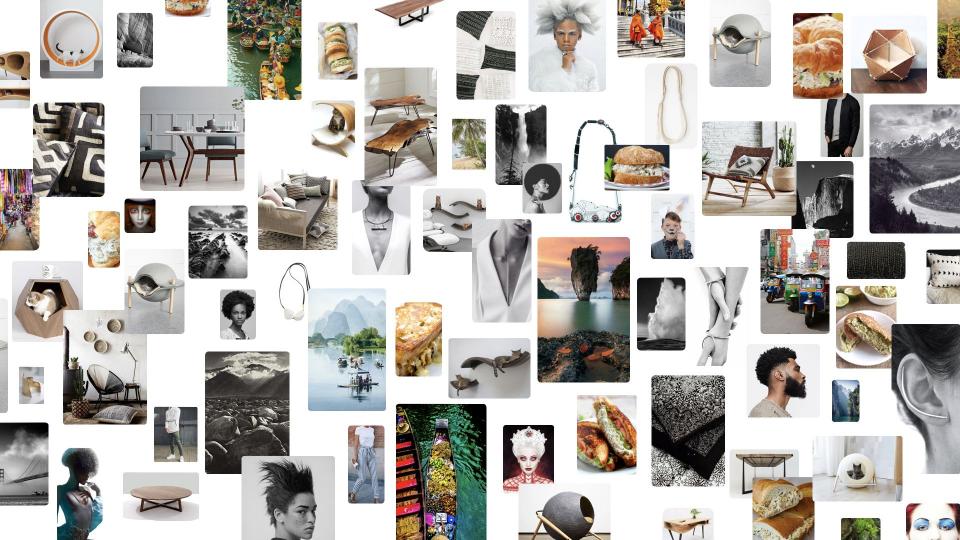


Powering the AI Inspiration Engine

Andrew Zhai, Senior Staff Applied Scientist Pinterest

April 25, 2022



OBring everyone the inspiration to create a life they love

Pin

The perfect path **#** 36 to cold brew

Caffeinated Inc.

Omar Seyal Cravings

Andrew Zhai

Pins

367 601 Followers Following www.andrewzhai.com San Francisco / i like pizza hut a lot

Boards

Tried

Camper van 4 Pins 1w

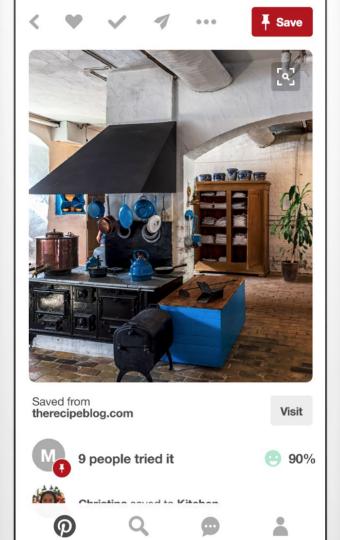
Your tried Pins 3 Pins 25w

Recipes 27 Pins · 4 sections 25w

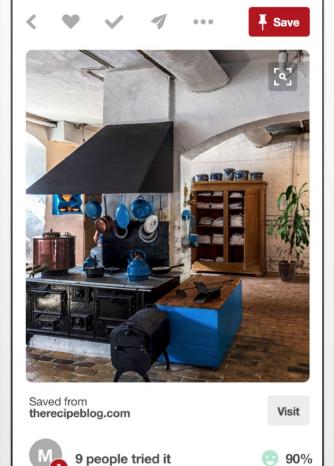
Gundam Building 6 Pins 2w

Tokyo 13 Pins 26w

Board A greater collection of ideas.



Blue accents 219 Pins



Christing aguad to Kitahan

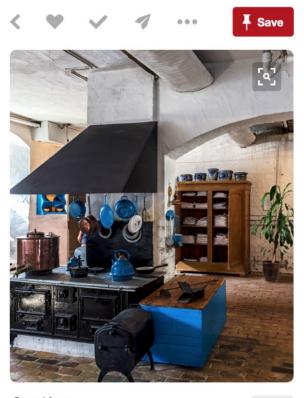
-

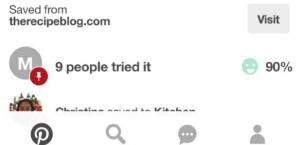
Na a

 \bigcirc

Blue accents 219 Pins

Vintage kitchen 377 Pins





Blue accents 219 Pins

Vintage kitchen 377 Pins

Fireplace 138 Pins

7b+

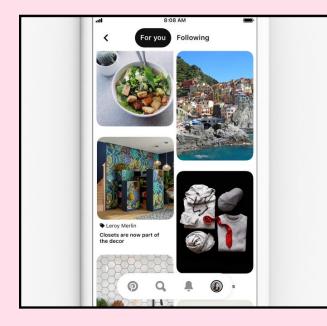
Languages

Positivity

say Pinterest is a place filled with

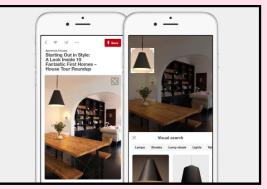
People on Pinterest each month

The Inspiration Engine



Homefeed (User)

Related Pins (Pin)



Visual Search (Image)

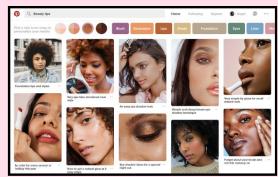


Image Search (Text)

Pinterest

Inspirational Engagement

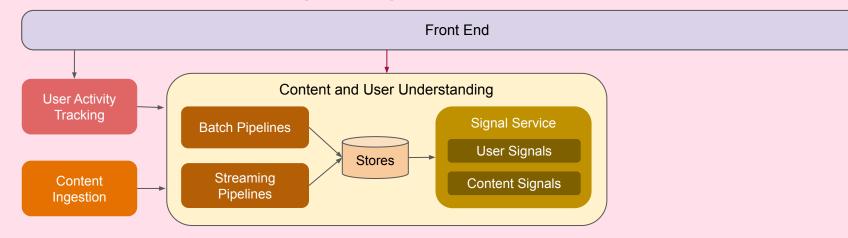
Top pins by view time

Top pins by Saves

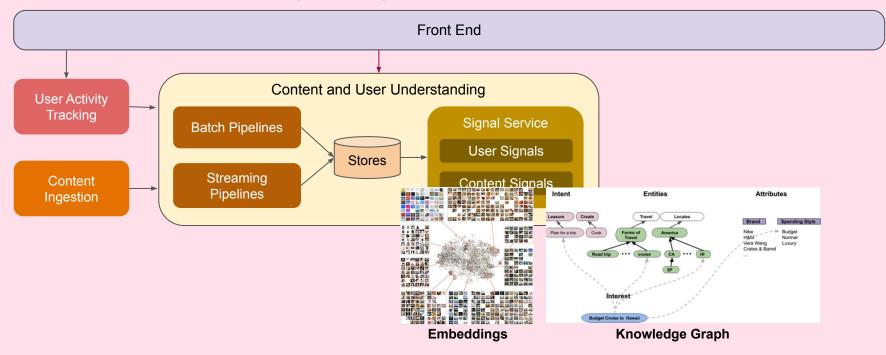
users and few billion Pins (content)

