
5/1/14

1

Scalability and Efficiency 
Challenges in Large-Scale  

Web Search Engines "

Ricardo Baeza-Yates"
B. Barla Cambazoglu!

Yahoo Labs"
Barcelona, Spain"

Disclaimer

•  This talk presents the opinions of the authors. It does not
necessarily reflect the views of Yahoo Inc. or any other
entity."

•  Algorithms, techniques, features, etc. mentioned here
might or might not be in use by Yahoo or any other
company."

•  Some non-technical material (e.g., images) provided in
this presentation were taken from the Web."

Dis

5/1/14

2

Yahoo Labs Barcelona

•  Research topics"
–  web data mining"
–  semantic search"
–  social media"
–  web retrieval"

•  Web retrieval"
–  distributed web retrieval"
–  scalability and efficiency"
–  opinion/sentiment retrieval"
–  personalization"

Outline of the Tutorial

•  Background (35 minutes)"
•  Main sections"

–  web crawling (75 minutes + 5 minutes Q/A)"
–  indexing (75 minutes + 5 minutes Q/A)"
–  query processing (90 minutes + 5 minutes Q/A)"
–  caching (40 minutes + 5 minutes Q/A)"

•  Concluding remarks (10 minutes)"
•  Questions and open discussion (15 minutes)"

5/1/14

3

Structure of Main Sections

•  Definitions"
•  Metrics"
•  Issues and techniques"

–  single computer"
–  cluster of computers"
–  multiple search sites"

•  Research problems"

Background

5/1/14

4

Brief History of Search Engines

•  Past"
-  Before browsers"

-  Gopher"
-  Before the bubble"

-  Altavista"
-  Lycos"
-  Infoseek"
-  Excite"
-  HotBot"

-  After the bubble"
-  Yahoo"
-  Google"
-  Microsoft"

•  Current"
•  Global"

•  Google, Bing"
•  Regional"

•  Yandex, Baidu"

•  Future"
•  Facebook ?"
•  …"

Anatomy of a Search Engine Result Page

•  Web search results"
•  Direct displays (vertical search results)"

–  image"
–  video"
–  local"
–  shopping"
–  related entities"

•  Query suggestions"
•  Advertisements"

Main focus of this tutorial"

5/1/14

5

Anatomy of a Search Engine Result Page

Related
entity

suggestions

Movie
direct

display

Video
direct

display

Ads Algorithmic
search
results

Knowledge
graph

User
query

Actors in Web Search

•  User’s perspective: accessing information"
–  relevance"
–  speed"

"

•  Search engine’s perspective: monetization"
–  increase the ad revenue"
–  attract more users"
–  reduce the operational costs"

•  Advertiser’s perspective: publicity"
–  attract more users"
–  pay little"

5/1/14

6

Search Engine Usage

•  Size"

What Makes Web Search Difficult?

•  Diversity" •  Dynamicity"

•  All of these three features can be observed in"
–  the Web"
–  web users"

5/1/14

7

What Makes Web Search Difficult?

•  The Web"
–  more than 180 million Web servers and 950 million host names"

–  compare with almost 1 billion computers directly connect to Internet"
–  the largest data repository (estimated as 100 billion pages)"
–  constantly changing"
–  diverse in terms of content and data formats"

•  Users"
–  too many! (over 2.5 billion at the end of 2012)"
–  diverse in terms of their culture, education, and demographics"
–  very short queries (hard to understand the intent)"
–  changing information needs"
–  little patience (few queries posed & few answers seen)"

•  Crawl and index a large fraction of the Web"
•  Maintain most recent copies of the content in the Web"
•  Scale to serve hundreds of millions of queries every day"
•  Evaluate a typical query under several hundred milliseconds"
•  Serve most relevant results for a user query"

Expectations from a Search Engine

5/1/14

8

Internet Growth

•  We observed a super-linear growth in the last decade"
•  The growth of Internet accelerated with web search engines"

Web Growth

5/1/14

9

Web Page Size Growth

Web User Growth

5/1/14

10

Search Data Centers

•  Quality and performance requirements imply large amounts
of compute resources, i.e., very large data centers"

•  High variation in data center sizes"
-  hundreds of thousands of computers"
-  a few computers"

Cost of Data Centers

•  Data center facilities are heavy consumers of energy,
accounting for between 1.1% and 1.5% of the world’s total
energy use in 2010."

5/1/14

11

Financial Costs

•  Costs"
–  depreciation: old hardware need to be replaced"
–  maintenance: failures need to be handled"
–  operational: energy spending need to be reduced"

Impact of Resources on Revenue

Resources

Revenue

Energy
Consumption

Income

Response
time

Result
Relevance

Clicks

?

5/1/14

12

Major Components in a Web Search Engine

•  Indexing" •  Query processing"•  Web crawling"

crawler

Web

indexer query
processor

document
collection index

query

results user

Q&A

5/1/14

13

Web Crawling

Web Crawling

•  Web crawling is the process of locating, fetching, and
storing the pages available in the Web"

•  Computer programs that perform this task are referred
to as"
-  crawlers"
-  spider"
-  harvesters"

5/1/14

14

Web Graph

•  Web crawlers exploit the hyperlink structure of the Web"

Web Crawling Process

•  A typical Web crawler"
–  starts from a set of seed pages,"
–  locates new pages by parsing the downloaded

seed pages,"
–  extracts the hyperlinks within,"
–  stores the extracted links in a fetch queue for

retrieval, "
–  continues downloading until the fetch queue gets

empty or a satisfactory number of pages are
downloaded."

5/1/14

15

Web Crawling Process

Web Crawling

•  Crawling divides
the Web into
three sets"
–  downloaded"
–  discovered"
–  undiscovered"

seed page

discovered
(frontier)

undiscovered

downloaded

5/1/14

16

URL Prioritization

•  A state-of-the-art web crawler maintains two separate
queues for prioritizing the download of URLs"
–  discovery queue"

–  downloads pages pointed by already discovered
links"

–  tries to increase the coverage of the crawler"
–  refreshing queue"

–  re-downloads already downloaded pages"
–  tries to increase the freshness of the repository"

URL Prioritization (Discovery)

•  Random (A, B, C, D)"
•  Breadth-first (A)"
•  In-degree (C)"
•  PageRank (B)"

A

B C D

seed page

discovered
(frontier)

undiscovered

downloaded

(more intense red color indicates higher PageRank)

5/1/14

17

URL Prioritization (Refreshing)

•  Random (A, B, C, D)"
•  PageRank (B)"

•  Age (C)"
•  User feedback (D)" •  Longevity (A)"

download time order
(by the crawler) A BC D

last update time order
(by the webmaster)

A DCB

(more intense red color indicates higher PageRank)

estimated average
update frequency

never every
minute

every
day

every
year

(more intense blue color indicates larger user interest)

Metrics

•  Quality metrics"
–  coverage: the percentage of the Web discovered or

downloaded by the crawler"
–  freshness: measure of out-datedness of the local copy

of a page relative to the page’s original copy on the
Web"

–  page importance: percentage of important or popular
pages in the repository"

•  Performance metrics"
–  throughput: content download rate in bytes per unit of

time"

