Open Learning Objects: The Case for Inner Metadata

O. Rodriguez, S. Chen, H. Shi, & Y. Shang
Department of Computer Engineering & Computer Science
University of Missouri-Columbia
Motivation

- Learning objects are the basic units of learning material in e-learning.
- There are standards for packaging learning objects (IEEE, IMS).
- However, learning objects remain opaque entities.
 - little visibility and controllability into their internal composition and operation
 - limited adaptability to learners
Open Learning Objects

- driven by inner metadata
- multi-layered
- multi-media based
- adaptable to individual learners
- interactive
- delivered through agents
- implemented using open standards
Inner Metadata (1)

- Current LOM standards only provide LO description from external viewpoint.
 - Metametadata, General, Lifecycle, Rights, Technical, Educational, Classification, Annotation, Relations
- To effectively use LOs, e-learning systems need access to LO internals, in a vendor-independent standardized way.
- We define InnerMetadata as a set of markup languages for the internal structure and composition of a LO.
Inner Metadata (2)

- Text.dtd
- SVG.dtd
- Animation.dtd
- Assessment.dtd
- Interaction.dtd
Multimedia Based Content

- Multimedia helps accommodate a large variety of learners with different learning styles and skill levels.
- Open learning objects adopt text, SVGs, and animation to organize learning material.
Adaptation Dimensions

- OLO design accommodates not only multiple media preferences but also more pedagogically meaningful adaptations.
 - Language
 - Skill level
 - Learning style
 - Accessibility
Layered Architecture

- The inner metadata (defined by DTDs) is organized in layers.
- The DTDs plus semantics provide an open way to adapt and enhance learning objects.
- We define five layers:
 - Concept
 - Presentation
 - Animation
 - Interaction
 - Integration
Layered Architecture (2)

- Each layer features the same structure:
 - Content sub-layer
 - Metadata sub-layer
 - Adaptation sub-sub-layer

- Advantages of layered Architecture
 - Decoupling of content sub-layers
 - Decoupling of adaptation sub-sub-layers
 - Independent authoring of layers
 - Scalable OLO authoring by fostering collaboration
 - Easy integration and coordination
 - Per-layer specialization
Concept Layer

- Content sub-layer
 - LO knowledge domain concepts, Definitions, Explanations, Examples, Exercises, Assessments

- Metadata sub-layer
 - Pedagogic concepts, Ontology (expressed in OLOconcept.dtd)

- Adaptation sub-sub-Layer
 - Prior knowledge
 - Language
 - Learning style and skill level
Presentation Layer

- Content sub-layer
 - Alternate representations for concept layer, using graphic metaphors, shapes, icons, speech markup

- Metadata sub-layer
 - Shapes, icons, clips or synthesized speech (expressed in SVG graphics and speech markup language)

- Adaptation sub-sub-Layer
 - Accessibility adaptations: color, contrast, size, fonts
 - Text-to-speech
Animation Layer

- **Content sub-layer**
 - States representing a learner-meaningful configuration of the concept & presentation layers

- **Metadata sub-layer**
 - Synchronization of the concept and presentation layers: Sequencing of states with branch/actions that animate representations, default and optional branching, backtracking

- **Adaptation sub-sub-Layer**
 - Line-of-reasoning (LOR): cognitive load & transition grain
 - Ordering of LOR groups per skill & learning style
Interaction Layer

- Content sub-layer
 - Primitive events (represented with graphic shapes and other UI widgets)

- Metadata sub-layer
 - Sequencing of states with branch/actions activated by events

- Adaptation sub-sub-Layer
 - User controls for OLO navigation
Integration Layer

- **Content sub-layer**
 - References to other layer’s documents
 - Agents to be integrated with the OLO

- **Metadata sub-layer**
 - LOM metadata <Relations> elements to link OLO components

- **Adaptation sub-sub-Layer**
 - Adaptation to learner and browser being used by integrating different agents
Generic Agents for OLO

- Generic software agents are driven by OLO layers to integrate components, animate presentation, and trace interaction with the learner.
- These agents embed the markup semantics and provide a key function: adaptation.
- These are: Learner Agent, Course Agent, Facilitator Agent.
Implementation of Agents

- Agents coded with open-source software.
- Open-source components include
 - Apache: Webserver
 - Tomcat: Servlet container
 - Cocoon: XML content processing
 - Xerces: XML parsers
 - Xalan: XSLT transform engine
 - ECMAScript, SVG viewer, IE/NS
Facilitator Agent (1)

Adapts OLO on-the-fly for skill/style
- Interprets the animation layer file
- Handles back-tracking
- Collects learner interaction trace
- Implemented as a “situated” or “reactive” micro agent
Facilitator Agent (2)

- Uses a blackboard metaphor (virtual classroom)
 - User-controlled or automatic step-by-step presentation
 - Backtrack allowed
- Maintains stacks for
 - events
 - backtrack
 - interaction trace
Course Agent

- Enables adaptive navigation between OLOS
- Performs OLO integration and server-side adaptations such as language and skill level
- Uses XSL stylesheets for adaptation of OLO content model
- Implemented as servlets and JSPs
- Co-located with learner agent
OLO Adaptive Navigation
Learner Agent

- Encapsulates an abstract LIS-independent representation of the learner model
- Updates the learner model with the interaction trace
- Handles learner authorization and authentication
- Implemented as servlets
Summary (1)

- OLOs as an open way for curriculum decimation
 - Decimate curriculum into a set of standardized topics to be learned/taught.
 - Devise/administer assessment items for OLO-scope topics.
 - Let teachers and authors gradually come up with blended-versions and ever more improved versions of OLOs meeting the assessment requirements on the topics.
Summary (2)

- Open learning objects simplify tasks:
 - content adaptation
 - learner interaction trace and learner modeling
 - adaptive navigation
- Open learning objects provide better support for personalized e-learning.
Questions?
Answers!
Thank YOU!