Front End

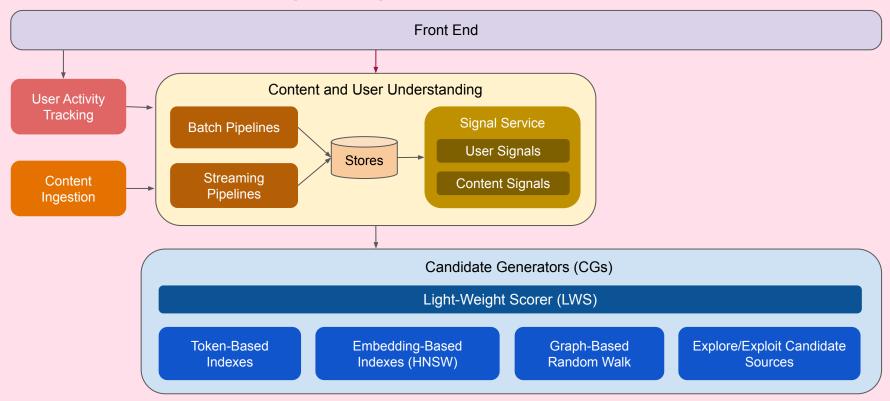
users and few billion Pins (content)



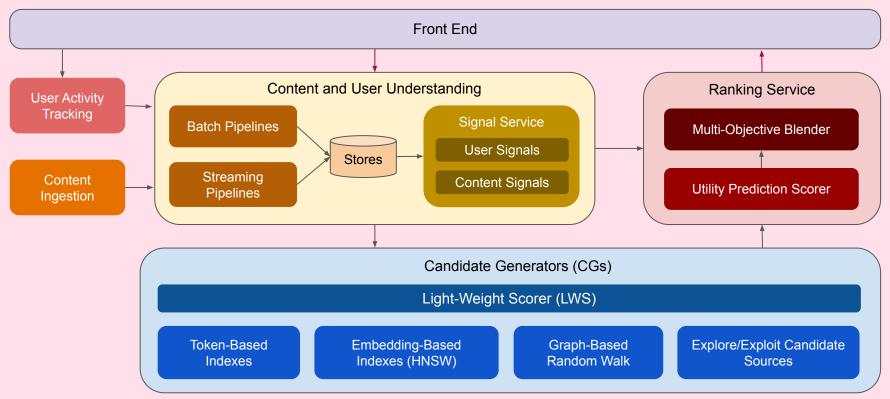
users and few billion Pins (content)



users and few billion Pins (content)

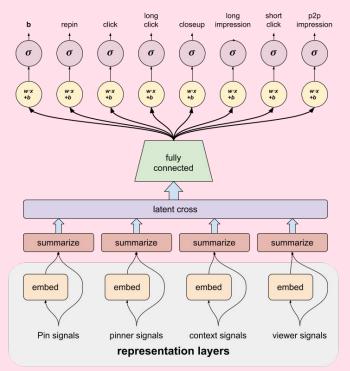


users and few billion Pins (content)



Pinterest

Ranking: User Action Prediction



 Predict a wide variety of user actions for each (user, item) pair through multi-head deep neural network

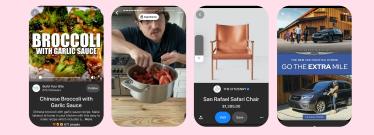
Multi Objective Optimization

max_x PinnerUtility(**x**)

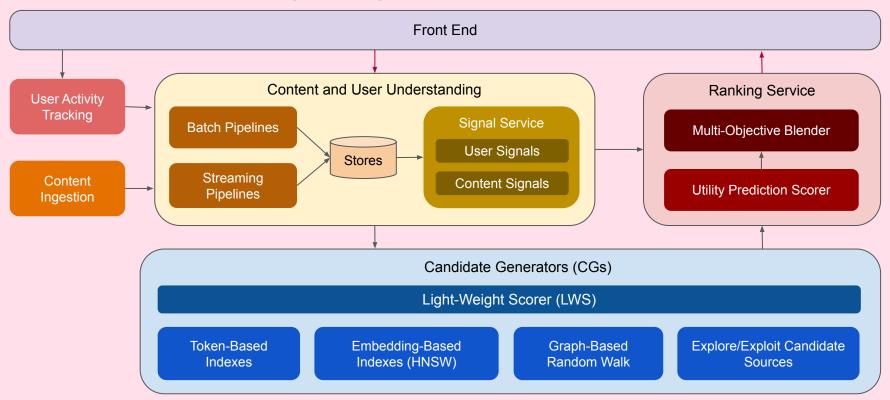
s.t. CreatorUtility() $\geq \theta_1$ MerchantUtility(\mathbf{x}) $\geq \theta_2$ AdUtility(\mathbf{x}) $\geq \theta_3$

 $\max_{\mathbf{x}} \text{PinnerUtility}(\mathbf{x}) \\ + w_1 \text{ CreatorUtility}() \\ + w_2 \text{ MerchantUtility}(\mathbf{x}) \\ + w_3 \text{ AdUtility}(\mathbf{x})$

- Estimate utility values for different parties on Pinterest based on predicted action probabilities
- Tune the weights to achieve a desired tradeoff
- Real system Functional form contains non-linearities are present

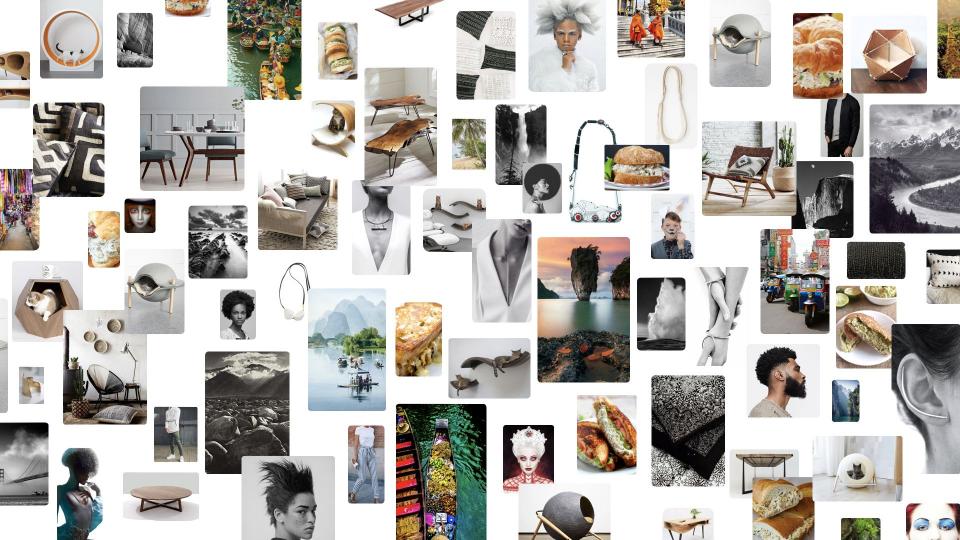


users and few billion Pins (content)

