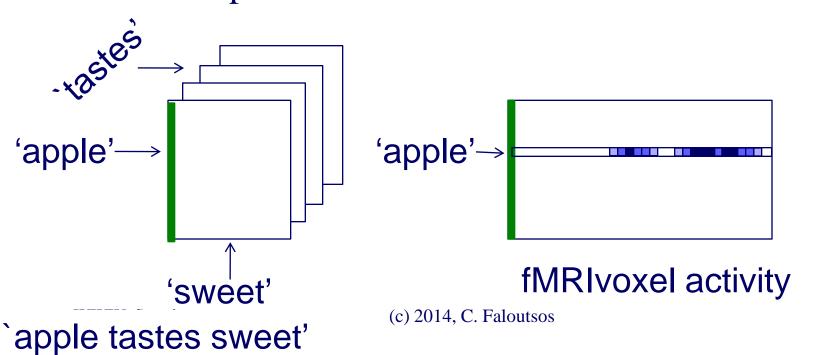
Graphs & side info

- Problem #2.2: coupled (eg., side info)
 - Given subject verb object facts
 - And voxel-activity for each subject-word
 - Find patterns / anomalies



Graphs & side info

- Problem #2.2: coupled (eg., side info)
 - Given subject verb object facts
 - And voxel-activity for each subject-word
 - Find patterns / anomalies



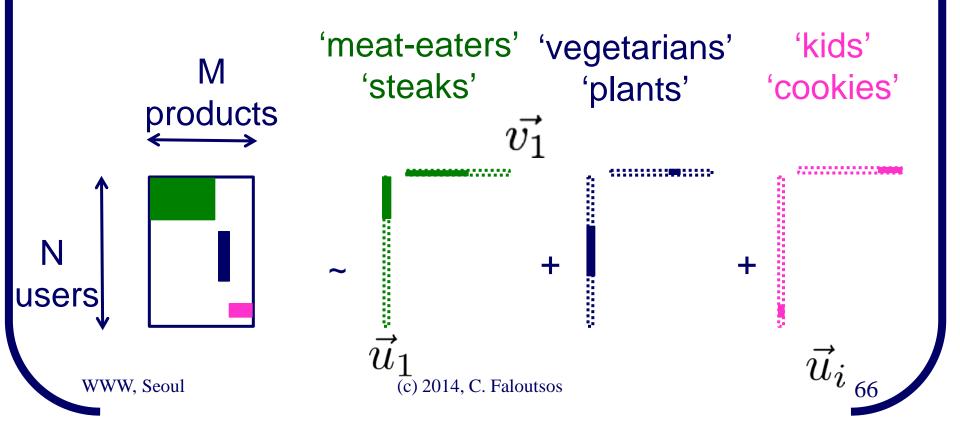
Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs

- Part#2: time-evolving graphs; tensors
 - P2.1: time-evolving graphs
 - P2.2: with side information ('coupled' M.T.F.)
 - Speed
- Part#3: Cascades and immunization
- Conclusions

