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ABSTRACT
We examine the economics of demand and supply in cloud
computing. The public cloud offers three main benefits to
firms: 1) utilization can be scaled up or down easily; 2) cap-
ital expenditure (on-premises servers) can be converted to
operating expenses, with the capital incurred by a specialist;
3) software can be “pay-as-you-go.” These benefits increase
with the firm’s ability to dynamically scale resource utiliza-
tion and thus point to the need for dynamic prices to shape
demand to the (short-run) fixed datacenter supply. Detailed
utilization analysis reveals the large swings in utilization at
the hourly, daily or weekly level are very rare at the customer
level and non-existent at the datacenter level. Furthermore,
few customers show volatility patterns that are excessively
correlated with the market. These results explain why fixed
prices currently prevail despite the seeming need for time-
varying dynamics. Examining the actual CPU utilization
provides a lens into the future. Here utilization varies by
order half the datacenter capacity, but most firms are not
dynamically scaling their assigned resources at-present to
take advantage of these changes. If these gains are realized,
demand fluctuations would be on par with the three classic
industries where dynamic pricing is important (hotels, elec-
tricity, airlines) and dynamic prices would be essential for
efficiency.

1. INTRODUCTION
“Cloud computing,” despite the new and fanciful name,

involves two decades-old advances in computing technology.
The first is virtualization, the ability to create a simulated
environment that can run software just like a physical com-
puter. Virtualization allows multiple users to share the un-
derlying computational resource and originally allowed a sin-
gle mainframe computer to be used by many co-located“ter-
minals.” The second advance was the development of net-
work communication protocol (and the laying of the physical
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network) so that physically distant computers could inter-
act with each other easily and quickly. Now the “terminal”
can be anywhere on the network and the “datacenter” can
be located where land and electricity are inexpensive.

Although these technologies are quite old, the“public cloud”
is relatively new. Firms have historically opted to locate
and operate their IT equipment in-house, known as “on-
premises” deployments, and usually without a “hypervisor”
to virtualize the resource. For example, an analysis group at
a bank would use a combination of personal computers and
co-located servers, with data stored in a dedicated database
server.1 The public cloud replaces all of these functions with
shared resources, operated by a specialist firm and located
to minimize costs. Instead of owning hardware, firms use
“virtual machines,”“instances”and“containerized compute.”
The computational resources utilized by each customer (or
application) can be scaled up and down dynamically. In-
deed cloud service providers invest in technologies such as
load balancing, auto-scaling and redundancy management
so firms can take advantage of cloud architecture easily.

While it is difficult to know the extent to which cloud-
based IT will overtake the traditional model, most current
projections have it taking the lead within ten years.2 This
disruption extends well beyond the ownership and opera-
tion of computational hardware. Software has traditionally
been sold using a licensing model—software licenses provide
the right to install the software on a physical computer (the
price often depends on the number of cores) and use the soft-
ware on this computer with zero marginal cost for a (priorly
determined) specified period of time (often in perpetuity).
Clearly this model is not a natural fit for the cloud because
size and quantity of the computational resources can scale
up and down dynamically. Accordingly, software pricing is
moving to usage-based “pay-as-you-go” models. This funda-
mentally impacts competition—firms can try new software
at low costs, they always use the latest version and are not
tied to an expensive set of licenses that have already been
purchased.

Adoption of the cloud thus offers three primary benefits
to firms: 1) capital investments are converted into operat-
ing expenses supported by a competitive underlying market;
2) computational resources can be “elastically” scaled up or

1Note this not virtualization, they are simply operating the
physical computer remotely.
2For a summary of many such projections, see a recent
Forbes article on the topic http://bit.ly/18dQ1zA
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down, allowing firms to only pay for what they use and ex-
pand/contract with lower adjustment costs; 3) it reduces
lock-in of software, thus spurring competition to meet their
needs. While the first two benefits have received greater
attention in the academic literature [1, 4], all three ben-
efits are amplified by elastic scaling of computational re-
sources. These financial incentives would lead us to expect
large swings in usage within customers under a fixed price
regime. Given that customers from a specific geographic
area are likely to have similar usage demand patterns (e.g.
high when their employees are at work), we in turn expect
there to be large swings of usage at the datacenter level.