5/1/14

18

Concepts Related to Web Crawling

Crawling Architectures

•  Single computer"
–  CPU, RAM, and disk becomes a bottleneck"
–  not scalable"

•  Parallel"
–  multiple computers, single data center"
–  scalable"

•  Geographically distributed"
–  multiple computers, multiple data centers"
–  scalable"
–  reduces the network latency"

5/1/14

19

An Architectural Classification of Concepts Crawling Architectures

Issues in Web Crawling

•  Dynamics of the Web"
–  Web growth"
–  content change"

•  Malicious intent"
–  hostile sites (e.g., spider traps, infinite domain name

generators)"
–  spam sites (e.g., link farms)"

5/1/14

20

Issues in Web Crawling

•  URL normalization (a.k.a. canonicalization)"
–  case-folding"
–  removing leading “www strings (e.g., www.cnn.com à cnn.com)"
–  adding trailing slashes (e.g., cnn.com/a à cnn.com/a/)"
–  relative paths (e.g., ../index.html)"

•  Web site properties"
–  sites with restricted content (e.g., robot exclusion), "
–  unstable sites (e.g., variable host performance, unreliable

networks)"
–  politeness requirements"

DNS Caching

•  Before a web page is
crawled, the host name
needs to be resolved to
an IP address"

•  Since the same host
name appears many
times, DNS entries are
locally cached by the
crawler"

Web
server

CrawlerDNS
server

web page
repository

DNS
cache

DNS caching

TCP connection

HTTP connection

5/1/14

21

Multi-threaded Crawling

•  Multi-threaded crawling"
–  crawling is a network-bound task"
–  crawlers employ multiple threads to crawl different

web pages simultaneously, increasing their
throughput significantly"

–  in practice, a single node can run around up to a
hundred crawling threads"

–  multi-threading becomes infeasible when the number
of threads is very large due to the overhead of
context switching"

Politeness

•  Multi-threading leads to politeness issues"
•  If not well-coordinated, the crawler may issue too many

download requests at the same time, overloading"
–  a web server"
–  an entire sub-network"

•  A polite crawler"
–  puts a delay between two consecutive downloads from the

same server (a commonly used delay is 20 seconds)"
–  closes the established TCP-IP connection after the web page is

downloaded from the server"

5/1/14

22

Robot Exclusion Protocol

•  A standard from the early
days of the Web

•  A file (called robots.txt) in a
web site advising web
crawlers about which parts
of the site are accessible

•  Crawlers often cache
robots.txt files for efficiency
purposes

User-agent: googlebot # all services"
Disallow: /private/ " # disallow this directory"
 "
User-agent: googlebot-news # only the news service"
Disallow: / " # on everything"
 "
User-agent: * " # all robots"
Disallow: /something/ # on this directory!
!
User-agent: * " # all robots"
Crawl-delay: 10 " # wait at least 10 seconds"
"
Disallow: /directory1/ " # disallow this directory"
Allow: /directory1/myfile.html # allow a subdirectory"
"
Host: www.example.com" # use this mirror"

Mirror Sites

•  A mirror site is a replica of an existing site, used to reduce the
network traffic or improve the availability of the original site"

•  Mirror sites lead to redundant crawling and, in turn, reduced
discovery rate and coverage for the crawler"

•  Mirror sites can be detected by analyzing"
–  URL similarity"
–  link structure"
–  content similarity"

5/1/14

23

Data Structures

•  Good implementation of data structures is crucial for the
efficiency of a web crawler"

•  The most critical data structure is the “seen URL” table"
–  stores all URLs discovered so far and continuously grows as new

URLs are discovered"
–  consulted before each URL is added to the discovery queue"
–  has high space requirements (mostly stored on the disk)"

–  URLs are stored as MD5 hashes"
–  frequent/recent URLs are cached in memory"

Parallel Web Crawling

5/1/14

24

Web Partitioning and Fault Tolerance

•  Web partitioning"
–  Typically based on the MD5 hashes of URLs or host

names"
–  site-based partitioning is preferable because URL-

based partitioning may lead to politeness issues if the
crawling decisions given by individual nodes are not
coordinated"

•  Fault tolerance"
–  when a crawling node dies, its URLs are partitioned

over the remaining nodes"

Parallelization Alternatives

•  Firewall mode"
–  lower coverage"

•  Crossover mode"
–  duplicate pages"

•  Exchange mode"
–  communication overhead"

D

D

X

D

D

D

D

X

Duplicate crawling
in crossover mode

Not discovered in
firewall mode

Link communicated
in exchange mode

5/1/14

25

Geographically Distributed Web Crawling

Geographically Distributed Web Crawling
•  Benefits"
-  higher crawling throughput"

-  geographical proximity"
-  lower crawling latency"

-  improved network politeness"
-  less overhead on routers because of fewer hops"

-  resilience to network partitions"
-  better coverage"

-  increased availability"
-  continuity of business"

-  better coupling with distributed indexing/search"
-  reduced data migration"

"

5/1/14

26

Geographically Distributed Web Crawling

•  Four crawling countries"
-  US"
-  Brazil"
-  Spain"
-  Turkey"

•  Eight target countries"
-  US, Canada"
-  Brazil, Chile"
-  Spain, Portugal"
-  Turkey, Greece"

Focused Web Crawling

•  The goal is to locate and download a large portion of web pages
that match a given target theme as early as possible."

•  Example themes"
-  topic (nuclear energy)"
-  media type (forums)"
-  demographics (kids)"

•  Strategies"
-  URL patterns"
-  referring page content"
-  local graph structure"

starting
page

5/1/14

27

Sentiment Focused Web Crawling

•  Goal: to locate and download web pages that contain positive
or negative sentiments (opinionated content) as early as
possible"

starting
page

0 2 4 6 8 10 12 14 16 18 20
Number of pages crawled (in M)

0

15

30

45

60

75

A
cc

um
ul

at
ed

 se
nt

im
en

t s
co

re
 (i

n
K

)
O-SE
O-PR
O-SP
B-RA
B-BF
B-ID
P-PC
P-ML

Hidden Web Crawling

•  Hidden Web: web pages that a crawler cannot access by
simply following the link structure"

•  Examples"
-  unlinked pages"
-  private sites"
-  contextual pages"
-  scripted content"
-  dynamic content"

hidden web
crawler repositoryvocabulary

root page result page

5/1/14

28

Research Problem – Passive Discovery

•  URL discovery by external agents"
–  toolbar logs"
–  email messages"
–  tweets"

•  Benefits"
–  improved coverage"
–  early discovery"

head

fetcher parser

tail

repositoryfrontier

crawler

the Web
toolbar data
processor

toolbar log

URL filter

http://...

toolbar

http://...

toolbar

Research Problem – URL Scheduling

•  Web master"
–  create"
–  modify"
–  delete"

•  Crawler"
–  discover"
–  download"
–  refresh"

•  How to optimally allocate available crawling resources
between the tasks of page discovery and refreshing"