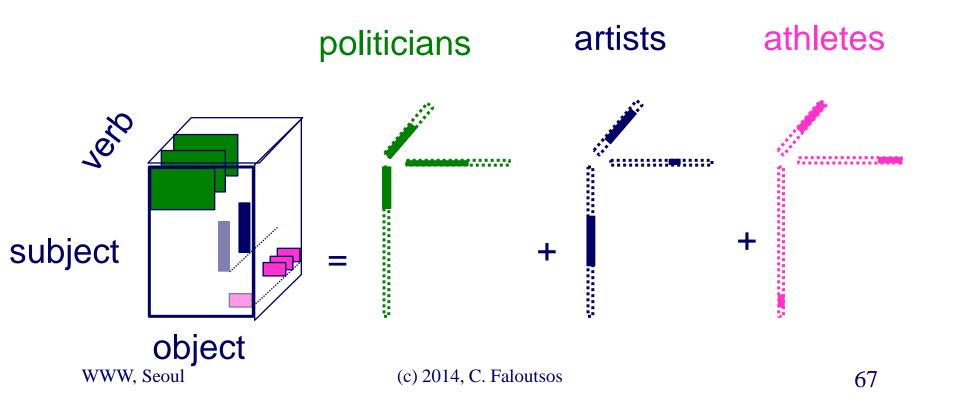
Answer to both: tensor factorization

• Recall: (SVD) matrix factorization: finds blocks



Answer to both: tensor factorization

• PARAFAC decomposition

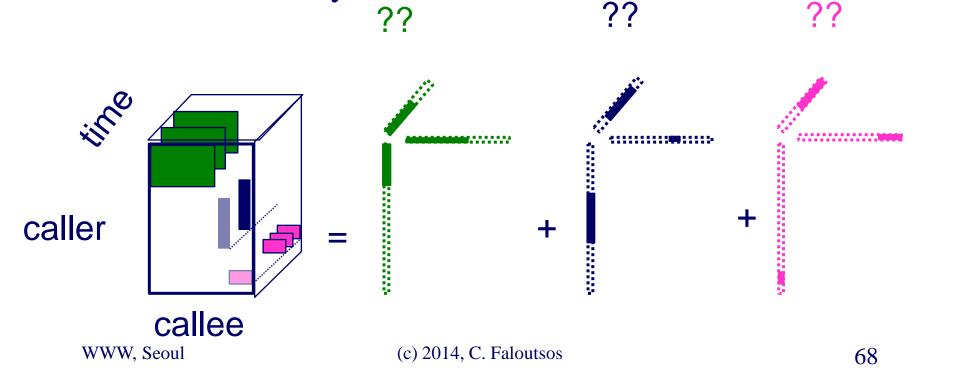


Answer: tensor factorization

• PARAFAC decomposition

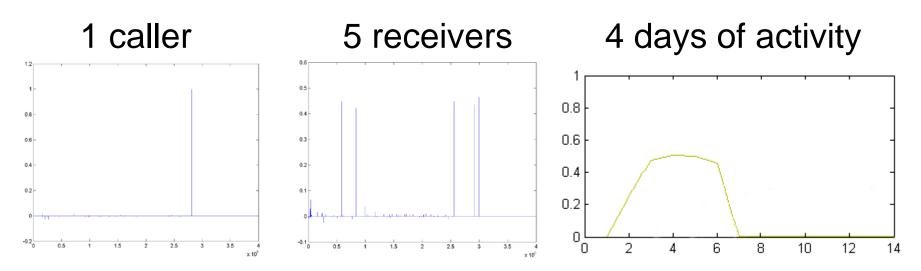
– 4M x 15 days

• Results for who-calls-whom-when



Anomaly detection in timeevolving graphs

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

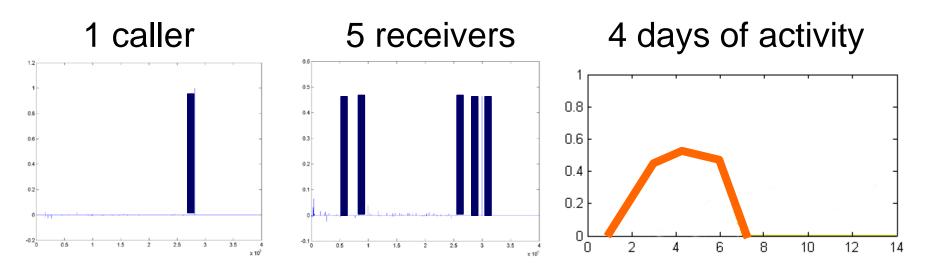


~200 calls to EACH receiver on EACH day!

(c) 2014, C. Faloutsos

Anomaly detection in timeevolving graphs

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks



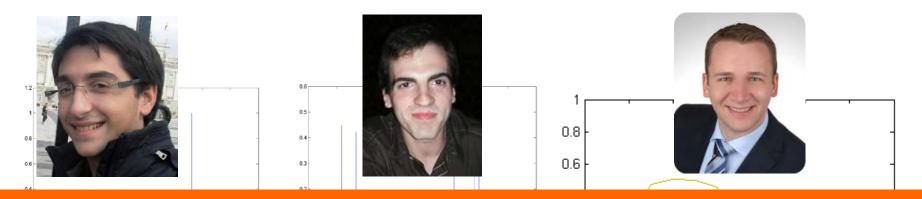
~200 calls to EACH receiver on EACH day!

WWW, Seoul

(c) 2014, C. Faloutsos

Anomaly detection in timeevolving graphs

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks



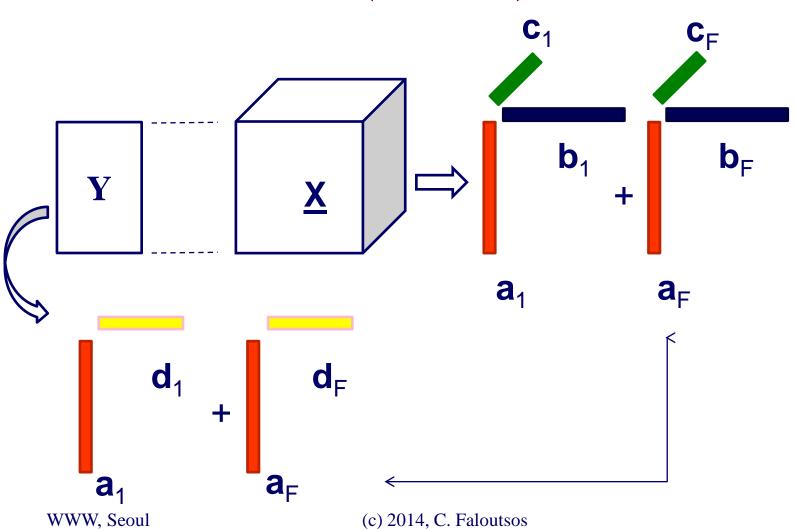
Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, Christos Faloutsos, PrithwishBasu, Ananthram Swami, EvangelosPapalexakis, DanaiKoutra. *Com2: Fast Automatic Discovery of Temporal (Comet) Communities*. PAKDD 2014, Tainan, Taiwan.

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs

- Part#2: time-evolving graphs; tensors
 - P2.1: Discoveries @ phonecall network
 - P2.2: Discoveries in neuro-semantics
 - Speed
- Part#3: Cascades and immunization
- Conclusions

Coupled Matrix-Tensor Factorization (CMTF)



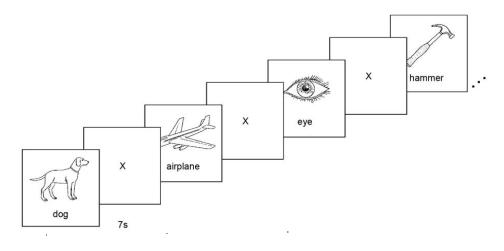
Neuro-semantics

Brain Scan Data*

- 9 persons
- 60 nouns

Questions

- 218 questions
- 'is it alive?', 'can you eat it?'



*Mitchell et al. *Predicting human brain activity* associated with the meanings of nouns. Science,2008. Data@ www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html

Neuro-semantics

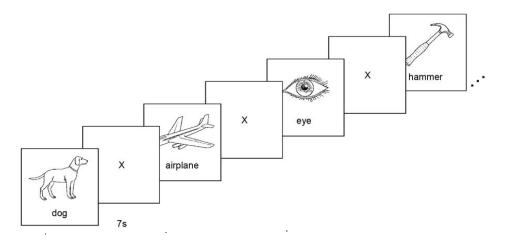
Brain Scan Data*

- 9 persons
- 60 nouns

Questions

- 218 questions
- 'is it alive?', 'can you eat it?'

Patterns?



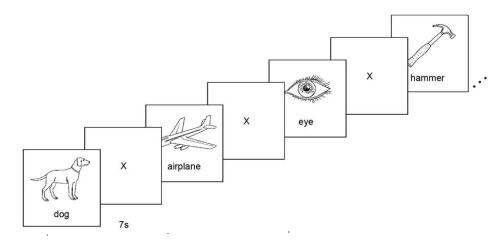
Neuro-semantics

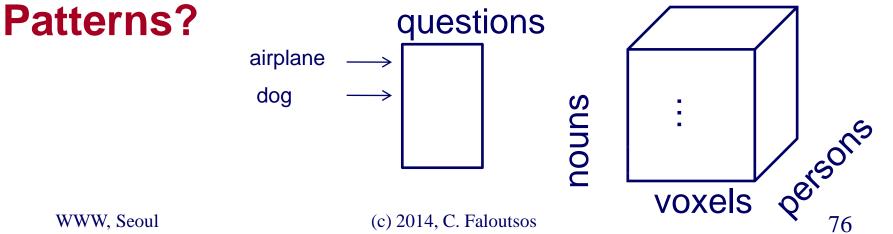
Brain Scan Data*

- 9 persons
- 60 nouns

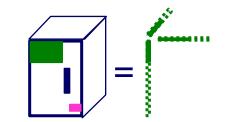
Questions

- 218 questions
- 'is it alive?', 'can you eat it?'