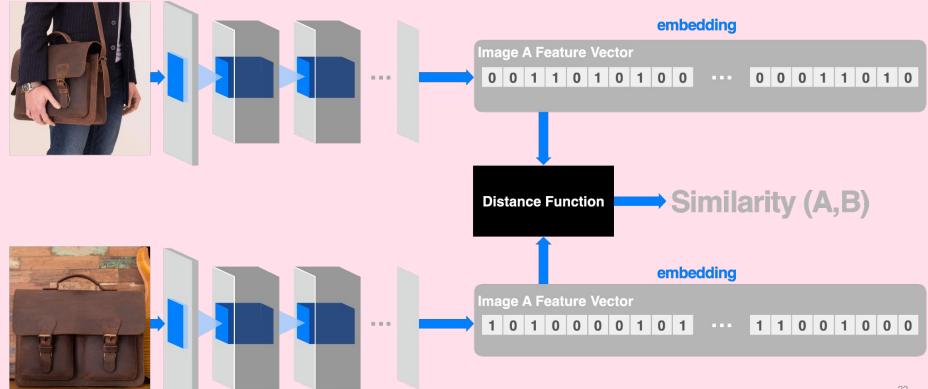


Pinterest

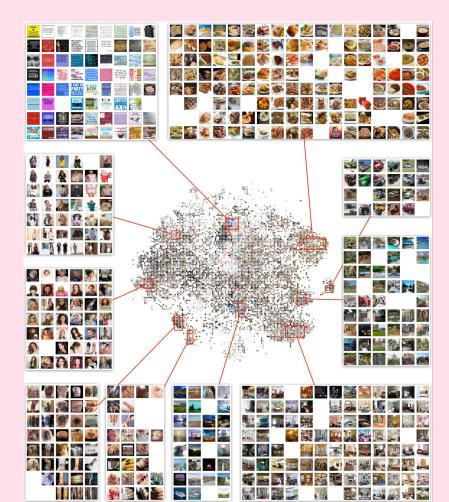
Content Understanding



Determining visual similarity



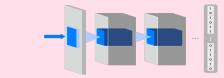
Zhai et al. "Visual Discovery at Pinterest", WWW '17

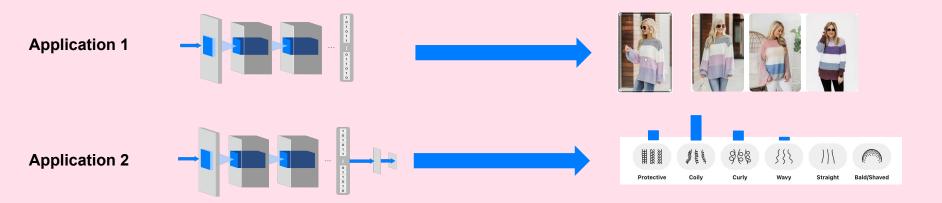


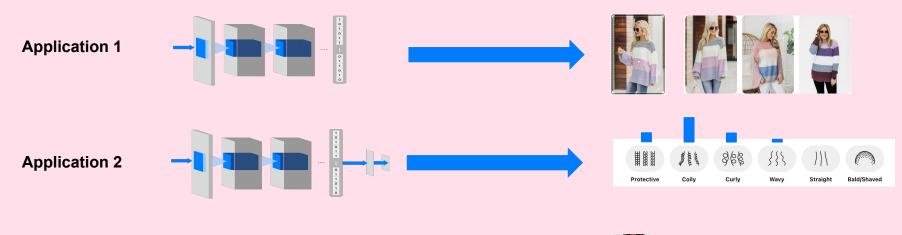
Embeddings

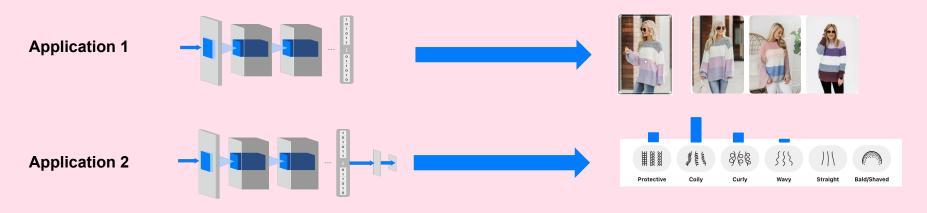
Pinterest

Encode very different types of data (images, pin, user)

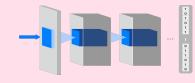


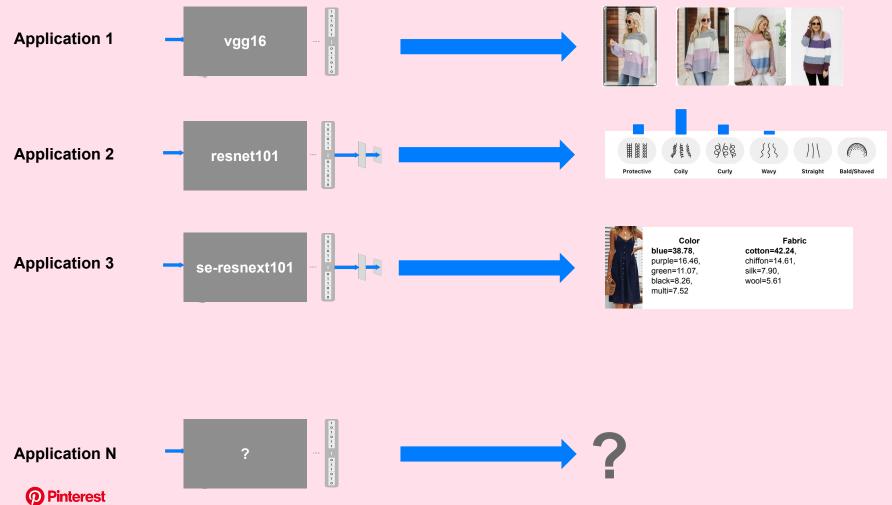






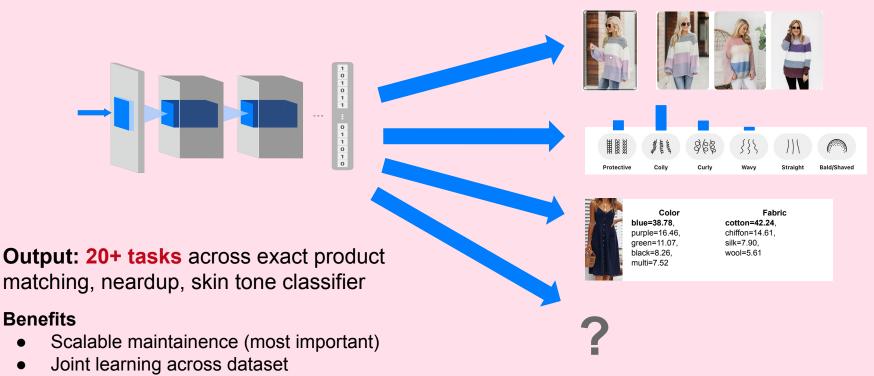
Pinterest





"Unified" Visual Backbone

Zhai et al. "Learning a Unified Embedding for Visual Search at Pinterest", KDD'19



• Share foundational improvements

Zhai et al. "Learning a Unified Embedding for Visual Search

"Unified" Visual Backbone

at Pinterest", KDD'19

Model	STL	Flashlight	Lens	Dataset	STL	Flashlight	Lens
	P@1	Avg P@20	Avg P@20		P@1	Avg P@20	Avg P@20
Old Shop-the-Look	33.0	-	-	Shop-the-Look (S)	49.2	42.1	14.7
Old Flashlight	-	53.4	-	Flashlight (F)	11.0		16.1
Old Lens	-	-	17.8	0		53.4	
ImageNet	5.6	33.1	15.0	Lens (L)	26.2	47.8	18.2
Ours	52.8	60.2	18.4	All $(S + F + L)$	52.8	60.2	18.4