Inexistant

Modified

Deleted F

Located

Undiscovered Fresh

Deleted R

Undiscovered Web Repository

modification

deletion f

download & purge re-download & purge

deletion m

re-download m

creation

Inexistence

Frontier

deletion l

discovery

deletion u

download

re-download f

passive
transitions

active
transitions

discovery

5/1/14

29

Challenges in Distributed Web Crawling Research Problem – Web Partitioning

•  Web partitioning/repartitioning: the problem of finding a
Web partition that minimizes the costs in distributed
Web crawling"
–  minimization objectives"

–  page download times"
–  link exchange overhead"
–  repartitioning overhead"

–  constraints"
–  coupling with distributed search"
–  load balancing"

Challenges in Distributed Web Crawling Research Problem – Crawler Placement

•  Crawler placement problem: the problem of finding the
optimum geographical placement for a given number of data
centers"
–  geographical locations are now objectives, not constraints"
"

•  Problem variant: assuming some data centers were already
built, find an optimum location to build a new data center for
crawling"

5/1/14

30

Challenges in Distributed Web Crawling Research Problem – Coupling with Search

•  Coupling with geographically distributed indexing/
search"
–  crawled data may be moved to"

–  a single data center"
–  replicated on multiple data centers"
–  partitioned among a number of data centers"

–  decisions must be given on"
– what data to move (e.g., pages or index)"
–  how to move (i.e., compression)"
–  how often to move (i.e., synchronization)"

Research Problem – Green Web Crawling

•  Goal: reduce the carbon footprint generated by the web
servers while handling the requests of web crawlers"

•  Idea"
-  crawl web sites when they are consuming green energy

(e.g., during the day when solar energy is more available)"
-  crawl web sites consuming green energy more often as an

incentive to promote the use of green energy"

5/1/14

31

Published Web Crawler Architectures

•  Bingbot: Microsoft's Bing web crawler"
•  FAST Crawler: Used by Fast Search & Transfer"
•  Googlebot: Web crawler of Google"
•  PolyBot: A distributed web crawler"
•  RBSE: The first published web crawler"
•  WebFountain: A distributed web crawler"
•  WebRACE: A crawling and caching module"
•  Yahoo Slurp: Web crawler used by Yahoo Search"

Open Source Web Crawlers

•  DataparkSearch: GNU General Public License."
•  GRUB: open source distributed crawler of Wikia Search"
•  Heritrix: Internet Archive's crawler"
•  ICDL Crawler: cross-platform web crawler"
•  Norconex HTTP Collector: licensed under GPL"
•  Nutch: Apache License"
•  Open Search Server: GPL license"
•  PHP-Crawler: BSD license"
•  Scrapy: BSD license"
•  Seeks: Affero general public license"
•  WIRE: Carlos Castillo’s PhD thesis"

5/1/14

32

Key Papers

•  Cho, Garcia-Molina, and Page, "Efficient crawling through URL ordering",
WWW, 1998."

•  Heydon and Najork, "Mercator: a scalable, extensible web crawler", World
Wide Web, 1999."

•  Chakrabarti, van den Berg, and Dom, "Focused crawling: a new approach
to topic-specific web resource discovery", Computer Networks, 1999."

•  Najork and Wiener, "Breadth-first crawling yields high-quality pages",
WWW, 2001."

•  Cho and Garcia-Molina, "Parallel crawlers", WWW, 2002."
•  Cho and Garcia-Molina, "Effective page refresh policies for web crawlers”,

ACM Transactions on Database Systems, 2003."
•  Lee, Leonard, Wang, and Loguinov, "IRLbot: Scaling to 6 billion pages and

beyond", ACM TWEB, 2009."

Q&A

5/1/14

33

Indexing

Indexing

•  Indexing is the process of converting crawled web documents
into an efficiently (compressed) searchable form."

•  An index is a representation for the document collection over
which user queries will be evaluated."

5/1/14

34

Indexing

•  Abandoned indexing techniques"
–  suffix arrays"
–  signature files"

•  Currently used indexing technique"
–  inverted index (the oldest one!)"

Signature File

•  For a given piece of text, a signature is created by encoding
the words in it"

•  For each word, a bit signature is computed"
–  contains F bits"
–  m out of F bits is set to 1 (decided by hash functions)"

•  In case of long documents"
–  a signature is created for each logical text block"
–  block signatures are concatenated to form the signature for the

entire document"

5/1/14

35

Signature File

•  When searching, the signature for the query keyword is OR’ed
with the document signature"

•  Example signature with F = 6 and m = 2

 document terms: query terms:
 apple 10 00 10 apple 10 00 10 (match)
 orange 00 01 10 banana 01 00 01 (no match)
 peach 10 01 00 (false match)
 signature 10 01 10

"

Inverted Index

•  An inverted index has
two parts"
–  inverted lists"

–  posting entries"
–  document id"
–  term score"

–  a vocabulary index
(dictionary)"

5/1/14

36

Sample Document Collection

Doc id " Text "
"1 " pease porridge hot"
"2 " pease porridge cold"
"3 " pease porridge in the pot"
"4 " pease porridge hot, pease porridge not cold"
"5 " pease porridge cold, pease porridge not hot"
"6 " pease porridge hot in the pot"

Inverted Index

(2, 1) (4, 1) (5, 1)

(1, 1) (4, 1) (5, 1) (6, 1)

(3, 1) (6, 1)

cold

hot

in

(4, 1) (5, 1)

(1, 1) (2, 1) (3, 1) (4, 2) (5, 2) (6, 1)

(1, 1) (2, 1) (3, 1) (4, 2) (5, 2) (6, 1)

not

pease

porridge

(3, 1) (6, 1)

(3, 1) (6, 1)

pot

the

Dictionary Inverted lists

5/1/14

37

Inverted Index

•  Additional data structures"
-  position lists: list of all positions a term occurs in a document"
-  document array: document length, PageRank, spam score, …"

•  Sections"
-  title, body, header, anchor text (inbound, outbound links)"

(1, 1) (2, 1) (3, 1) (4, 2) (5, 2) (6, 1)

1 1 1 1 4
pease

11 4

7 240 1.7 ...

6

doc id: 4

term
count

length spam
score

doc
freq

Metrics

•  Quality metrics"
-  spam rate: fraction of spam pages in the index"
-  duplicate rate: fraction of exact or near duplicate web pages

present in the index"

•  Performance metrics"
-  compactness: size of the index in bytes"
-  deployment cost: time and effort it takes to create and deploy

a new inverted index from scratch"
-  update cost: time and space overhead of updating a

document entry in the index"

5/1/14

38

Indexing Documents

•  Index terms are extracted from documents after some
processing, which may involve"
-  tokenization"
-  stopword removal"
-  case conversion"
-  stemming"

original text: "Living in America"
applying all: "liv america"
in practice: "living in america"

Duplicate Detection

•  Detecting documents with duplicate content"
-  exact duplicates (solution: computing/comparing hash values)"
-  near duplicates (solution: shingles instead of hash values)"

A B C D E F

A B C X D E F

79, 189, 44, 14, 99

79, 189, 278, 68, 14, 99

14, 44, 79

14, 68, 79

near
duplicate

5/1/14

39

Features: Relevance Signals

•  Offline computed features"
-  content: spam score, domain quality score"
-  web graph: PageRank, HostRank"
-  usage: click count, CTR, dwell time"