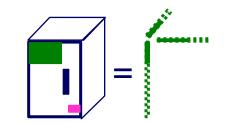


Neuro-semantics



WWW, Seoul

Neuro-semantics



Small items -> **Premotor cortex**

WWW, Seoul

78

Neuro-semantics

Small items -> Premotor cortex

EvangelosPapalexakis, Tom Mitchell, Nicholas Sidiropoulos, Christos Faloutsos, ParthaPratimTalukdar, Brian Murphy, *Turbo-SMT: Accelerating Coupled Sparse Matrix-Tensor Factorizations by 200x*, SDM 2014

Roadmap

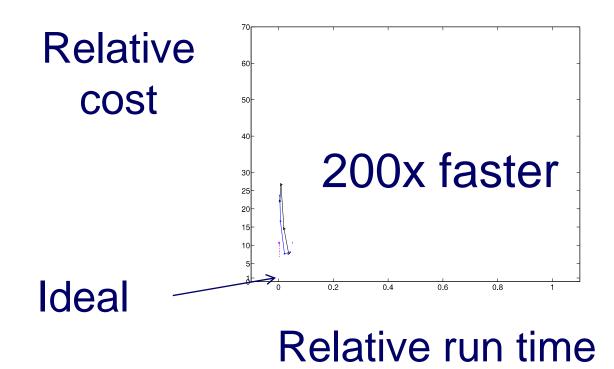
- Introduction Motivation
- Part#1: Patterns in graphs

- Part#2: time-evolving graphs; tensors
 - P2.1: Discoveries @ phonecall network
 - P2.2: Discoveries in neuro-semantics
 - Speed
- Part#3: Cascades and immunization
- Conclusions

Speed of tensor/CMTF analysis

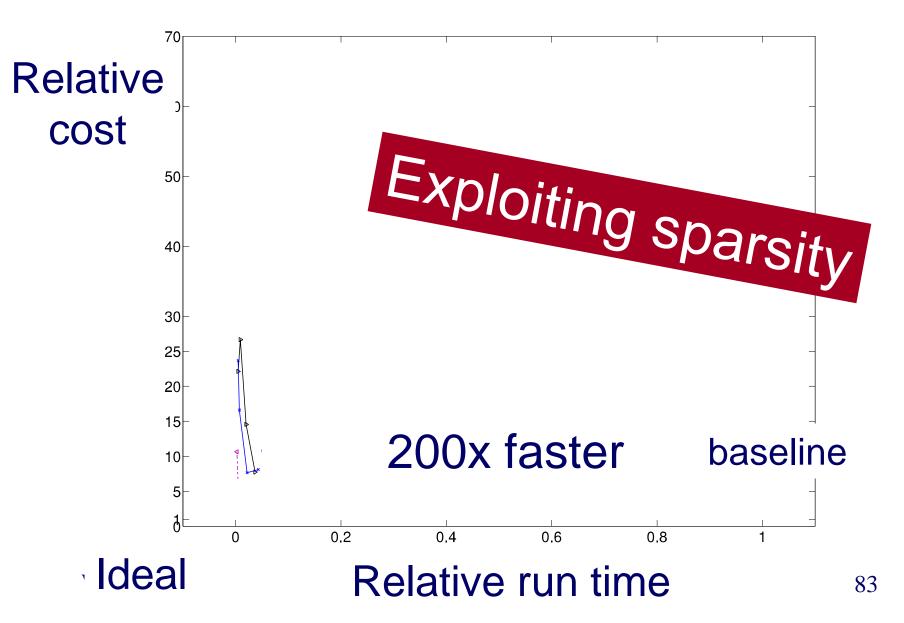
- Q1: Can we make it fast?
- Q2: Does it work for large, disk-based data?

A1: Turbo-SMT



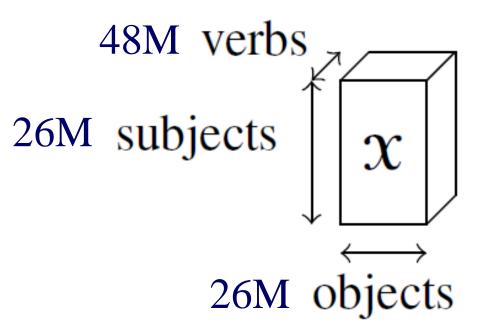
EvangelosPapalexakis, Tom Mitchell, Nicholas Sidiropoulos, Christos Faloutsos, Partha Pratim Talukdar, Brian Murphy, *Turbo-SMT: Accelerating Coupled Sparse Matrix-Tensor Factorizations by 200x*, SDM 2014

A1: Turbo-SMT



Q2: spilling to the disk?

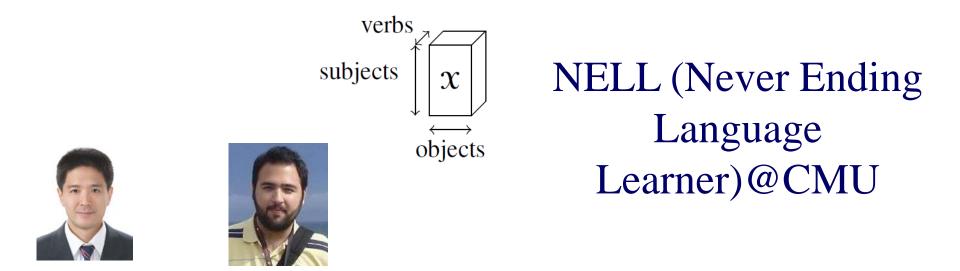
Reminder: tensor (eg., Subject-verb-object) 144M non-zeros