Research in economics and operations management posits
that dynamic pricing is critically important when capacity
is fixed (at least in the short-run) and fixed costs represent
a substantial fraction of total costs. In these markets, firms
change prices so that demand is equal or close to the fixed
capacity. The degree to which this can be accomplished
depends on demand responsiveness and the firm’s price set-
ting ability, which jointly determine how supply goes unused.
Our scientific understanding of peak-load pricing focuses on
three industries: electricity, airlines and hotels [5, 6, 10, 12].
Cloud computing thus seems to offer a fourth large industry
where dynamic prices are expected to be important.

Given the discussion thus far, it may come as a surprise
that the largest cloud providers (and all providers to the best
of our knowledge) overwhelmingly use static prices. Even
Amazon’s“spot market,” which is very small relative to their
standard offerings, generally trades at a fixed reserve price
and prices do not vary with plausible demand patterns, indi-
cating they are not serving the traditional aims of dynamic
pricing [8]. Further “reserved instances” in which a customer
pays in advance for one or three years of 24/7 operation of
virtual machines (VM), have grown in popularity. Although
these are early days for the public cloud, the pricing mod-
els used in practice seem to be at odds with the standard
“story of the cloud” (told here and elsewhere). How can
we reconcile this apparent contradiction? Are pricing mod-
els overly simplistic, leaving huge gains on the table from
more sophisticated mechanisms, such as time-of-day pric-
ing? Conversely, are demand patterns such that fixed prices
are close to optimal and the main benefit is outsourcing op-
eration of computational resources to a specialized firm, and
not dynamic scaling as is commonly assumed?

We have address these questions using detailed teleme-
try data from a major provider’s public cloud datacenters.
During the period of study, prices were constant and all
billing was done at the minute level (e.g. no annual reserva-
tions). We show that at the customer level, hourly and daily
bill-usage volatility is small, with the majority of customers
showing a min/max variation of less than 5%. This volatil-
ity tends to be smaller for large customers. We do observe a
handful of outliers, both a random set of one hundred cus-
tomers and the largest set of one hundred customers, that
use resource much more elastically. At the datacenter level
however, these outliers (firms) usage washes out—overall us-
age patterns are stable and predictable. Borrowing from the
finance literature, we compute each tenant’s “beta,” the cor-
relation of their volatility with the datacenter’s demand and
find that most tenants have a beta less than one, though the
estimates are positive on average. In particular, we do not
see large “high beta” tenants that would exacerbate demand
spikes and thus be subject to intense peak load pricing.

These results on usage patterns directly inform pricing
models. First, the observed patterns explain the pricing
mechanisms currently used in the market, putting to rest
intuition that they are too simplistic to be near-optimal. In
a regime of stable usage, static prices and reserved capacity
come at a low efficiency loss and have advantages of sim-
plicity and predictability. Second, predictable usage allows
providers to run datacenters at high utilization efficiency
without the need to use prices to shape demand. In con-
trast, if firms had correlated demand spikes, for instance
weekdays during business hours, similar to what is com-
monly observed in electricity markets [11], then the cloud
provider has to “provision for the peak” just as firms must
do for on-premises infrastructure. While some of this inven-
tory could be sold off-peak at lower prices, it is nonetheless
the case that the degree to which firm-level fluctuations can-
cel each other out directly impacts efficiency—and thus the
price—in a competitive market.