•  Online computed features"
-  query-document similarity: tf-idf, BM25"
-  term proximity features"

PageRank

•  A link analysis algorithm that assigns a weight to each web
page indicating its importance"

•  Iterative process that converges to a unique solution"
•  Weight of a page is proportional to"

-  number of inlinks of the page"
-  weight of linking pages"

•  Other algorithms"
-  HITS"
-  SimRank"
-  TrustRank"

5/1/14

40

Spam Filtering

•  Content spam"
-  web pages with potentially many popular search terms and

with little or no useful information"
-  goal is to match many search queries to the page content

and increase the traffic coming from search engines"

Spam Filtering

•  Link spam"
-  a group of web sites that

all link to every other site
in the group"

-  goal is to boost the
PageRank score of pages
and make them more
frequently visible in web
search results"

5/1/14

41

Spam Filtering

Top 10 PageRank sites"

•  PageRank is subject to manipulation by link farms"

Inverted List Compression

•  Benefits"
-  reduced space consumption "
-  reduced transfer costs"
-  increased posting list cache hit rate"
"

•  Gap encoding"
-  original: " "17 18 28 40 44 47 56 58"

-  gap encoded: 17 1 10 12 4 3 9 2"

gaps"

5/1/14

42

Inverted List Compression

•  Techniques"
-  Unary encoding"
-  Gamma encoding"
-  Delta encoding"
-  Variable byte encoding"
-  Golomb encoding"
-  Rice encoding"
-  PforDelta encoding"
-  Interpolative encoding"

gap: "1000"
"
unary: 11111111…11111110 (999 ones)"
gamma: "1111111110:111101000"
delta: "1110:010:111101000"
vbe: "00000111 11101000"
"

Document Identifier Reordering

•  Goal: reassign document identifiers so that we obtain many
small d-gaps, facilitating compression"

•  Example"
old lists: L1: 1 3 6 8 9 L2: 2 4 5 6 9 L3: 3 6 7 9"
mapping: 1à1 2à9 3à2 4à7 5à8 6à3 7à5 8à6 9à4"
new lists: L1: 1 2 3 4 6 L2: 3 4 7 8 9 L3: 2 3 4 5 "
old d-gaps: 2 3 2 1 2 1 1 3 3 1 2"
new d-gaps: 1 1 1 2 1 3 1 1 1 1 1"

5/1/14

43

Document Identifier Reordering

•  Techniques"
-  sorting URLs alphabetically and assigning ids in that order"

-  idea: pages from the same site have high textual overlap"
-  simple yet effective"
-  only applicable to web page collections"

-  clustering similar documents"
-  assigns nearby ids to documents in the same cluster"

-  traversal of document similarity graph"
-  formulated as the traveling salesman problem"

Index Construction

•  Equivalent to computing the transpose of a matrix"
•  In-memory techniques do not work well with web-scale data"
•  Techniques"

-  two-phase"
-  first phase: read the collection and allocate a skeleton for the index"
-  second phase: fill the posting lists"

-  one-phase"
-  keep reading documents and building an in-memory index"
-  each time the memory is full, flush the index to the disk"
-  merge all on-disk indexes into a single index in a final step"

5/1/14

44

Index Maintenance

•  Grow a new (delta) index in the memory; each time the
memory is full, flush the in-memory index to disk"
-  no merge"

-  flushed index is written to disk as a separate index"
-  increases fragmentation and query processing time"
-  eventually requires merging all on-disk indexes or rebuilding"

-  incremental indexing"
-  each inverted list contains additional empty space at the end"
-  new documents are appended to the empty space in the list"

-  merging delta index"
-  immediate merge: maintains only one copy of the index on disk"
-  selective merge: maintains multiple generations of the index on disk"

Inverted Index Partitioning/Replication

•  In practice, the inverted index is"
–  partitioned on thousands of computers in a large search cluster"

–  reduces query response times"
–  allows scaling with increasing collection size"

–  replicated on tens of search clusters"
–  increases query processing throughput"
–  allows scaling with increasing query volume"
–  provides fault tolerance"

5/1/14

45

Inverted Index Partitioning

•  Two alternatives for partitioning an inverted index"
–  term-based partitioning"

–  T inverted lists are distributed across P processors"
–  each processor is responsible for processing the postings of a

mutually disjoint subset of inverted lists assigned to itself"
–  single disk access per query term"

–  document-based partitioning"
–  N documents are distributed across P processors"
–  each processor is responsible for processing the postings of a

mutually disjoint subset of documents assigned to itself"
–  multiple (parallel) disk accesses per query term"

Term-Based Index Partitioning

(2, 1) (4, 1) (5, 1)

(1, 1) (4, 1) (5, 1) (6, 1)

(3, 1) (6, 1)

cold

hot

in

(4, 1) (5, 1)

(1, 1) (2, 1) (3, 1) (4, 2) (5, 2) (6, 1)

(1, 1) (2, 1) (3, 1) (4, 2) (5, 2) (6, 1)

not

pease

porridge

(3, 1) (6, 1)

(3, 1) (6, 1)

pot

the

P1

P2

P3

5/1/14

46

Document-Based Index Partitioning

(2, 1) (4, 1) (5, 1)

(1, 1) (4, 1) (5, 1) (6, 1)

(3, 1) (6, 1)

cold

hot

in

(4, 1) (5, 1)

(1, 1) (2, 1) (3, 1) (4, 2) (5, 2) (6, 1)

(1, 1) (2, 1) (3, 1) (4, 2) (5, 2) (6, 1)

not

pease

porridge

(3, 1) (6, 1)

(3, 1) (6, 1)

pot

the

P1 P2 P3

Comparison of Index Partitioning Approaches

" " " " Document-based Term-based"
Space consumption " " Higher" " Lower"
Number of disk accesses " Higher" " Lower"
Concurrency " " " Lower" " Higher"
Computational load imbalance " Lower" " Higher"
Max. posting list I/O time " Lower" " Higher"
Cost of index building " " Lower" " Higher!
Maintenance cost " " Lower" " Higher!