NELL (Never Ending Language Learner) @CMU

A2: GigaTensor

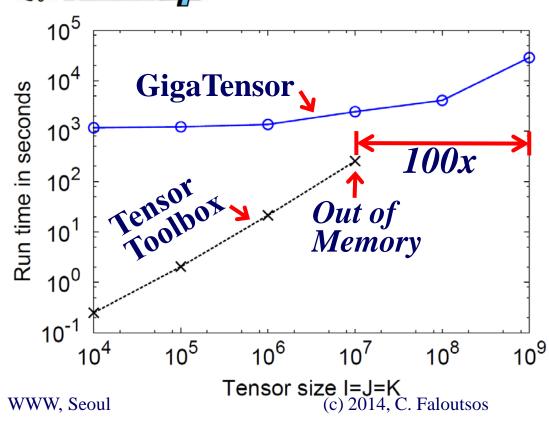
Reminder: tensor (eg., Subject-verb-object) 26M x 48M x 26M, 144M non-zeros



U Kang, Evangelos E. Papalexakis, AbhayHarpale, Christos Faloutsos, *GigaTensor: Scaling Tensor Analysis Up By 100 Times - Algorithms and Discoveries*, KDD'12

A2: GigaTensor

GigaTensor solves *100x* larger problem

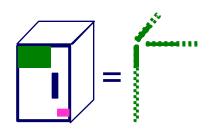


(J) $\int x$ (I) Number of nonzero

= I / 50

Part 2: Conclusions

- Time-evolving / heterogeneous graphs -> tensors
- PARAFAC finds patterns
- Turbo-SMT; GigaTensor -> fast & scalable



Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs

- Part#2: time-evolving graphs; tensors
- Part#3: Cascades and immunization
 - Conclusions

Part 3: Cascades & Immunization

WWW, Seoul

Why do we care?

- Information Diffusion
- Viral Marketing
- Epidemiology and Public Health
- Cyber Security
- Human mobility
- Games and Virtual Worlds
- Ecology

Roadmap

- A case for cross-disciplinarity
- Introduction Motivation
- Part#1: Patterns in graphs
- Part#2: Cascade analysis
 - (Fractional) Immunization
 - Epidemic thresholds
- Conclusions

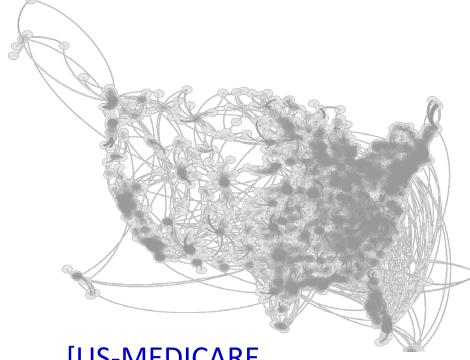
*Fractional Immunization of Networks*B. Aditya Prakash,LadaAdamic,

Theodore Iwashyna (M.D.), Hanghang Tong, Christos Faloutsos

SDM 2013, Austin, TX

Whom to immunize?

• Dynamical Processes over networks



- •Each circle is a hospital
- ~3,000 hospitals
- More than 30,000 patients transferred

[US-MEDICARE NETWORK 2005]

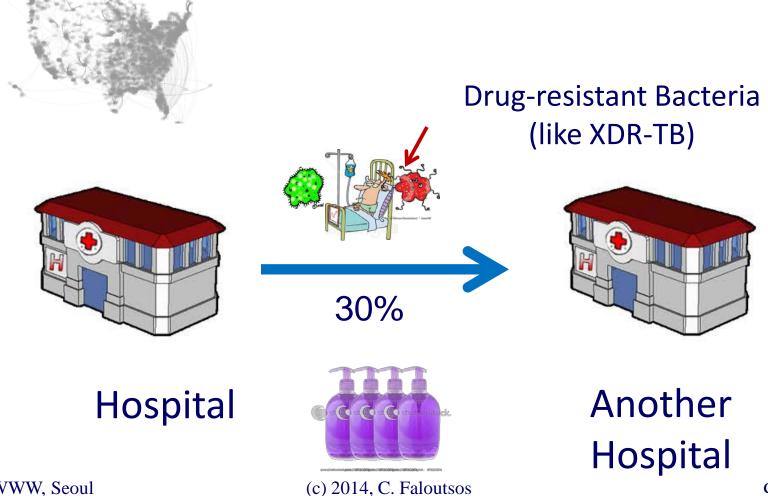
Problem: Given *k* units of disinfectant, whom to immunize?