We view these results as suggesting that the first genera-
tion of cloud utilization by-and-large takes the form of firms
“lifting” their on-premises software stack and “placing” it in
a public datacenter. If this stack was designed to run on a
fixed amount of computational resources, it is explains why
we see many customers having very predictable usage in the
cloud. In the language of software developers, these pro-
grams are not “cloud native,” in that they are not designed
to dynamially provision resources to reap efficiency gains.
The customers who are outliers in our data, show usage
patterns that we’d expect from this type of architecture.

Since the public cloud is relatively new and evolving quickly,
we do not expect the future to match the present. To provide
a lens into future utilization patterns we look at the actual
CPU utilization for each VM. These data give the min, max
and average utilization for 5-minute intervals. Comparing
the max usage in any period to 100% can be used as a proxy
for optimally provisioning resources to meet the maximum
computational needs within the interval (the difference be-
tween the observed max and 100% can thus be “saved”). We
observe that the average max CPU utilization as compared
to peak max CPU utilization ratio is less than 60% on av-
erage at datacenter level. This means that approximate po-
tential gain from dynamic scaling is more than 40%. (Note
that the customer pays based on the number of instances
“up,” not CPU usage directly and thus has a financial in-
centive to introduce such scaling.) This indicates that if we
moved to a world in which resources were only turned on
when needed, then we would expect far greater fluctuations
in resource utilization—order half the datacenter—which is
similar to demand fluctuations observed in the classic peak-
load pricing industries. Relatedly, we document much more
pronounced circadian cyclicality of CPU usage as compared
to VM usage. Since there is a financial incentive to adopt
efficient scaling, we expect dynamic prices will be necessary
for efficiency at some point in the evolution of cloud comput-
ing. Taken together the results both explain current market
practices and suggest that as the market matures, new eco-
nomic models will have to be developed.

2. A PRIMER ON CLOUD COMPUTING
As computing and storage requirements have increased

over time firms have moved IT infrastructure to dedicated
facilities known as “datacenters,” which serve as the back-
bone of the system that satisfies these requirements. A typ-
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ical datacenter is designed to house thousands of “tenants”
at the same time. Large IT companies such as Amazon,
Apple, Facebook, Google, and Microsoft have multiple data-
centers located around the world. Datacenters are organized
in “clusters,” each containing 10+ “racks,” which contain
roughly 20–80 connected servers housed in the same cabinet.
Racks are connected by switches and routers. Each server is
a physical computer that can accommodate multiple users
via virtualization (see [3] for a detailed analysis of modern
datacenters). Virtualization enables multiple users residing
in the same hardware structure to have a simulated com-
puter environment without interference from other users.
Through this process, a menu of“virtual machines” is offered
with differing performance levels. The hypervisor, or virtual
machine monitor, is the most critical part in this technology.
It can be called as the “datacenter operating system” as it
equips isolation between users, supports multiple operating
system, schedules and allocates resources, and provides min-
imal performance loss due to multi-tenancy. Moreover, it
plays a critical role in managing required redundancy, auto-
scaling and load balancing which are the critical parts that
give elasticity to the cloud (see [2] for Xen, a widely used
hypervisor).

In contrast to elastic scaling in the cloud, the performance
of traditional, on-premise computers is bounded by the phys-
ical hardware (software must respect resource constraints).
If the hardware is not used at capacity, the unused part is
wasted. “Cloud native”applications provide flexible comput-
ing power that can be adjusted based on computing needs
by allocating resources dynamically. [1, 13] provide a more
technical treatment of techniques to adaptively scale when
computing requirements fluctuate over time. Many popular
methods utilize auto-scaling and load balancing functional-
ity provided by major cloud providers, but other methods
exist. For example, a firm could run scripts to identify idle
VMs and kill the deployment programmatically via com-
mand line tools. If data is always saved to a network disk
(persistent storage), then this simple policy would reduce
compute utilization without loss of data.