Zhai et al. "Learning a Unified Embedding for Visual Search at Pinterest",

Multi-Task Embedding> Single-Task EmbeddingAll Dataset> Single Dataset

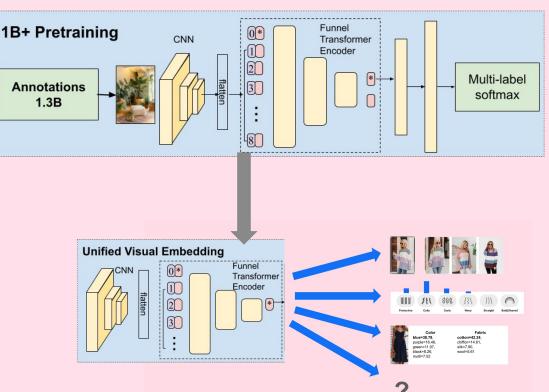
Billion-Scale Pretraining with Vision Transformers for Multi-Task Visual Representations, Beal. et al, WACV 2022

Billion-Scale Pretrain Lifts All

Pretrain

- 1.3B image pretraining
- Funnel Hybrid ViT

Finetune

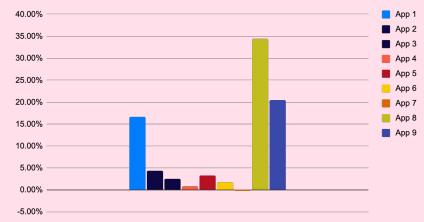


Billion-Scale Pretrain Lifts All

Model	Pretraining	VS	F	L	С
RN-101	IN-1k	39.6	59.7	17.2	85.2
RN-101	IG-940M	46.7	67.6	20.2	87.9
RN-101	ANN-1.3B	52.4	70.8	22.7	88.8
ViT-B/32	IN-1k	29.2	44.7	15.2	82.3
ViT-B/32	ANN-1.3B	46.4	68.9	24.9	86.5
ViT-B/16	ANN-1.3B	54.7	74.3	26.7	89.7

Billion-Scale Pretraining with Vision Transformers for Multi-Task Visual Representations, Beal. et al, WACV 2022

[1.3B Pretraining] Percentage Change of Offline Eval



Billion-scale Pretraining Lifts majority of application performance

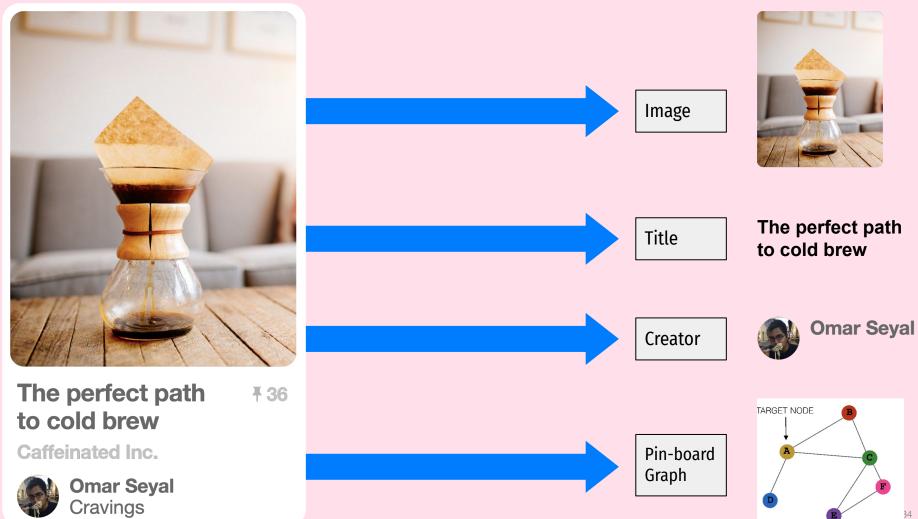
Pinterest

The perfect path **7**36 to cold brew

Caffeinated Inc.

Omar Seyal Cravings

Challenge: How to represent all dimensions of our content?



Harnessing the Pin Board Graph

Very ape blue structured coat

Hans Wegner chair Room and Board

This is just a beautiful #14 image for thoughts. Yay or nay, your choice.

Annie Teng Plantation

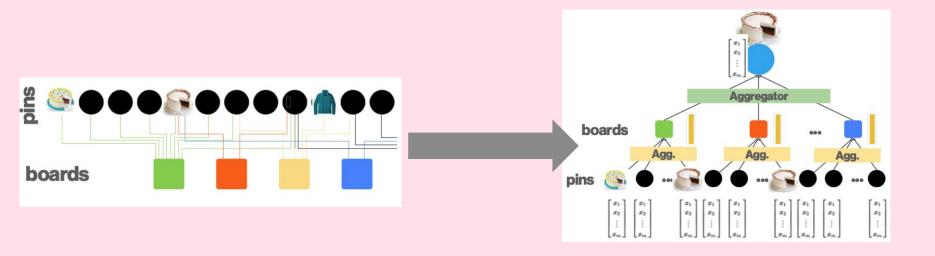
mid century modern ... MJL1-

Man Style Gavin Jones men + style | FIG+SALT Plants HelloSandwich Men's Style Andrea Sempi Mid century modern Tyler Goodro

n **I**

Plants Moorea Seal Mid century modern ... Prettygreentea

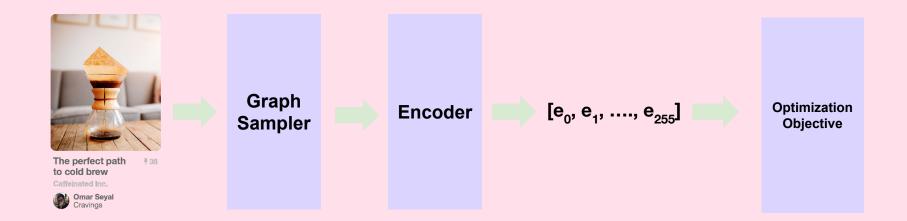
PinSAGE: Graph Neural Network



Graph with 3 billion nodes and 18 billion edges

Graph Convolutional Neural Networks for Web-Scale Recommender Systems, Ying et al., 2018

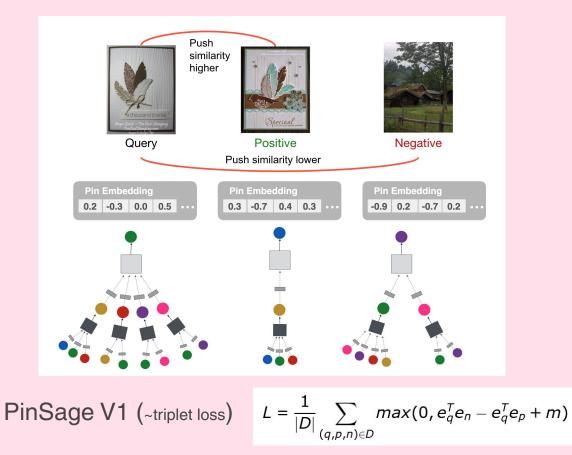
PinSAGE: Graph Neural Network



From pin features and graph, encode into embeddings trained so pins that are "related" have similar embeddings