WWW, Seoul

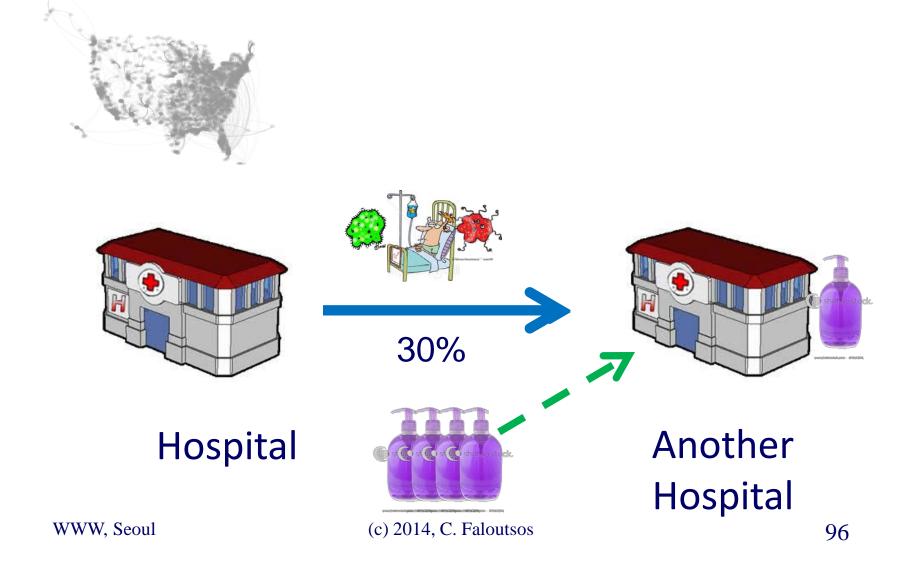
CURRENT PRACTICE

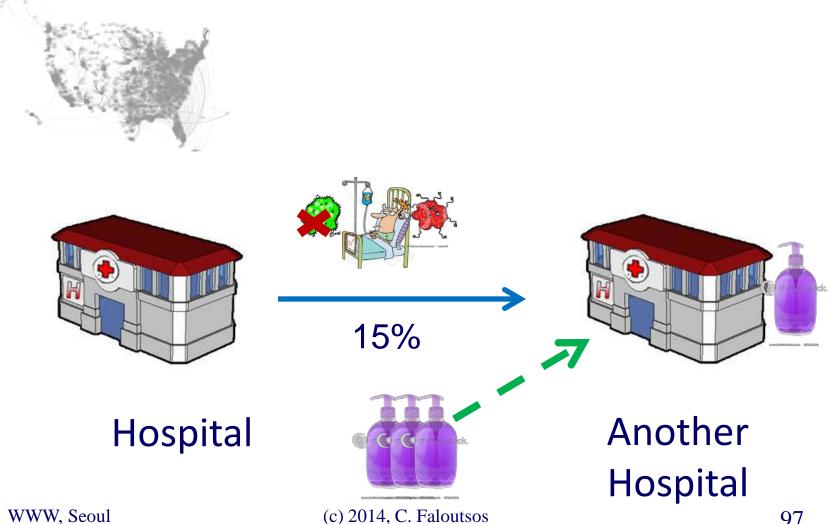
OUR METHOD

Hospital-acquired inf. : 99K+ lives, \$5B+ per year



WWW, Seoul





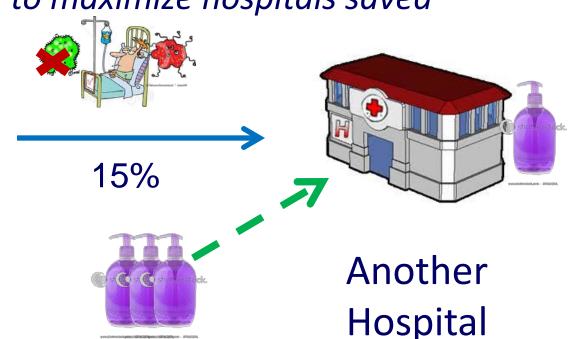
Problem:

Given k units of disinfectant, distribute them

to maximize hospitals saved



Hospital



(c) 2014, C. Faloutsos

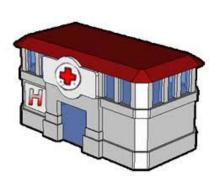
15%

(c) 2014, C. Faloutsos

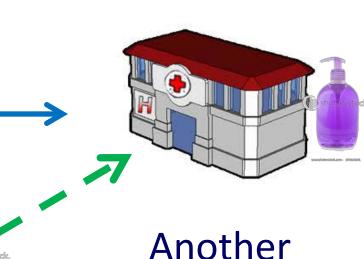
Problem:

Given k units of disinfectant, distribute them

to maximize hospitals saved @ 365 days



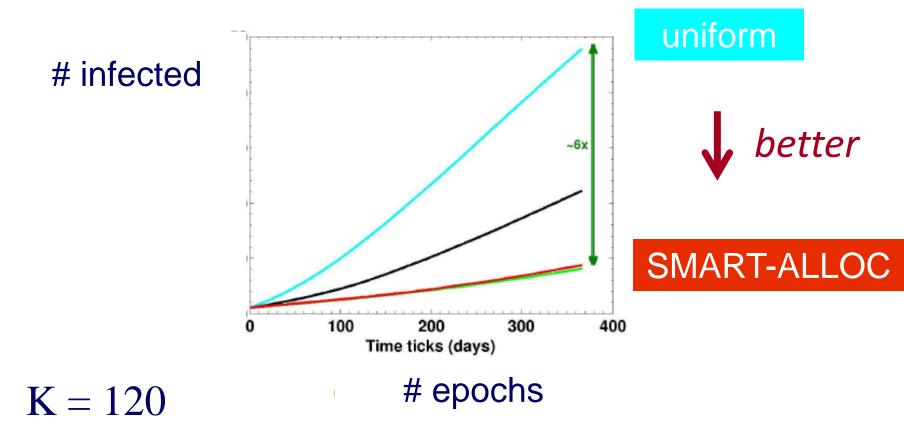
Hospital



WWW, Seoul

Carnegie Mellon Running Time Wall-Clock >1 week Time > 30,000x speed-up! better **14 secs Simulations SMART-ALLOC** WWW, Seoul (c) 2014, C. Faloutsos 104

Experiments



(c) 2014, C. Faloutsos

What is the 'silver bullet'?

A: Try to decrease connectivity of graph

Q: how to measure connectivity?

- Avg degree? Max degree?
- Std degree / avg degree ?
- Diameter?
- Modularity?
- 'Conductance' (~min cut size)?
- Some combination of above?

WWW, Seoul

secs

30,000 speed

What is the 'silver bullet'?

A: Try to decrease connectivity of graph

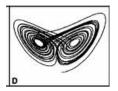
Q: how to measure connectivity?
A: first eigenvalue of adjacency matrix
Q1: why??
(Q2: dfn& intuition of eigenvalue ?)

Avg degree Max degree Diameter Modularity 'Conductance'

Why eigenvalue? A1: 'G2' theorem and '**eigen-drop**':

- For (almost) **any** type of virus
- For any network
- -> no epidemic, if small-enough first eigenvalue (λ₁) of *adjacency* matrix

Threshold Conditions for Arbitrary Cascade Models on Arbitrary Networks, B. Aditya Prakash, Deepayan Chakrabarti, Michalis Faloutsos, Nicholas Valler, Christos Faloutsos, ICDM 2011, Vancouver, Canada

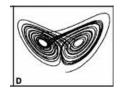


Why eigenvalue? A1: 'G2' theorem and '**eigen-drop**':

- For (almost) **any** type of virus
- For any network
- -> no epidemic, if small-enough first eigenvalue (λ₁) of *adjacency* matrix
- Heuristic: for immunization, try to min λ_1
- The smaller λ_1 , the closer to extinction.