While the cloud offers these capabilities, it can also func-
tion just like traditional equipment. If a firm simply “lifted”
their software applications and “placed” them in the cloud,
then little dynamic scaling would occur. This highlights
the difference between traditional software, where computa-
tional resources are constraints and marginal costs are es-
sentially zero, and cloud-native software, where there are
no hard constraints, but marginal costs are positive, since
the user is paying by the minute per virtual core. Not only
are the design incentives fundamentally different, but the
capital expense is converted to an operating expense that is
outsourced to a specialist firm.

The degree to which firms architect their software to dy-
namically scale directly impacts demand volatility at the
datacenter, which is, in turn, a key determinant of the opti-
mal pricing schedule. If demand is stable over time, there is
minimal efficiency loss with fixed prices. If demand fluctu-
ates widely, dynamic pricing models perform better and the
extent of performance improvement is depends on the mag-
nitude and predictability of the variation. Economic models
of “peak load pricing” predict the welfare loss proportional
to the square of gap between peak usage to average usage—
this gaps captures lost efficiency when one has “provision
for the peak.” If the variation is predictable, a menu of a

few fixed prices, for instance peak and off-peak price, can
achieve nearly the efficiency of fully dynamic prices. Peak-
load pricing is discussed extensively in the context of elec-
tricity markets. Closest to our case, [7] discusses that if the
firms anticipate Cournot competition, they invest in capac-
ity more compared to fully competitive case, which results
more ample capacity during off-peak periods.

For this study, our data consist of datacenters logs from a
major cloud provider. These detailed logs give information
on the computational resources customers are utilizing. In
general, we will use the term “utilizing” or “demand” to re-
ferred to the deployed, and thus paid for, resources, not the
actual utilization of compute cycles. The billing log data
is recorded per-minute at the VM level and aggregated to
the hour for our purposes. We do have data to examine
how intensely the deployed resources our used. These data
are record summary statistics (e.g. max, min, mean) at 5-
minute intervals. All records are fully anonymized before
any analysis is conducted. Our study time period is four
months unless otherwise noted.

3. REGION LEVEL ANALYSIS
Table 1 shows the demand volatility in region (e.g. “US

East”) level.3 We normalize usage to be relative to the max-
imally observed value at the region (e.g. 0.04 indicates 4%
of the maximally observed value for that region during the
time period).4 We treat supply as fixed for the purposes
of our study. In practice this assumption fails because new
datacenters can be built and existing ones can be expanded.
However, this adjustment takes longer than 4 months, the
period of our study, and so is not directly relevant. Further,
it is often not possible for a provider to expand supply in a
given region, due to various constraints such as land avail-
ability, water allowances and local regulations. Finally we
note that rack failures sometimes do occur, leading to small
fluctuations in available supply, but the size of these failures
relative to the whole is negligible.

Currently there are not any major providers that have
dynamically adjusting prices for standard workloads. While
prices do change over time, it is in the form of a major
announcement by the provider and those prices prevail for
many months. We study a period which did not involve any
price changes by the three largest American cloud providers.5

The fact that prices are constant, supply is fixed and global
capacity did not run out during our analysis period greatly
simplifies our analysis because it means usage behavior is a
reliable measure of demand.

We measure demand volatility at daily, weekly and monthly
period lengths at the regional level. These time periods have
natural ties to variation in human activity and have capture

3In cloud computing customers typically choose a “region,”
for example “US West,” to deploy their workloads. A re-
gion typically contains a few co-located datacenters (physi-
cal structures) which are connected to each other at very low
latency via high throughput fiberoptics. The provider can
thus easily load balance between these physical units and the
entire complex is commonly referred to as a “datacenter.”
4This was a requirement for publication as it preserves con-
fidential information about datacenter efficiency.
5Amazon Web Services has a “spot market” for “evictable
workloads” (VMs can be shutdown without notice). Past
work has shown that this market can best be understood as
a secondary market where a relatively small amount of an
inferior product is sold at discounted prices [8].
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predictable variation in other markets, such as electricity.
We use two measures to capture volatility. First is the aver-
age max-min range, which captures average peak-to-trough
variation within the unit of time (e.g., daily range gives the
average difference between the min and max value observed
in a day). Second is the standard deviation, which captures
how different a randomly selected time-interval is expected
to differ from the time-interval average.