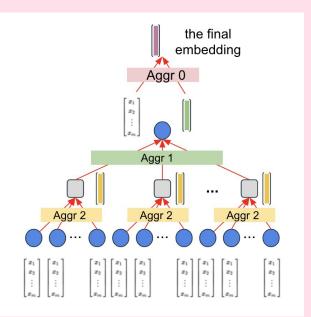
Graph Convolutional Neural Networks for Web-Scale Recommender Systems, Ying et al., 2018

PinSAGE: Optimization

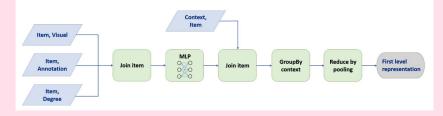


Pinterest

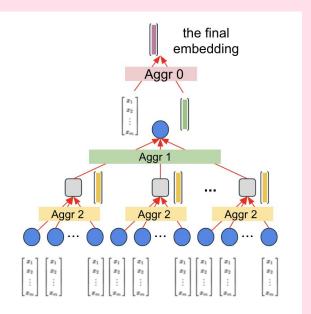
V1: Graph Sampling on the Fly



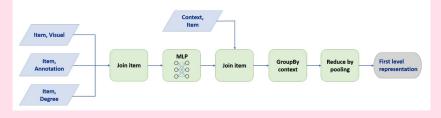
- Sample Method: K-hop neighborhood sampling
 - Pin -> board -> pin
- Train Infra: Graph sampling on the fly
 - 1.5TB RAM GPU machine (custom hardware)
 - **Only 2** available at Pinterest....
- Inference Infra: Hardwire architecture as Hadoop Jobs



V1: Graph Sampling on the Fly



- Sample Method: K-hop neighborhood sampling
 - Pin -> board -> pin
- Train Infra: Graph sampling on the fly
 - 1.5TB RAM GPU machine (custom hardware)
 - Only 2 available at Pinterest....
- Inference Infra: Hardwire architecture as Hadoop Jobs



Pro:

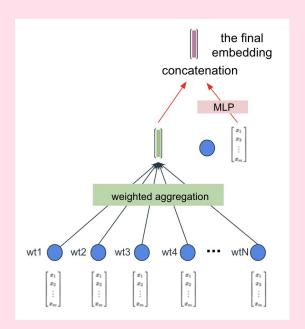
Pint

 It works! Best performing content embedding at 3B nodes and 18B edges scale

Con:

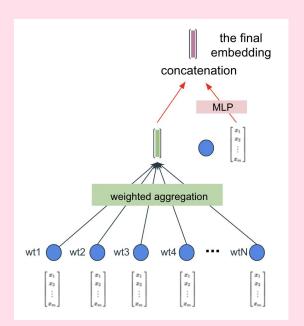
- Not scalable to more developers nor flexible for iterations
- Train & serve completely separate stacks

V2: Offline Graph Sampling



- Scalability challenges due to graph sampling on the fly
 - Solution: Move sampling out of training / inference
- Sample Method: Random walks (50 neighbors)
- Data Prep:
 - Compute 3B * 50 random walk in a daily workflow
 - Materializes <u>self + neighbor features</u> for each pin example
- Train & Inference Infra:
 - Stream example through model

V2: Offline Graph Sampling



- Scalability challenges due to graph sampling on the fly
 - Solution: Move sampling out of training / inference
- Sample Method: Random walks (50 neighbors)
- Data Prep:
 - Compute 3B * 50 random walk in a daily workflow
 - Materializes <u>self + neighbor features</u> for each pin example
- Train & Inference Infra:
 - Stream example through model

Pro:

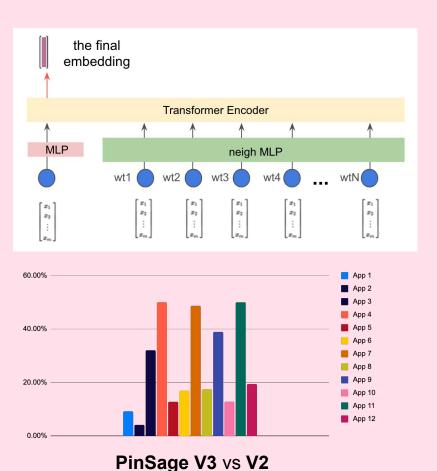
ဨ

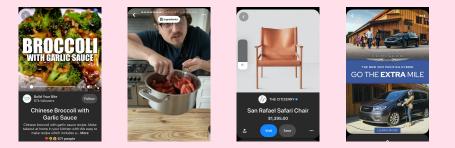
- Leverage commodity hardware
- +46% offline performance

Con:

• Harder to iterate on graph sampling algorithm

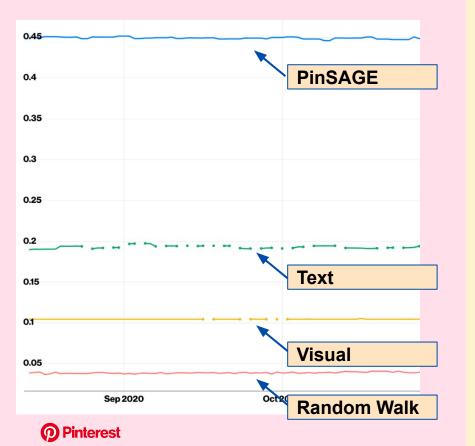
V3: Multi-Task GNN Transformer





- Multi-Task 16 objectives to optimize different content formats
- **TransformerEncoder** why not early fuse neighbor and self features?

GNNs produce the Best Content Representation



70+ launches

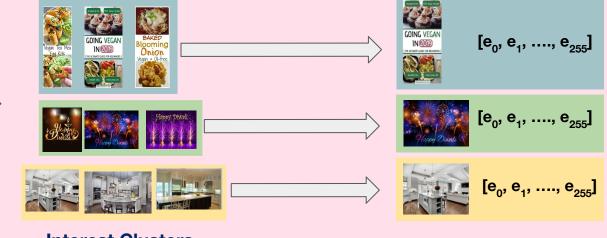
across recommendation systems, T&S, knowledge understanding, shopping, advertisement, ...