5/1/14

47

Inverted Index Partitioning

•  In practice, document-based partitioning is used"
–  simpler to build and update"
–  low inter-query-processing concurrency, but good load balance"
–  low throughput, but high response time"
–  high throughput is achieved by replication"
–  easier to maintain"
–  more fault tolerant"

•  Hybrid techniques are possible (e.g., term partitioning inside
a document sub-collection)"

Parallel Index Creation

•  Possible alternatives for creating an inverted index in parallel"
-  message passing paradigm"

-  doc-based: each node builds a local index using its documents"
-  term-based: posting lists are communicated between the nodes"

-  MapReduce framework"

Mapper

Reducer

D1: A B C

D2: E B D

D3: B C

Mapper

Mapper

Reducer

 A: D1
 B: D1
 C: D1

 E: D2
 B: D2
 D: D2

 B: D3
 C: D3

 A: D1

 B: D1 D2 D3

 C: D1 D3

 D: D2

 E: D2

5/1/14

48

Static Index Pruning

•  Idea: to create a small
version of the search index
that can accurately answer
most search queries"

•  Techniques"
-  term-based pruning"
-  doc-based pruning"

•  Result quality"
-  guaranteed"
-  not guaranteed"

•  In practice, caching does
the same better"

main
index

pruned
index

1

2

Tiered Index

•  A sequence of sub-indexes"
-  former sub-indexes are small

and keep more important
documents"

-  later sub-indexes are larger and
keep less important documents"

-  a query is processed selectively
only on the first n tiers"

•  Two decisions need to be made"
-  tiering (offline): how to place

documents in different tiers"
-  fall-through (online): at which

tier to stop processing the query"

3rd tier
index

1st tier
index

1

2

2nd tier
index

3

5/1/14

49

3rd tier
index

1st tier
index

1

2

2nd tier
index

3

Tiered Index

•  Tiering strategy is based on some
document importance metric"
-  PageRank"
-  click count"
-  spam score"

•  Fall-through strategy"
-  query the next index until there are

enough results"
-  query the next index until search

result quality is good"
-  predict the next tier’s result quality

by machine learning"

cluster 1 cluster 3

1

2

cluster 2

2

federator

Document Clustering

•  Documents are clustered"
-  similarity between documents"
-  co-click likelihood"

•  A separate index is built for
each document cluster"

5/1/14

50

cluster 1 cluster 3

1

2

cluster 2

2

federator

Document Clustering

•  A query is processed on the
indexes associated with the
most similar n clusters"

•  Reduces the workload"
•  Suffers from the load

imbalance problem"
-  query topic distribution may

be skewed"
-  certain indexes have to be

queried much more often"

100

Scaling Up

cluster

clusters

clusters

clusters

Caching

Adapted from Moffat and Zobel, 2004.

Scaling Up

5/1/14

51

Multi-site Architectures

•  Replicated •  Partitioned •  Centralized

Research Problem – Indexing Architectures

•  Replicated •  Pruned •  Clustered •  Tiered

•  Missing research"
-  a thorough performance comparison of these architectures

that includes all possible optimizations"
-  scalability analysis with web-scale document collections and

large numbers of nodes"

5/1/14

52

Research Problem – Off-network Popularity

•  Traditional features"
-  statistical analysis"
-  link analysis"
-  proximity"
-  spam"
-  clicks"
-  session analysis"
"

•  Off-network popularity"
-  social signals"
-  network"

ranker

content
popularity
database

search engine

result page

the Web

routers

users

Key Papers

•  Brin and Page, "The anatomy of a large-scale hypertextual Web search
engine", Computer Networks and ISDN Systems, 1998."

•  Zobel, Moffat, and Ramamohanarao, "Inverted files versus signature files
for text indexing". ACM Transactions on Database Systems, 1998."

•  Page, Brin, Motwani, and Winograd, "The PageRank citation ranking:
bringing order to the Web", Technical report, 1998."

•  Kleinberg, "Authoritative sources in a hyperlinked environment", Journal of
the ACM, 1999."

•  Ribeiro-Neto, Moura, Neubert, and Ziviani, "Efficient distributed algorithms
to build inverted files", SIGIR, 1999."

•  Carmel, Cohen, Fagin, Farchi, Herscovici, Maarek, and Soffer, "Static index
pruning for information retrieval systems, SIGIR, 2001."

•  Scholer, Williams, Yiannis, and Zobel, "Compression of inverted indexes for
fast query evaluation", SIGIR, 2002."

5/1/14

53

Q&A

Query Processing

5/1/14

54

Query Processing

•  Query processing is the problem of generating the best-
matching answers (typically, top 10 documents) to a given
user query, spending the least amount of time"

•  Our focus:
creating 10 blue
links as an answer
to a user query"

Web Search

•  Web search is a sorting problem!

daylight saving

example query

giant squid

barla cambazoglu test

sun energy miracle

good Indian restaurant

Honda CRX Yahoo research

my horoscope

SIGIR conference deadline

test drive

download mp3

honey

facebook

user queries the Web

good Indian restaurant

f (good Indian restaurant)

5/1/14

55

Metrics

•  Quality metrics"
-  relevance: the degree to which returned answers meet user’s

information need."

•  Performance metrics"
-  latency: the response time delay experienced by the user"
-  peak throughput: number of queries that can be processed per

unit of time without any degradation on other metrics"

 1.

 2.

 3.

 4.

R

Ranking 1

 1.

 2.

 3.

 4.

R

Ranking 2 Optimal

 1.

 2.

 3.

 4.

R

R

R

R R

R

Recall:
Precision:

DCG:
NDCG:

1/3 1/3 1
1/4 1/4 3/4

1 0.63 1+0.63+0.5=2.13
1/2.13 0.63/2.13

Measuring Relevance

•  It is not always possible to
know the user’s intent and his
information need"

•  Commonly used relevance
metrics in practice"
-  recall"
-  precision"
-  DCG"
-  NDCG"

5/1/14

56

Estimating Relevance

•  How to estimate the relevance between a given document
and a user query?"

•  Alternative models for score computation"
-  vector-space model"
-  statistical models"
-  language models"

•  They all pretty much boil down to the same thing"

Example Scoring Function

•  Notation"
-  : a user query"
-  : a document in the collection"
-  : a term in the query"
-  : number of documents in the collection"
-  : number of occurrences of the term in the document"
-  : number of documents containing the term"
-  : number of unique terms in the document"

•  Commonly used scoring function: tf-idf"

s(q,d) = w(t,d)
t∈q
∑ × log N

df (t) w(t,d) = tf (t,d)
| d |

| d |
df (t)
tf (t,d)
N
t
d
q

5/1/14

57

Score Computation (using an accumulator array)

2 3 5 7 8 10 5 6 8 11

L1: L2:

1 2 3 4 5 6 7 8 9 10 11 12

0.2 0.5 0.1 0.4 0.3 0.1 0.6 0.1 0.3 0.2

0 0.2 0.5 0 0.7 0.1 0.4 0.6 0 0.1 0.2 0

5 8 3 7 11 2 6 10 1 4 9 12

0.7 0.6 0.5 0.4 0.2 0.1 0.1 0.1 0 0.1 0.2 0

Efficient Score Computation (using a min heap)

5 8 3

0.7 0.6 0.5

2 3 5 7 8 10 5 6 8 11

L1: L2:0.2 0.5 0.1 0.4 0.3 0.1 0.6 0.1 0.3 0.2

0.2 : 2 0.2 : 2

0.5 : 3

0.2 : 2

0.5 : 3 0.7 : 5

3 5

7

2

0.4 : 7

0.5 : 3 0.7 : 5

0.5 : 3

0.6 : 8 0.7 : 5

0.5 : 3

0.6 : 8 0.7 : 5

8 10, 11

5/1/14

58

Design Alternatives in Ranking

•  Document matching"
-  conjunctive (AND) mode"

-  the document must contain all query terms"
-  higher precision, lower recall"

-  disjunctive (OR) mode"
-  document must contain at least one of the query terms"
-  lower precision, higher recall"

Design Alternatives in Ranking

•  Inverted list organizations"
-  increasing order of document ids"
-  decreasing order of weights in postings"