Table 1 summarizes these measures—we report the min,
max, median, and mean across regions. Across all time-
units, mean/median standard deviation is roughly constant
0.05–0.06. This indicates, for instance, that a randomly se-
lected day or week tends to be about 5% different than the
datacenter’s average day or week. The ranges tell a similar
story. Daily and weekly ranges are 2–3% on average. Since
the weekly range must be greater than the daily range (if
the largest differences occur within a day, they also occur
within a week), the fact that weekly range exceeds daily
range by roughly 30% reveals that the majority of the vari-
ation occurs with a period length of a day. Monthly range
is greater, coming in at 7.2%, with a max of 11% at the dat-
acenter level. In the supplementary material, we show that
these figures are driven by growth via new customers, not
a predictable monthly fluctuation, which makes sense given
that past work would not lead us to expect seasonality at the
monthly level. Taken together these results indicate while
there is variation over time, it is small relative to the size of
the datacenter.

Figure 1: Standardized hourly usage in a typical
region

Demand variation can be understood visually by examin-
ing Figure 1, which shows usage over time for typical region.
A rather predictable time trend in the region is evident,
along with small daily fluctuations of around 2%. Weekly
fluctuations are not easy to make out. Indeed utilization
not only has low variance, but the variance we do observe
appears to be predictable. To verify this formally we split
regional usage into train and test sets (i.e., test sets are not
used to train the model). For each region, we first fit a pre-
dictor on daily usage with day-of-week dummies and a time
trend. Then, we fit a regression line on hourly usage with
hour-of-day dummies and a time trend and evaluate model
predictions on the test set. The results are given in Table 2.
The mean absolute percentage error has a mean/median of
about 2% in both models. When compared to the variation

in Table 1, we can see that the model explains roughly 70%
of the observed variation. The fact that even this simple
model can produce good results confirms our initial obser-
vations on predictability.

4. CUSTOMER LEVEL ANALYSIS
We now examine demand at the customer level. We will

conduct our analysis on two samples of firms: 1) the top
100 customers, which captures behavior of large enterprises;
2) a random set of 100 customers,6 which consists mostly
of small businesses. We start by examining the relationship
between each customer’s demand and the entire demand for
the region they are deployed in. To do so we run a sim-
ple linear regression, IndivUsaget = α + β × RegionUsaget,
where the coefficient β captures the linear relationship of a
customer’s utilization at time t with the overall region. β
has a natural analog in the Capital Asset Pricing Model, a
widely used model of a security’s risk and returns, in that
it captures the degree and magnitude to which a customer’s
demand spikes tend to co-occur with market spikes. All
data is de-trended and normalized so that β = 1 signifies
that when the datacenter demand increases by 1% the cus-
tomer’s demand tends to increase by the same percentage
amount.

Estimates for each individual customer are given in Fig-
ure 2. The histogram shows that the customer level usage
tends to be postively related to market demand (most val-
ues are positive). Values above 1 are rare, indicates that
there are very few customers who exacerbate regional level
fluctuations. Further, many customers are close to zero or
negative, indicating they are either negatively correlated or
uncorrelated with market-level demand shocks. These find-
ings helps explain relatively smooth utilization at the data-
center level.