User Modeling

PinnerSage

Hierarchical Clustering (WARD)

declutter



Pinner's repins and clicks

Interest Clusters (importance, embedding)

Interest embeddings (medoid)

PinnerSage: Multi-Modal User Embedding Framework for Recommendations at Pinterest, Pal et al. KDD 2020

PinnerSage

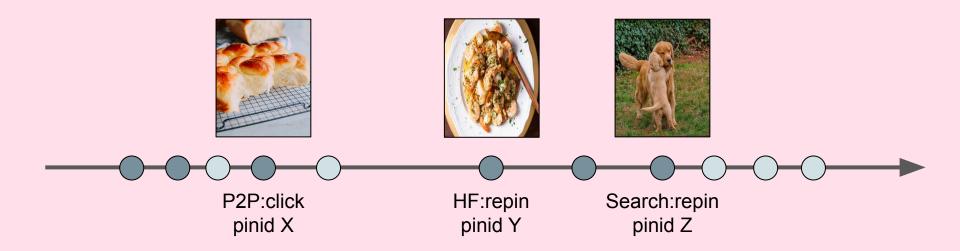
Pro:

- Simple and effective. 10+ launches (e.g. +3% HF repin/click volume)
- Interpretable, debuggable

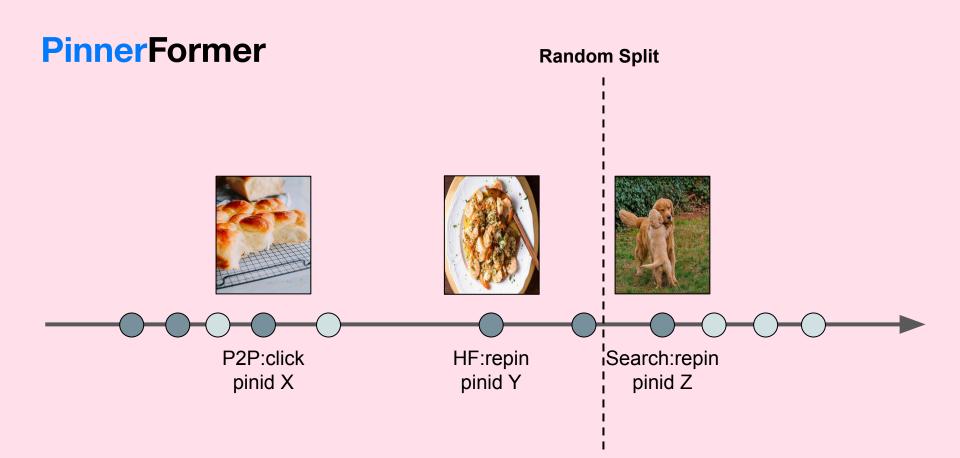
Con:

- Multiple embeddings challenging to use
- No parameter sharing across users
- No explicit objective learning

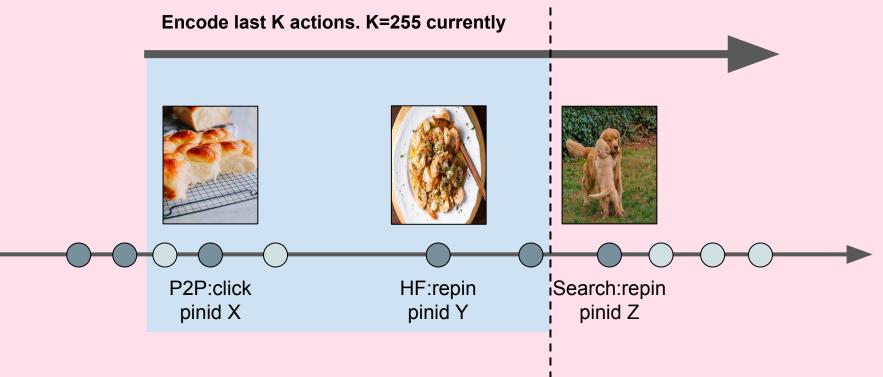
PinnerFormer



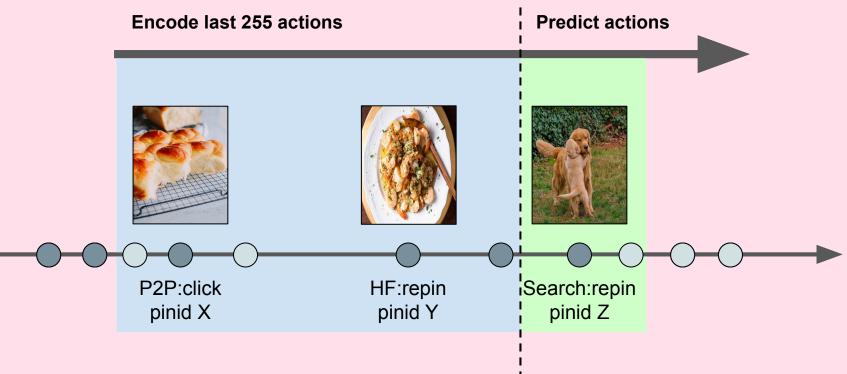
User sequence activity for past year



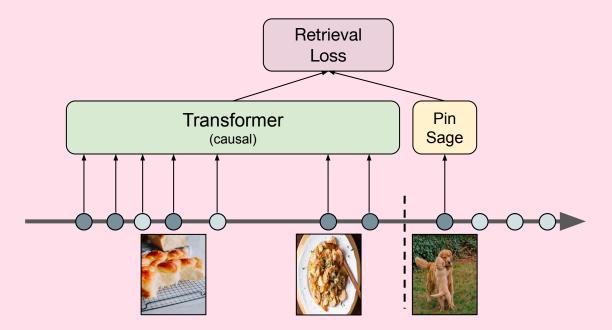
PinnerFormer



PinnerFormer

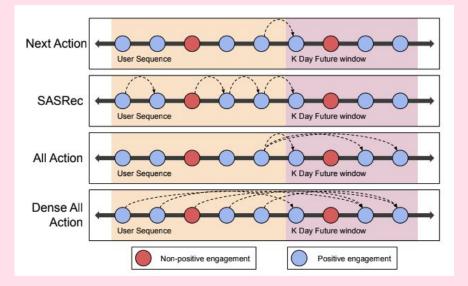


PinnerFormer Architecture



- Input: Last K user activity sequence across all of Pinterest
- **Output**: one user embedding summarizing activity jointly for <u>short</u> and <u>long-term</u> activity prediction.

PinnerFormer Optimization



Training Objective	Recall@10
Next Action	0.186
SASRec (Softmax)	0.198
All Action (28d)	0.224
Dense All Action (14d)	0.223
Dense All Action (28d)	0.229

- **Dense All Action** leads to best performance
 - Optimize for all pos actions within 28d, densely across input seq to Transformer

Pinterest

PinnerFormer Results

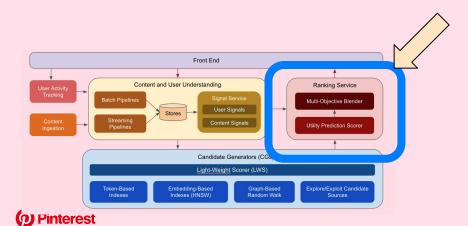
	R@100
(oracle) PinnerSAGE (5 clusters)	0.125
(oracle) PinnerSAGE (20 clusters)	0.205
PinnerFormer (1 embedding)	0.255

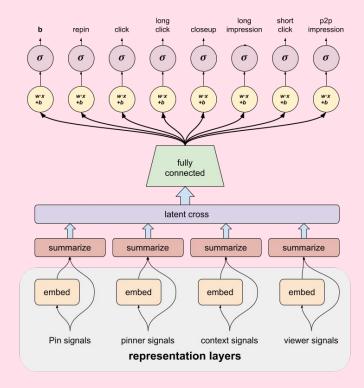
Site-wide impact +1-2% timespent +3-4% repins -2.6% hides +1.8% revenue