WWW, Seoul

(c) 2014, C. Faloutsos



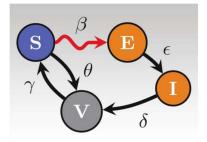
Threshold Conditions for Arbitrary Cascade Models on Arbitrary Networks
B. Aditya Prakash, Deepayan Chakrabarti, Michalis Faloutsos, Nicholas Valler,
Christos Faloutsos
IEEE ICDM 2011, Vancouver

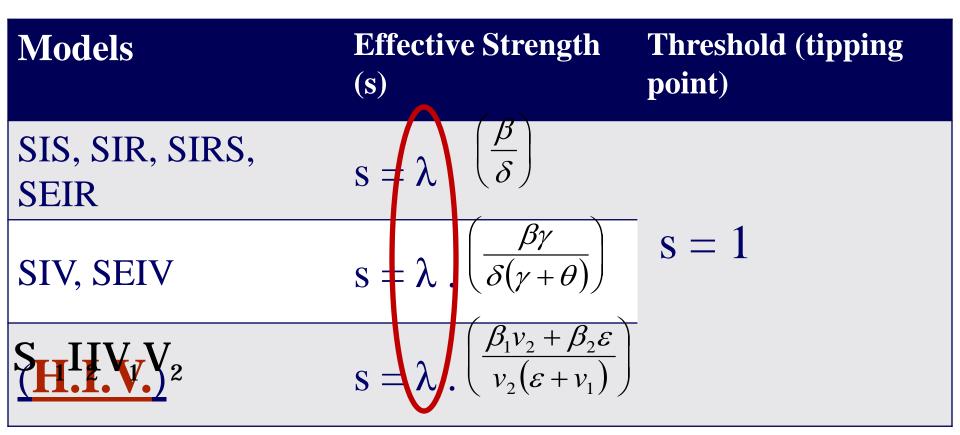
extended version, in arxiv http://arxiv.org/abs/1004.0060

~10 pages proof

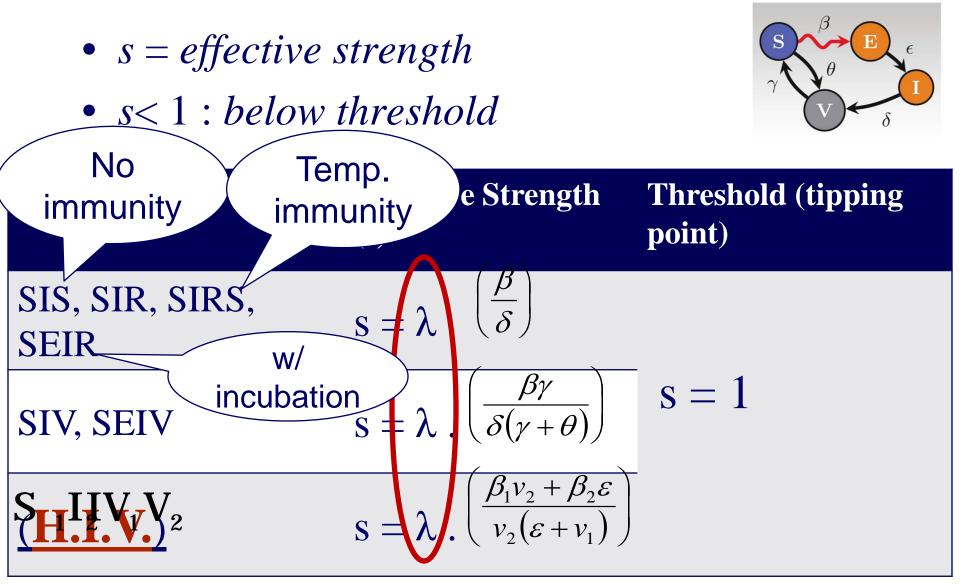
Our thresholds for some models

- *s* = *effective strength*
- *s*<1 : *below threshold*





Our thresholds for some models



Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
- Part#2: Cascade analysis
 - (Fractional) Immunization
 - intuition behind λ_1
- Conclusions

Intuition for λ

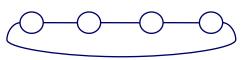
"Official" definitions:

Let A be the adjacency matrix. Then λ is the root with the largest magnitude of the characteristic polynomial of A [det(A – λI)].
Also: Ax = λx

Neither gives much intuition!

"Un-official" Intuition

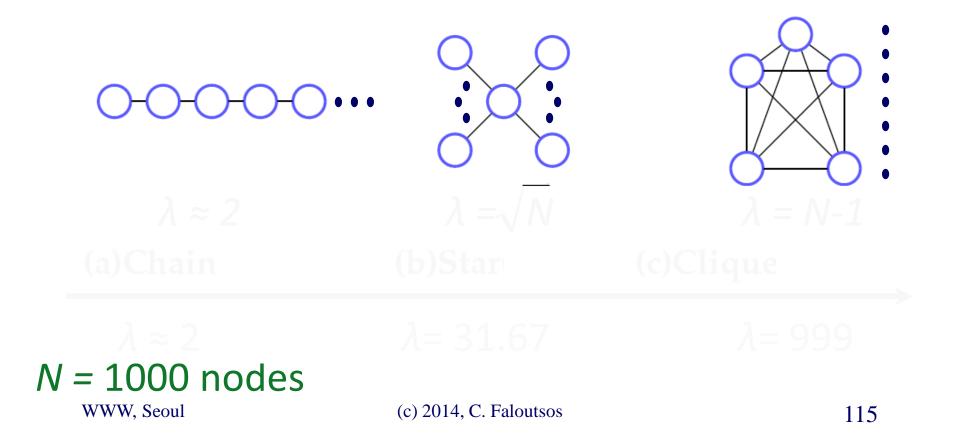
• For 'homogeneous' graphs, $\lambda == degree$



- λ ~ avg degree
 - done right, for skewed degree distributions

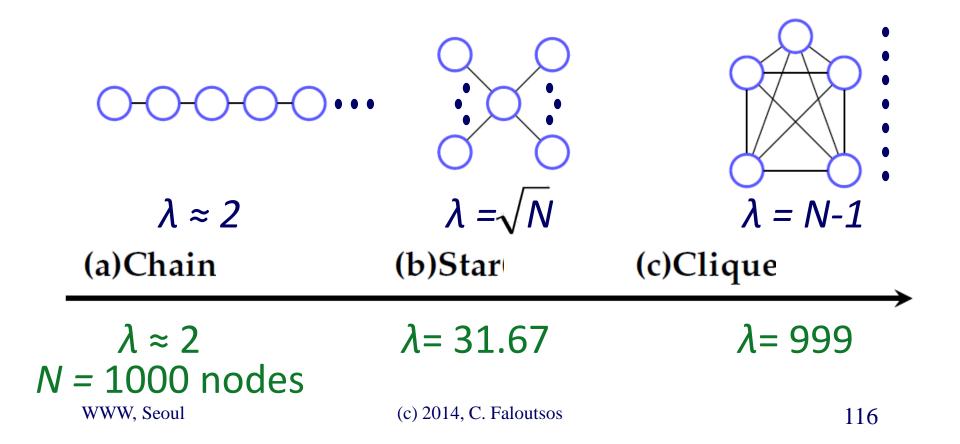
Largest Eigenvalue (λ)