Figure 2: Histogram of β

6Customers are required to be active for at least 15 days
during our sample period.
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Table 1: Demand volatility at the region level
Hourly Average Daily Average Weekly Average Monthly

Region s.d. daily range s.d. weekly range s.d. monthly range s.d.
Min 0.031 0.014 0.031 0.021 0.032 0.041 0.038
Max 0.156 0.056 0.159 0.059 0.169 0.110 0.202
Mean 0.063 0.026 0.064 0.032 0.067 0.072 0.079
Median 0.052 0.023 0.053 0.031 0.054 0.065 0.061

Figure 3: Summary of volatility

Table 2: Mean absolute percentage error on the test
set at the region level

Region Daily MAPE Hourly MAPE
Min 0.007 0.010
Max 0.045 0.042
Mean 0.022 0.023
Median 0.020 0.022

Figure 3 gives customer level volatility metrics, where all
measures are normalized by the maximum observed utiliza-
tion at the customer level to make them comparable to the
overall datacenter (which are normalized with the datacen-
ter max). The green (middle) bars give the top 100 cus-
tomers and the blue (right) bars give a randomly selected
100. The red (left) bars give the region for comparison pur-
poses. It is immediately obvious that the typical customer
level shows similar demand fluctuations to the region as a
whole. Interestingly, there are a relatively high number of

outlier customers in both the random 100 and top 100 that
exhibit relatively large daily swings in usage. Tables 3 and
4 provide a bit more detail in confirming these conclusions.
These customers are likely using dynamic scaling techniques
to minimize costs and thus appear as outliers relative to the
typical customer. However, since these customers are not
the norm and, as we previously showed, the bursts are not
strongly correlated with broader market demand, we do not
observe fluctuations of this magnitude at the regional level.
This means at present, datacenters can be operated with
fixed prices at high capacity utilization, this efficiency is
largely passed through to customers via lower prices in a
competitive market.

The figure also reveals that regions exhibit higher aver-
age volatility than is observed at the customer level. While
this seems a bit curious at first, it is easily explained by the
fact that regions have an additional source of variation in
the form of new customer acquisition. When new customers
join, even if their usage is perfectly stable, this contributes
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Table 3: Demand volatility at the tenant level (top 100 tenants)
Tenant Hourly Average Daily Average Weekly Average Monthly
Rank s.d. daily range s.d. weekly range s.d. monthly range s.d.
1 0.002 0.003 0.001 0.001 0.000 0.003 0.000
2 0.002 0.003 0.001 0.001 0.001 0.004 0.000
...

...
...

...
...

...
...

...
100 0.107 0.006 0.107 0.015 0.107 0.055 0.107
Min 0.002 0.003 0.001 0.001 0.000 0.003 0.000
Max 0.294 0.024 0.298 0.277 0.308 0.555 0.358
Mean 0.048 0.009 0.049 0.025 0.048 0.066 0.051
Median 0.031 0.009 0.030 0.020 0.028 0.047 0.028

Table 4: Demand volatility at the tenant level (randomly selected 100 tenants)
Tenant Hourly Average Daily Average Weekly Average Monthly
# s.d. daily range s.d. weekly range s.d. monthly range s.d.
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.005 0.004 0.001 0.001 0.001 0.005 0.000
...

...
...

...
...

...
...

...
100 0.001 0.001 0.000 0.000 0.000 0.001 0.000
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Max 0.357 0.162 0.412 0.294 0.412 0.574 0.321
Mean 0.029 0.015 0.027 0.017 0.023 0.049 0.020
Median 0.004 0.003 0.001 0.001 0.000 0.003 0.000

positively to our measures of regional volatility, but not our
measures of customer volatility. We could have de-trended
regional demand, but this would have made a source of vari-
ation that providers must deal with, namely an uncertain
growth rate due to new customers.

To better understand customer behavior, we give three
archetypes in Figure 4. A low volatility customer typically
sits at a preferred level with minimal deviations. As dis-
cussed, this likely corresponds to a customer that is using
software that is used treating comptuational resources as a
constraint. In this case, the size of deployment in the cloud
or number of servers purchased in a traditional set-up is
set to ensure a desired level of performance. A moderate
volatility customer floats around a relatively small range,
indicating some dynamic scaling, whereas a high volatility
customer shows much larger jumps utilization. While these
archetypes by no means capture all usage patterns, they
provide a good mental model of customer types.