Personalized Ranking

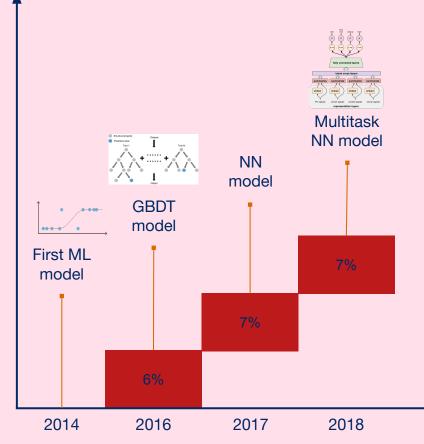
Ranking: User Action Prediction

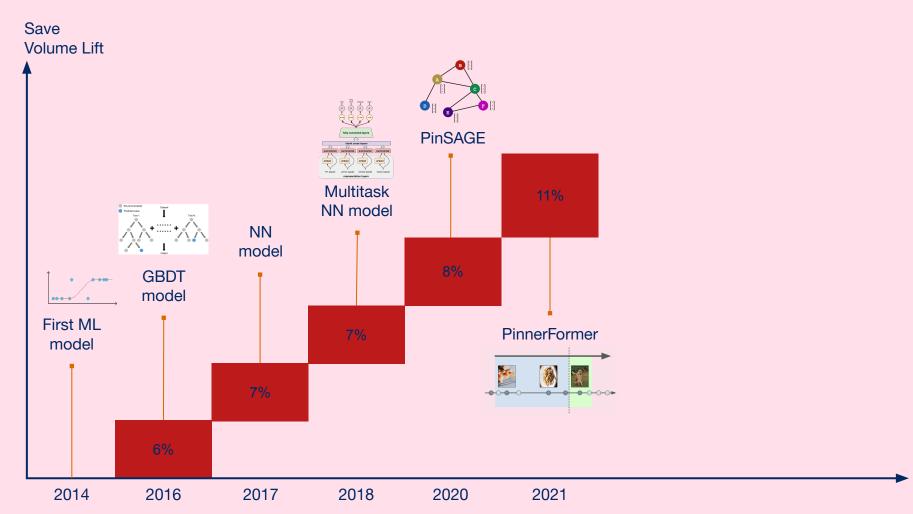
- Predict a wide variety of user actions for each (user, item) pair through multi-head deep neural network
- Combine 100s of features, served on CPU





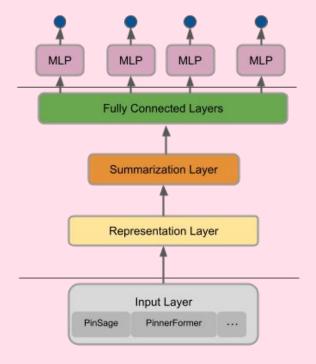
Save Volume Lift



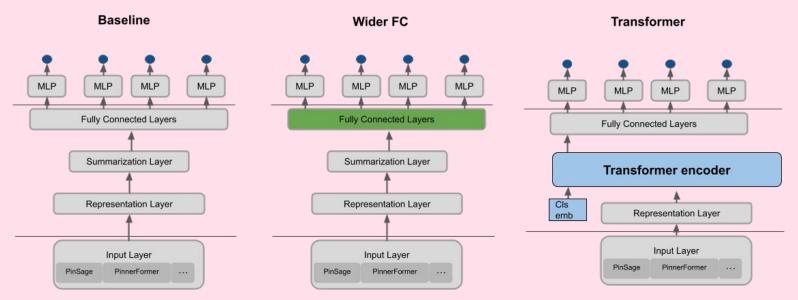


Ranking: User Action Prediction

- Two Trends for Performance:
 - Increase parameters, complexity for model expressivity



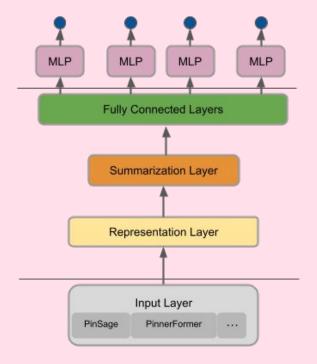
Ranking: Scaling It Up



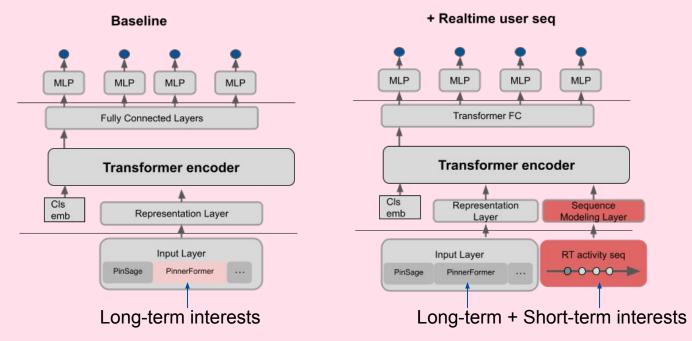
Model	Expected Saves Gain	Latency Increase
2x Wider Fully Connected	5%	+10%
+ Transformers	4%	+300%

Ranking: User Action Prediction

- Two Trends for Performance:
 - Increase parameters, complexity for model expressivity
 - End-to-end learn from raw (er) features



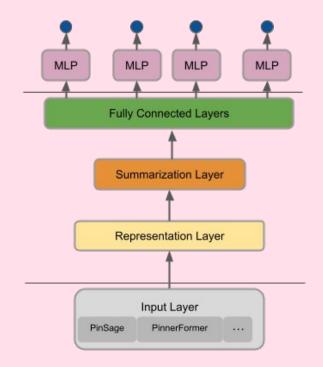
Ranking: User journey modeling (E2E Learning)



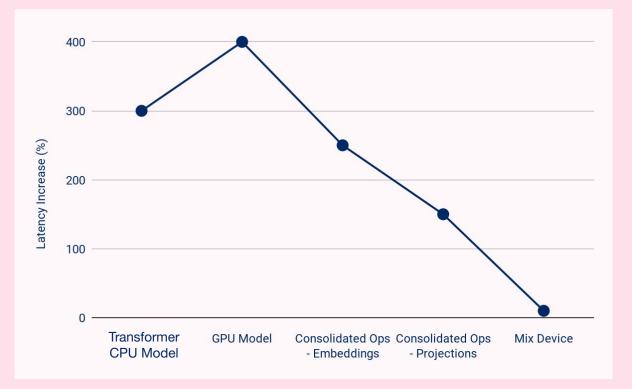
Model	Expected Saves Gain	Latency Increase
+ RT activity seq (early fuse)	9%	+100%