-  sorted by term frequency"
-  sorted by score contribution (impact)"

-  within the same impact block, sorted in increasing order of document ids"

2 3 5 7 8 10

doc id ordered

0.2 0.5 0.1 0.4 0.3 0.1

3 7 8 2 5 10

weight ordered

0.5 0.4 0.3 0.2 0.1 0.1

5/1/14

59

Design Alternatives in Ranking

•  Traversal order"
-  term-at-a-time (TAAT)"
-  document-at-a-time (DAAT)"

2 3 5 7 8 10

0.2 0.5 0.1 0.4 0.3 0.1

5 6 8 11

0.6 0.1 0.3 0.2

L1:

L2:

4 7 9 10

0.5 0.3 0.1 0.4L3:

2 3 5 7 8 10

0.2 0.5 0.1 0.4 0.3 0.1

5 6 8 11

0.6 0.1 0.3 0.2

L1:

L2:

4 7 9 10

0.5 0.3 0.1 0.4L3:

Term-at-a-time Document-at-a-time

Design Alternatives in Ranking

•  Weights stored in postings"
-  term frequency"

-  suitable for compression"
-  normalized term frequency"

-  no need to store the document length array"
-  not suitable for compression"

-  precomputed score"
-  no need to store the idf value in the vocabulary"
-  no need to store the document length array"
-  not suitable for compression"

5/1/14

60

Design Alternatives in Ranking

•  In practice"
-  AND mode: faster and leads to better results in web search"
-  doc-id sorted lists: enables compression"
-  document-at-a-time list traversal: enables better optimizations"
-  term frequencies: enables compression"

Scoring Optimizations

•  Skipping"
-  list is split into blocks linked with pointers called skips"
-  store the maximum document id in each block"
-  skip a block if it is guaranteed that sought document is not

within the block"
-  gains in decompression time"
-  overhead of skip pointers"

2 3 5 7 8 10

0.2 0.5 0.1 0.4 0.1 0.15 10 24 ...

5/1/14

61

Scoring Optimizations

•  Dynamic index pruning"
-  store the maximum

possible score
contribution of each list"

-  compute the maximum
possible score for the
current document"

-  compare with the lowest
score in the heap"

-  gains in scoring and
decompression time"

2 3 5 7 8 10

0.2 0.5 0.1 0.4 0.1 0.1

3 7 8 11

0.3 0.1 0.2 0.1

L1:

L2:

3 7 9 10

0.1 0.2 0.1 0.2L3:

0.5

0.3

0.2

Current top 2:

0.9 0.7

3 7

Scoring Optimizations

•  Early termination"
-  stop scoring documents when it is guaranteed that neither

document can make it into the top k list"
-  gains in scoring and decompression time"

3 7 2 5 8 10

0.5 0.4 0.2 0.1 0.1 0.1

3 8 7 11

0.3 0.2 0.1 0.1

L1:

L2:

3 7 9 10

0.2 0.2 0.1 0.1L3:

Current heap:

1.0 0.6

3 7

0.2

8

5/1/14

62

Snippet Generation

•  Search result snippets (a.k.a., summary or abstract)"
-  important for users to correctly judge the relevance of a web

page to their information need before clicking on its link"

•  Snippet generation"
-  a forward index is built providing a mapping between pages

and the terms they contain"
-  snippets are computed using this forward index and only for

the top 10 result pages"
-  efficiency of this step is important"
-  entire page as well as snippets can be cached"

•  Query processing can be parallelized at different granularities
-  parallelization within a search node (intra-query parallelism)
-  multi-threading within a search node (inter-query parallelism)
-  parallelization within a search cluster (intra-query parallelism)
-  replication across search clusters (inter-query parallelism)
-  distributed across multiple data centers

Parallel Query Processing

5/1/14

63

•  Single computer"
-  not scalable in terms of response time"

•  Search cluster"
-  large search clusters (low response time)"
-  replicas of clusters (high query throughput)"

•  Multiple search data centers"
-  reduces user-to-center latencies"

Query Processing Architectures

Query Processing in a Data Center

Broker

rewriters cache blenderFrontend

Search cluster

Master

Child

Child

Child

Child

Child

user

query results

Search
cluster

Search
cluster

Search
cluster

•  Multiple node types"
-  frontend, broker, master, child"

5/1/14

64

Parallel Query Processing (central broker)

result cache

disk

list
cache

list
cache

list
cache

list
cache

central broker

disk disk disk

search cluster

user
result merger

ranker ranker ranker ranker

Parallel Query Processing (pipelined)

result cache

disk

list
cache

list
cache

list
cache

list
cache

central broker

disk disk disk

search cluster
user

ranker ranker ranker ranker

5/1/14

65

Query Processing on a Search Node

document
selector

simple
ranker

complex
rankern n k' k

I1
I2

Im

•  Two-phase ranking"
-  simple ranking"

-  linear combination of query-dependent and query-independent
scores potentially with score boosting"

-  main objective: efficiency"
-  complex ranking"

-  machine learned"
-  main objective: quality"

Machine Learned Ranking

•  Many features"
–  term statistics (e.g., BM25)"
–  term proximity"
–  link analysis (e.g., PageRank)"
–  spam detection"
–  click data"
–  search session analysis"

•  Popular learners used by commercial search engines"
–  neural networks"
–  boosted decision trees"

5/1/14

66

Machine Learned Ranking

•  Example: gradient boosted decision trees"
–  chain of weak learners"
–  each learner contributes a partial score to the final document score"

•  Assuming"
–  1000 trees"
–  an average tree depth of 10"
–  100 documents scored per query"
–  1000 search nodes"

•  Expensive"
–  1000*10*100 = 1 million

operations per query and per node"
–  around 1 billion comparison for the

entire search cluster"

Machine Learned Ranking

•  Document-ordered traversal (DOT)"
–  scores are computed one document at a time over all scorers"
–  an iteration of the outer loop produces the complete score information for a

partial set of documents"

•  Disadvantages
–  poor branch prediction because a different scorer is used in each inner loop iteration
–  poor cache hit rates in accessing the data about scorers (for the same reason)

5/1/14

67

Machine Learned Ranking

•  Scorer-ordered traversal (SOT)"
–  scores are computed one score at a time over all documents"
–  an iteration of the outer loop produces the partial score information for the

complete set of documents"

•  Disadvantages"
–  memory requirement (feature vectors of all documents need to be kept in memory)"
–  poor cache hit rates in accessing features as a different document is used in each

inner loop iteration"

Machine Learned Ranking

•  Early termination"
–  idea: place predictive functions between scorers"

–  predict during scoring whether a document will enter the final
top k and "

–  quit scoring, accordingly"

5/1/14

68

Multi-site Web Search Architecture

Key points"
-  multiple, regional data

centers (sites)"
-  user-to-center

assignment"
-  local web crawling"
-  partitioned web index"
-  partial document

replication"
-  query processing with

selective forwarding"

Multi-site Distributed Query Processing

•  Local query response time "
–  2 × user-to-site latency"
–  local processing time"