5. CPU UTILIZATION
The preceding analysis focused on deployed resources, not

actual utilization of the resources that are deployed. A VM
instance can be “up” and not fully utilized. Cloud technolo-
gies such as auto-scaling, load-balancing and containers (an
environment that allows code execution without full oper-
ating system functionality) help draw billed utilization and
actual resource utilization closer together, but these tech-
nologies are not yet fully adopted, as they often require
custom development solutions when moving to the cloud.
Since deployments are billed by the minute, there is a finan-
cial incentive to re-architect software to make use of these
benefits and thus we expect them to more widely adopted
as time goes. Actual CPU utilization offers a lens into a
potential future where adoption is widespread. We could

imagine, for instance, a world in which these technologies
allowed customers to only be billed for computational cy-
cles (an analogy would be to pay only for what your laptop
“does,” not keeping the OS “ready for use”).

In this section we use detailed telemetry data on CPU us-
age. These data give the min, max and average utilization
for every 5 minutes at the VM level. One likely familiar ex-
ample of this type of data data is the “system performance”
feedback interface on a personal computer. We summarize
these data at the region level for each 5 minute interval by
taking the observed max for each VM, adding these up and
comparing this to the maximum total computational usage.
The max is the most attractive measure because of the re-
sources necessary to satisfy demand within this narrow time
interval. We however note that scaling could occur at time
frequencies below 5 minutes, meaning our estimates may
understate the impact of dynamic scaling technologies.

Figure 5 shows CPU utilization for a representative week
at a typical datacenter.7 Both day-of-week (the first two
days are the weekend) and time-of-day effects are now clearly
evident and far more pronounced that those observed in Fig-
ure 1. CPU utilization is steady and lower during the week-
end than the weekdays. Moreover, midday has higher CPU
utilization for all weekdays. The overall peak-to-trough vari-
ation is 30%, with a value closer to 20% if we ignore a few
large spikes (we notably did not observe significant spikes
for billed usage). Variation in max CPU utilization mea-
sure at 5-minute intervals is 10x higher than the variation
in VM usage. If CPU usage is indeed lens into future behav-
ior, then we should expect datacenter utilization to transi-
tion from the current regime of low volatility, to much more
meaningful swings in demand. This would in-turn raise the

7Note that the data is in datacenter level, not in region level.
The regional results would be similar.
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Figure 4: Standardized hourly usage of the non-
volatile, median and volatile tenant

efficiency gains from using dynamic prices. Given that static
prices currently prevail, it would require a reorganization of
the marketplace. However, we note that while these data
provide clues about the future, they are by no means dis-
positive.

6. DISCUSSION AND CONCLUSION
Our scientific understanding of peak-load pricing focuses

on three industries: electricity, airlines and hotels [5, 6, 10,
12]. In all three of these industries, there are substantial
demand fluctuations and high capacity costs, so that in-
creasing utilization via pricing is economically important.

Cloud computing is the fourth large industry that is an ex-
ample of fixed capacity (in the short-run) with fixed costs
representing a substantial fraction of total costs. Electricity
has the property that failure to balance supply and demand
either blows out transformers (over-supply) or appliances
(under-supply), so that pricing cannot be used effectively as
a balancing mechanism without additional controls. More-
over, peak electricity demand is generally determined by air
conditioning, which is weather-dependent and therefore can
be accurately forecast days in advance, which allows for a
planned supply response, such as turning on peak-load gen-
erators. Airlines and hotels also have industry-specific fea-
tures that limit the ability to generalize findings. Specifi-
cally, the desire of the majority of leisure travelers to book
well in advance and lower price sensitivity of business travel-
ers are salient features of the pricing problem. Especially for
airlines, the discreteness of the problem is first order, with
overbooking and buying back seats critical to efficiency [10].
In summary, these industries all possess quirky, industry-
specific features that directly affect the utility of peak-load
pricing.