better connectivity \rightarrow higher λ

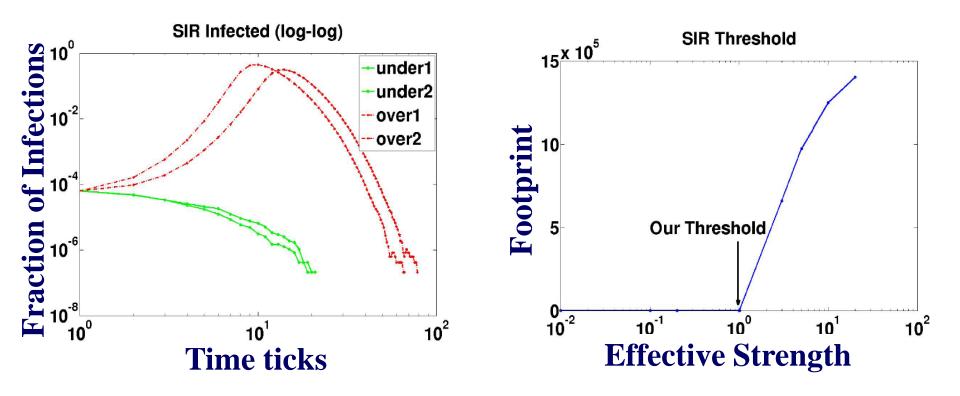


Largest Eigenvalue (λ)

better connectivity \rightarrow higher λ

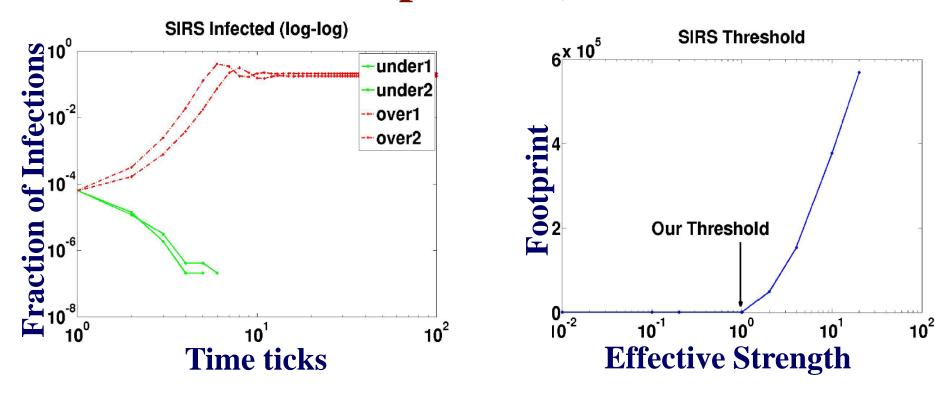


Examples: Simulations – SIR (mumps)



(a) Infection profile (b) "Take-off" plot PORTLAND graph: synthetic population, 31 million links, 6 million nodes

Examples: Simulations – SIRS (pertusis)



(a) Infection profile (b) "Take-off" plot PORTLAND graph: synthetic population, 31 million links, 6 million nodes

Part3: Immunization - conclusion

In (almost any) immunization setting,

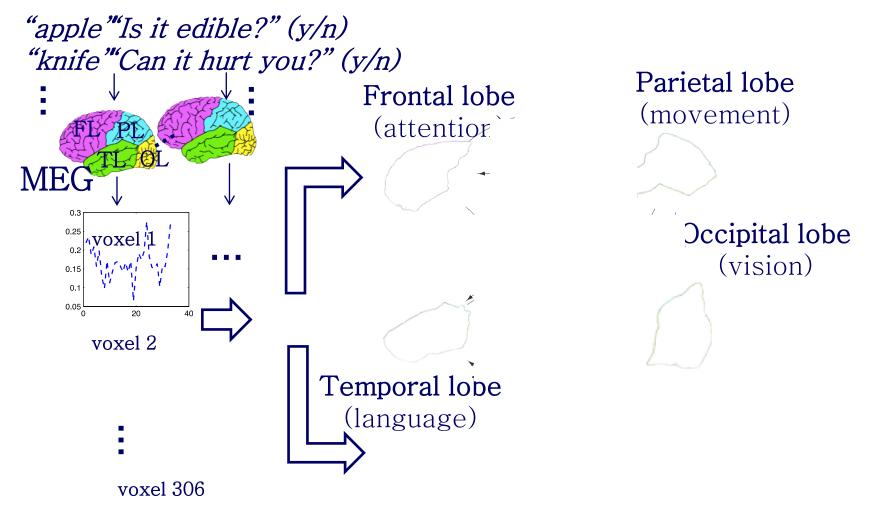
- Allocate resources, such that to
- Minimize λ_1
- (regardless of virus specifics)

- Conversely, in a market penetration setting
 - Allocate resources to
- -Maximize λ_1 (c) 2014, C. Faloutsos

Roadmap

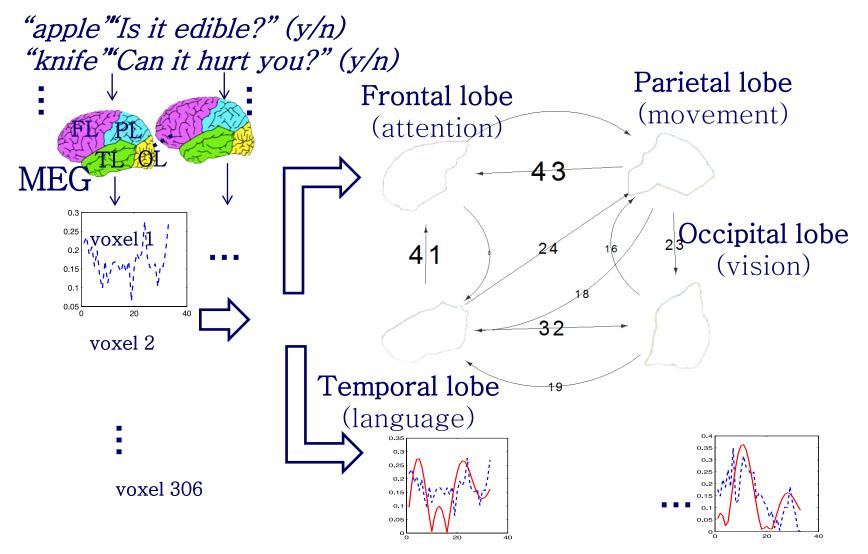
- Introduction Motivation
 - Why study (big) graphs?
- Part#1: Patterns in graphs
- Part#2: time-evolving graphs; tensors
- Part#3: Cascades and immunization
- Future directions
- Conclusions