•  Forwarded query response time"
–  local query response time"
–  2 × site-to-site latency"
–  non-local query processing time"

5/1/14

69

Query Forwarding

•  Problem"
–  selecting a subset of non-

local sites which the query
will be forwarded to "

•  Objectives"
–  reducing the loss in search

quality w.r.t. to evaluation
over the full index"

–  reducing average query
response times and/or
query processing workload"

 0

 20

 40

 60

 80

 100

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

C
on

tri
bu

tio
n

pe
r c

om
po

ne
nt

 (%
)

Latency (normalized by the mean)

search engine latency
network latency
browser latency

•  Constituents of response latency"
-  user-to-center network latency"
-  search engine latency time"

-  query features"
-  caching"
-  current system workload"

-  page rendering time in the browser"

Web Search Response Latency

User Search
frontend

Search
backend

tpre tproc

tpost

tfb

tbf

tuf

tfu

trender

5/1/14

70

•  Problem: Predict the response time of a query before
processing it on the backend search system"

•  Useful for making query scheduling decisions"

•  Solution: Build a machine learning model with many features"
-  number of query terms"
-  total number of postings in inverted lists"
-  average term popularity"
-  …"

Response Latency Prediction

•  Impact of latency on the user
varies depending on"
-  context: time, location"
-  user: demographics"
-  query: intent"

Impact of Response Latency on Users

5/1/14

71

•  A/B test by Google and Microsoft"

Impact of Response Latency on Users

da
ily

 s
ea

rc
he

s
pe

r u
se

r r
el

at
iv

e
to

 c
on

tro
l

wk3 wk4 wk5 wk6 wk7 wk8 wk9 wk10 wk11

-1
%

-0
.8

%
-0

.6
%

-0
.4

%
-0

.2
%

0%
0.

2%

de
la

y
re

m
ov

ed

Persistent Impact of Post-header Delay

200 ms delay
400 ms delay

actual
trend

Research Problem – Energy Savings

•  Observation: electricity prices vary across data centers and
depending the time of the day"

•  Idea: forward queries to cheaper search data centers to reduce the
electricity bill under certain constraints"

5/1/14

72

Research Problem – Green Search Engines

•  Goal: reduce the carbon footprint of the search engine"

•  Query processing"
-  shift workload from data centers that consume brown

energy to those green energy"
-  constraints:"

-  response latency"
-  data center capacity"

Open Source Search Engines

•  DataparkSearch: GNU general public license"
•  Lemur Toolkit & Indri Search Engine: BSD license"
•  Lucene: Apache software license"
•  mnoGoSearch: GNU general public license"
•  Nutch: based on Lucene"
•  Seeks: Affero general public license"
•  Sphinx: free software/open source"
•  Terrier Search Engine: open source"
•  Zettair: open source"

5/1/14

73

Key Papers

•  Turtle and Flood, "Query evaluation: strategies and optimizations",
Information Processing and Management, 1995."

•  Barroso, Dean, and Holzle, "Web search for a planet: the Google
cluster architecture", IEEE Micro, 2003."

•  Broder, Carmel, Herscovici, Soffer, and Zien, "Efficient query
evaluation using a two-level retrieval process", CIKM, 2003."

•  Chowdhury and Pass, “Operational requirements for scalable search
systems”, CIKM, 2003."

•  Moffat, Webber, Zobel, and Baeza-Yates, "A pipelined architecture
for distributed text query evaluation", Information Retrieval, 2007."

Key Papers

•  Turpin, Tsegay, Hawking, and Williams, "Fast generation of result
snippets in web search. SIGIR, 2007."

•  Baeza-Yates, Gionis, Junqueira, Plachouras, and Telloli, "On the
feasibility of multi-site web search engines", CIKM, 2009."

•  Cambazoglu, Zaragoza, Chapelle, Chen, Liao, Zheng, and
Degenhardt, "Early exit optimizations for additive machine learned
ranking systems", WSDM, 2010."

•  Wang, Lin, and Metzler, "Learning to efficiently rank", SIGIR, 2010."
•  Macdonald, Tonellotto, Ounis, "Learning to predict response times

for online query scheduling", SIGIR, 2012."

5/1/14

74

Q&A

Caching

5/1/14

75

Caching

•  Cache: quick-access storage system"
–  may store data to eliminate the need to fetch the data from a

slower storage system"
–  may store precomputed results to eliminate redundant

computation in the backend"

 Main backend Cache"
speed " slower " faster"
workload higher " "lower"
capacity larger smaller"
cost " cheaper more expensive"
freshness more fresh more stale"

Caching

•  Often appears in a hierarchical form"
–  OS: registers, L1 cache, L2 cache,

memory, disk"
–  network: browser cache, web proxy,

server cache, backend database"

•  Benefits"
–  reduces the workload"
–  reduces the response time"
–  reduces the financial cost"

1

2

3

(fastest)

(slowest)

5/1/14

76

Metrics

•  Quality metrics"
-  freshness: average staleness of the data served by the cache"

•  Performance metrics"
-  hit rate: fraction of total requests that are answered by the cache"
-  cost: total processing cost incurred to the backend system"

Caching

•  Items preferred for caching"
–  more popular over time"
–  more recently requested"

5/1/14

77

Query Frequency

•  Skewed distribution in
query frequency"
–  Few queries are issued

many times (head
queries)"

–  Many queries are issued
rarely (tail queries)"

10
0

10
1

10
2

10
3

10
4

Query frequency

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

F
re

q
u
e
n
c
y

Inter-Arrival Time

•  Skewed distribution in
query inter-arrival time"
–  low inter-arrival time is

for many queries"
–  high inter-arrival time

for few queries"

10
0

10
1

10
2

Inter-arrival time (in hours)

10
2

10
3

10
4

10
5

10
6

F
re

q
u
e
n
c
y

5/1/14

78

Posting list
cache

Intersection
cache

Posting
lists

Index server

Document
cache Documents

Document server

Result
cache

Score
cache

Broker

Caches Available in a Web Search Engine

•  Main caches"
–  result"
–  score"
–  intersection"
–  posting list"
–  document"

Caching Techniques

•  Static caching"
–  built in an offline manner"
–  prefers items that are accessed often in the past"
–  periodically re-deployed"

•  Dynamic caching"
–  maintained in an online manner"
–  prefers items that are recently accessed"
–  requires removing items from the cache (eviction)"

•  Static/dynamic caching"
–  shares the cache space between a static and a dynamic cache"

5/1/14

79

Static/Dynamic Caching

A C

A D A D C A B C C E A

static cache
was built

now

static cache
(capacity: 2)

D F G

dynamic cache
(capacity: 3)

F A B D A G F

most
frequent

most
recent

A
C
D

B E

F
G
A
D
B

Techniques Used in Caching

•  Admission: items are prevented from being cached"

•  Prefetching: items are cached before they are requested"

•  Eviction: items are removed from the cache when it is full"

5/1/14

80

Admission

•  Idea: certain items may be prevented from being cached
forever or until confidence is gained about their popularity"

•  Example admission criteria"
–  query length"
–  query frequency"

XYZ
Q ABC

Result cache

Minimum frequency threshold for admission: 2
Maximum query length for admission: 4

Query stream: ABC IJKLMN ABC ABC XYZ Q XYZ

Query cache

Prefetching

•  Idea: certain items can be cached before they are actually
requested if there is enough confidence that they will be
requested in the near future."