Cloud computing offers great potential as a fourth major
empirical example of peak-load pricing. The integer con-
straint is irrelevant (VMs can be threaded) and a failure to
balance supply and demand is not disastrous, as with elec-
tricity. Thus, empirical work on demand for cloud comput-
ing offers potential insight into the operation of peak-load
pricing. An early look at demand fluctuations [9] found peak
to trough variation, for the internal demand of a single cus-
tomer, on the order of 300%, suggesting using peak-load
pricing would be economically critical. This variation was
primarily driven by web traffic and reflects the fact that
the majority of people sleep at roughly the same time in a
given geographic area. Given this type of variation in de-
mand and the standard “story of the cloud,” the fact that
the three largest providers don’t use time of day or peak
load pricing would appear to be a puzzle.

Our empirical findings offer a resolution to this puzzle and
also indicate that circumstances may well change moving
forward. We find that there is little variation on datacenter
demand when looking at billed usage. Average variation is
around 2% and the largest variation found is still under 6%.
Because the efficiency loss is proportional to the square of
the variation, even 6% produces a tiny efficiency loss. More-
over, there is a meaningful cost to offering a complex pricing
structure—people may choose the wrong items to purchase,
or shy away from purchasing due to the complexity, espe-
cially for a relatively new product—so simplicity in pricing
seems entirely justified. That is, we find that, while theo-
retically optimal, use of an auction system or time of day
pricing is unnecessary at the present time. Moreover, what
variation exists is mostly (70%) predictable based on time
alone; rather than using an auction, a simple, predictable
time of day pricing mechanism is adequate to obtain most
of the (already negligible) efficiency gains created by peak
load pricing. In particular, just having two prices, peak and
off-peak, with off-peak set in advance (like cellular telephone
plans with their “free nights and weekends” option) would
obtain the majority of the efficiency gains made available
from an auction system. This is important because auc-
tions have a substantial downside. A buyer of computing
resources in an auction faces a “sudden death” loss of com-
puting from losing the auction, and has to either write code
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Figure 5: Max CPU utilization in a datacenter for a period of one week

to not lose the ongoing state of computation or suffer the
loss of partial computation; either is costly and represents
a real efficiency loss. Thus, the ability to use predictable
time of day pricing in preference to an auction is an impor-
tant advantage, provided the auction is not needed due to
demand fluctuations.

Little variation at the datacenter level does not imply that
customers have steady demand. Indeed, a fair summary is
that there are three kinds of customers: steady, mild vari-
ation and large variation. Most customers are of the first
two categories, but there are notable outliers in the third
category that appear to be making effective use of adaptive
scaling techniques. However, we showed that the correla-
tion of these spikes with the broader market demand tends
to be weak, which helps the fluctuations somewhat average
out in a large sample. Indeed, a significant source of dat-
acenter fluctuation, not present in the individual customer
variation, is the entry of new customers. The steadiness of
the customer demand probably has to do with low prices
—a customer can save a few dollars by turning off their use,
but then have to turn it back on when they need it; the
convenience of “always on” overwhelms the dollar saving.

Finally, many customers may be bringing programs to the
cloud that were written for an internal data center and may
not take advantage of the elastic nature of cloud comput-
ing. The best indication of whether future demand will
show greater fluctuation than present demand is whether
usage, rather than purchasing, fluctuates more. In the same
way that CPU-usage for personal computers usage fluctu-
ates dramatically, idling at night, reveals the ability to scale
back purchase, perhaps customers are just leaving their VMs
on, but not actually using them. Indeed, we find that there
is much greater fluctuation in usage than in purchase, 15-
20% versus 2-6% for for purchases. However, this fluctuation
is quite predictable, which means time of day pricing works
well, even for the future. Thus, the conclusion that auctions,

with their undesirable unpredictability, are unnecessary per-
sists even with usage as a proxy for demand.
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