Brain connectivity



Carnegie Mellon

Brain connectivity



Roadmap

- Introduction Motivation
 - Why study (big) graphs?
- Part#1: Patterns in graphs
- Part#2: time-evolving graphs; tensors
- Part#3: Cascades and immunization
- Future directions
- Acknowledgements and Conclusions

Thanks

Disclaimer: All opinions are mine; not necessarily reflecting the opinions of the funding agencies

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

Project info: PEGASUS

www.cs.cmu.edu/~pegasus

Results on large graphs: with Pegasus + hadoop + M45 Apache license

Code, papers, manual, video

Prof. U Kang

Prof. Polo Chau

WWW, Seoul

Araujo,

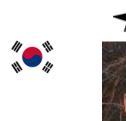
Miguel

Beutel,

Alex

Cast

Akoglu, Leman



Koutra, Danai

Lee,

Jay Yoon

Prakash, Aditya

Papalexakis, Vagelis

Shah, Neil

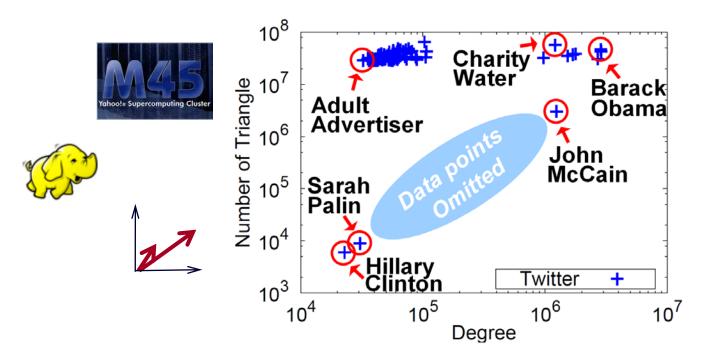
WWW, Seoul

(c) 2014, C. Faloutsos

126

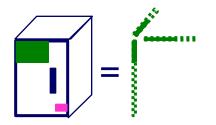
CONCLUSION#1 – Big data

• Large datasets reveal patterns/outliers that are invisible otherwise



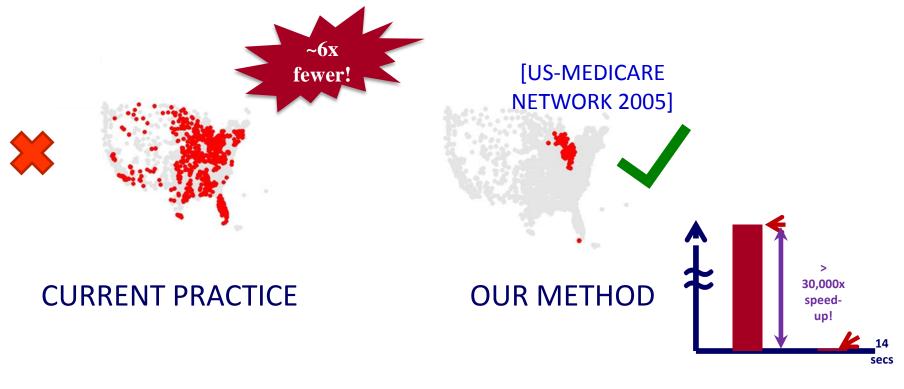
CONCLUSION#2 – tensors

• powerful tool



CONCLUSION#3 – eigen-drop

• Cascades & immunization: G2 theorem & eigenvalue

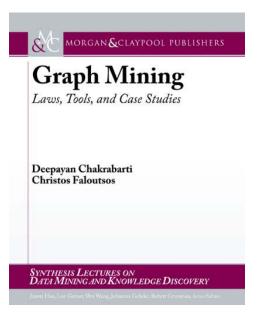


WWW, Seoul

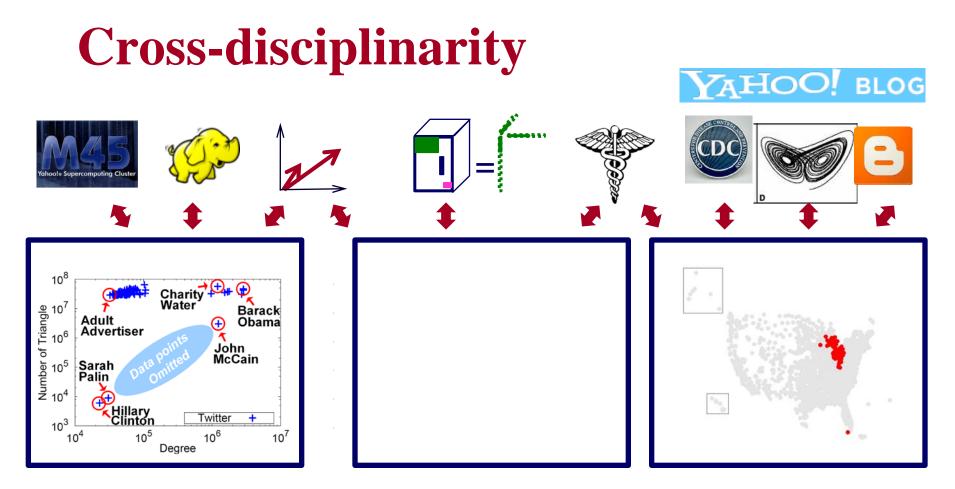
(c) 2014, C. Faloutsos

References

- D. Chakrabarti, C. Faloutsos: Graph Mining Laws, Tools and Case Studies, Morgan Claypool 2012
- http://www.morganclaypool.com/doi/abs/10.2200/S004 49ED1V01Y201209DMK006



TAKE HOME MESSAGE:



WWW, Seoul

131

Thank you! Questions?

Cross-disciplinarity