•  Example use case: result page prefetching"

Reqested: page 1" Prefetch: page 2 and page 3"

5/1/14

81

Eviction

•  Goal: remove items that are not likely to lead to a cache hit
from the cache to make space for items that are more useful."

•  Ideal policy: evict the item that will be requested in the most
distant future."

•  Policies: FIFO, LFU, LRU, SLRU"
•  Most common: LRU"

A

D

D

A

A

A

D

C

C

A

D

D

D

C

A

B

B

D

C

E

Aevicted:

A

Result Cache Freshness

•  In web search engines"
–  index is continuously

updated or re-built"
–  result caches are

almost infinite capacity"
–  staleness problem"

0 24 48 72 96 120 144 168 192 216
Time (in hours)

0

15

30

45

60

75

90

105

120

135

150

A
v
e
ra

g
e
 a

g
e
 o

f
a
 h

it
 (

in
 h

o
u
rs

)

infinite cache
16 million entries
4 million entries
1 million entries

5/1/14

82

Flushing

•  Naïve solution: flushing the cache at regular time intervals"

0 24 48 72 96 120 144 168 192 216
Time (in hours)

0

1

2

3

4

5

6

7

8

9

10

11

12

A
v
e
ra

g
e
 a

g
e
 o

f
a
 h

it
 (

in
 h

o
u
rs

)

24 hours
16 hours
8 hours

0 24 48 72 96 120 144 168 192 216
Time (in hours)

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

C
a

c
h

e
 h

it
 r

a
te

24 hours
16 hours
8 hours

Time-to-Live (TTL)

•  Common solution:
setting a time-to-live
value for each item"

•  TTL strategies"
–  fixed: all items are

associated with the
same TTL value"

–  adaptive: a separate
TTL value is set for
each item"

0 2 4 6 8 10 12 14 16 18 20 22
Hour of the day

0

10

20

30

40

50

60

B
ac

ke
nd

 q
ue

ry
 tr

af
fic

 ra
te

 (q
ue

ry
/s

ec
) TTL = 0 (no cache)

TTL = 1 hour
TTL = infinite

User query traffic

Cache hits

(expired entries)
Cache misses

Cache misses
(compulsary)

hitting the backend

Lower-bound on
the backend traffic

5/1/14

83

Result Cache Freshness

Query is evaluated for the
first time and its results
are cached
Cached query results
became stale due to
updates on the index
The same query is issued
for the second time
TTL of the query expired

Case III: True negative
– Results are served by the cache
– Fresh results
– No redundant computation

Case I: True positive
– Results are served by the backend
– Fresh results
– No redundant computation

Case II: False positive
– Results are served by the backend
– Fresh results
– Redundant computation

Case IV: False negative
– Results are served by the cache
– Stale results
– No redundant computation

Advanced Solutions

•  Cache invalidation: the indexing system provides feedback
to the caching system upon an index update so that the
caching system can identify the stale results"
–  hard to implement"
–  incurs communication and computation overheads"
–  highly accurate"

5/1/14

84

Advanced Solutions

•  Cache refreshing: stale results are predicted and scheduled
for re-computation in idle cycles of the backend search
system"
–  easy to implement"
–  little computational overhead"
–  not very accurate"

Result Cache Refreshing Architecture

SEARCH ENGINE
FRONTEND

SEARCH CLUSTER BACKEND

Query
selector

Result aggregator

Cache
manager

Query
scheduler

Query buckets

Result cache

Query
prioritizer

Query queue

SEARCH CLUSTER FRONTEND

Processing queue

Query
submitter

Query
processor

Query
processor

Index

Index

User

(Hit)

(Miss)

(Lookup)
(Update)

Cached query result
Aggregated query result
Partial query result

Online user query

Candidate query
Scheduled query

Potential query

QUERY PREFETCHING MODULE

5/1/14

85

Impact on a Production System

Research Problem - Financial Perspective

•  Past work optimizes"
-  hit rate"
-  backend workload"

•  Optimizing financial cost"
-  result degradation"
-  staleness"
-  current query traffic"
-  peak sustainable traffic"
-  current electricity price" 0 2 4 6 8 10 12 14 16 18 20 22

Hour of the day
0

5

10

15

20

25

30

35

40

Ba
ck

en
d

qu
er

y
tra

ffi
c

(q
ue

ry
/se

c)

TTL = 1 hour
TTL = 4 hours
TTL = 16 hours
TTL = infinite

Opportunity for
prefetching

Risk of overflow

Potential for
load reduction

Peak query throughput
sustainable by the backend

5/1/14

86

Key Papers

•  Markatos, “On caching search engine query results”, Computer
Communications, 2001."

•  Long and Suel, “Three-level caching for efficient query processing in
large web search engines”, WWW, 2005."

•  Fagni, Perego, Silvestri, and Orlando, “Boosting the performance of
web search engines: caching and prefetching query results by
exploiting historical usage data”, ACM Transactions on Information
Systems, 2006."

•  Altingovde, Ozcan, and Ulusoy, “A cost-aware strategy for query
result caching in web search engines”, ECIR, 2009."

•  Cambazoglu, Junqueira, Plachouras, Banachowski, Cui, Lim, and
Bridge, “A refreshing perspective of search engine caching”, WWW,
2010."

Q&A

5/1/14

87

Concluding Remarks

Summary

•  Presented a high-level overview of important scalability and
efficiency issues in large-scale web search"

•  Provided a summary of commonly used metrics"

•  Discussed a number of potential research problems in the field"

•  Provided references to available software and key research
works in literature"

5/1/14

88

Observations

•  Unlike past research, the current research on scalability is
mainly driven by the needs of commercial search engine
companies"

•  Scalability of web search engines is likely to be a research
challenge for some more time (at least, in the near future)"

•  Lack of hardware resources and large datasets render
scalability research quite difficult, especially for researchers
in academia"

Suggestions to Newcomers

•  Follow the trends in the Web, user bases, and hardware
parameters to identify the real performance bottlenecks"

•  Watch out newly emerging techniques whose primary
target is to improve the search quality and think about
their impact on search performance"

•  Re-use or adapt existing solutions in more mature
research fields, such as databases, computer networks,
and distributed computing"

•  Know the key people in the field (the community is
small) and follow their work"

5/1/14

89

Important Surveys/Books
•  Web search engine scalability and efficiency"

-  B. B. Cambazoglu and Ricardo Baeza-Yates, “Scalability
Challenges in Web Search Engines”, The Information Retrieval
Series, 2011."

•  Web crawling"
-  C. Olston and M. Najork: “Web Crawling”, Foundations and

Trends in Information Retrieval, 2010."

•  Indexing"
-  J. Zobel and A. Moffat, “Inverted files for text search engines”,

ACM Computing Surveys, 2006."

•  Query processing"
-  R. Baeza-Yates and B. Ribeiro-Neto, Modern Information

Retrieval (2nd edition), 2011."

Q&A