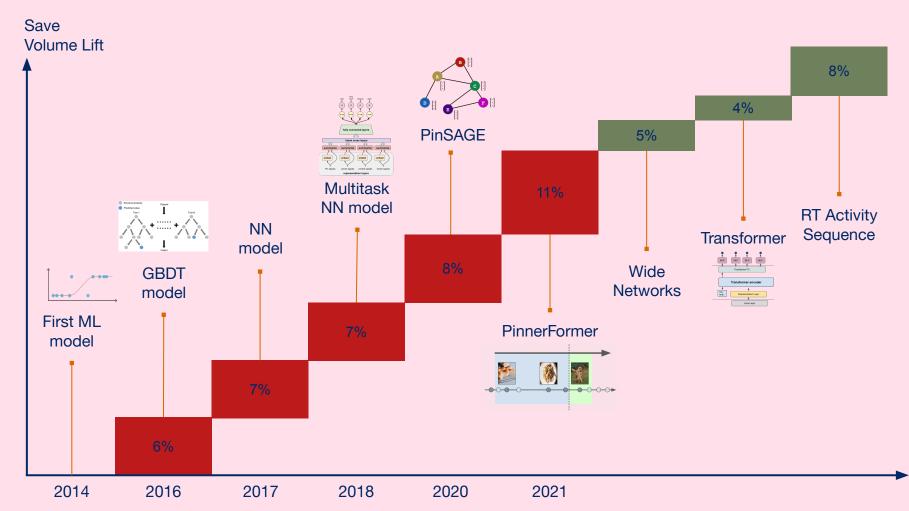
Ranking: User Action Prediction

- Two Trends for Performance:
 - Increase parameters, complexity for model expressivity
 - End-to-end learn from raw (er) features
- Challenge:
 - Latency (~10ms P99)
 - Throughput (~10M inferences / sec)
 - Cost (+10% latency ~ \$400k / year)



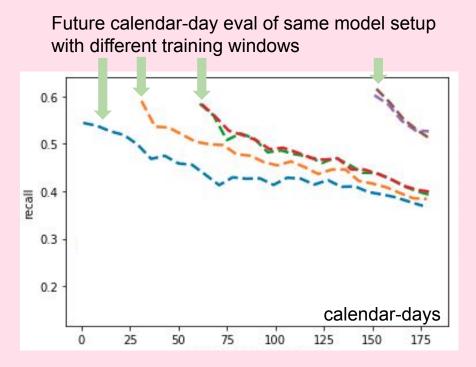
Ranking: GPU serving





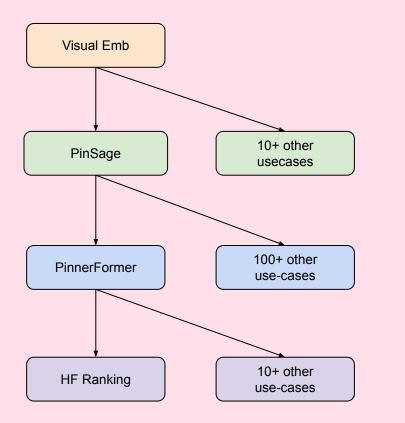
Challenges

ML Systems are Dynamic



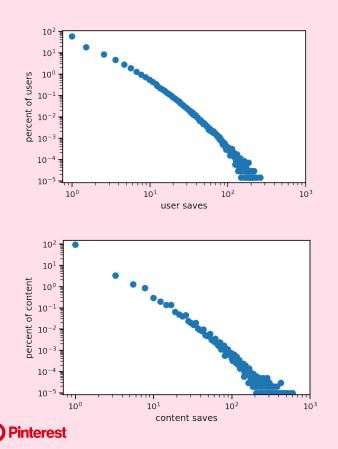
- Model degrades over time (e.g. Concept Drift)
- Retraining recovers performance
- Evaluating a "Good" model is at least 2-dimensional

ML Systems are Dynamic



- In practice, long chains of model dependencies
- What is the ABI for ML models?

Curse of the Power Law Distribution



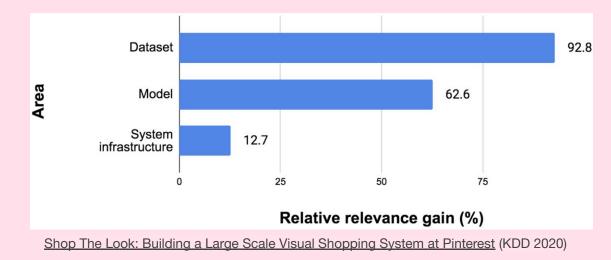
- Power law distributions exist for both users and content
 - Not much feedback for majority of content and users

Methods

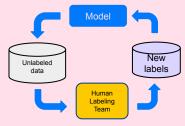
- Dataset Sampling
- Explore-Exploit
- Counterfactual Learning
- Content/User Embeddings
- Self Supervision

0

Dataset is an Important Lever



- Research: model-centric
 Industry: data-centric
- Trends: Software 2.0, Data-centric ML
- How can we build systems and algorithms to iterate on datasets faster?



User Journey Optimization

To maximize long-term "reward"

Aspiration	Inspiration	Consideration	Action
Off platform: I want to remodel my kitchen	Search for "kitchen remodel" in Pinterest	 Save lifestyle images to boards Explore products in shopping 	Purchase products for my kitchen to complete my remodel

- User problem: Want to find inspiration and complete project (e.g. summer vacation planning, cooking dinner). If Pinterest does well, plan more of life on Pinterest.
- **Today:** Utility function of immediate actions (e.g. save, click, closeup, hides).
 - <u>Manual</u> "gradient descent" (analysis, implement, ab experiment, feedback)

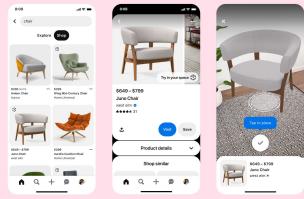
User Journey Optimization

To maximize long-term "reward"

Aspiration	Inspiration	Consideration	Action
Off platform: I want to remodel my kitchen	Search for "kitchen remodel" in Pinterest	 Save lifestyle images to boards Explore products in shopping 	Purchase products for my kitchen to complete my remodel

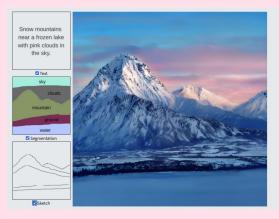
- User problem: Want to find inspiration and complete project (e.g. summer vacation planning, cooking dinner). If Pinterest does well, plan more of life on Pinterest.
- Today: Utility function of immediate actions (e.g. save, click, closeup, hides).
 - <u>Manual</u> "gradient descent" (analysis, implement, ab experiment, feedback)
- Challenge: Enable ML systems to optimize directly for "pinner satisfaction"
 - Causal inference for actions -> long-term satisfaction?
 - Off-policy Reinforcement Learning?
 - Reward function incredibly complex from multi-objective optimization

Next Gen Inspirational AI Products



HD Virtual Try On AR

Fashion Virtual Try On AR



<u>Multimodal</u> <u>Conditional Image</u> <u>Synthesis with</u> <u>Product-of-Experts</u> <u>GANs</u> 2021

A bowl of soup that is a portal to another dimension as digital art

https://openai.com/dall-e-2/

A lot more going on...

- **Representation Learning** for videos, products, creators, search queries, notifications
- Web Mining through GNNs to extract attributes (e.g. recipe for food pins) from websites to create rich content at scale
- Inspirational Knowledge Graph to enable a vocabulary to communicate between ML and users to assist their journey
- Learned Retrieval to holistically learn candidate generation for recommendations and search
- Notification Uplift Modeling to learn the optimal intervention policy for share inspiration to Pinners outside of Pinterest

Takeaways

- **Pinterest** is a unique curated dataset of how people describe and organize things
- **ML** is leveraged throughout our inspiration funnel to enable us to bring *everyone* the *inspiration* to create a life they love
- **Deep Learning methods** (Transformers, GNN, Sequence) leading the way for performance
- **Scalability** of systems and ML algorithms are baked deeply into our culture and a continued trend for improvement
- A lot of technical **challenges** exist. Not even close to a solved problem

Thank you!

andrew@