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ABSTRACT
Food is an integral part of our life and what and how much
we eat crucially affects our health. Our food choices largely
depend on how we perceive certain characteristics of food,
such as whether it is healthy, delicious or if it qualifies as
a salad. But these perceptions differ from person to per-
son and one person’s “single lettuce leaf” might be another
person’s “side salad”. Studying how food is perceived in re-
lation to what it actually is typically involves a laboratory
setup. Here we propose to use recent advances in image
recognition to tackle this problem. Concretely, we use data
for 1.9 million images from Instagram from the US to look
at systematic differences in how a machine would objectively
label an image compared to how a human subjectively does.
We show that this difference, which we call the “perception
gap”, relates to a number of health outcomes observed at
the county level. To the best of our knowledge, this is the
first time that image recognition is being used to study the
“misalignment” of how people describe food images vs. what
they actually depict.
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1. INTRODUCTION
Food is a crucial part of our life and even our identity.

Long after moving to a foreign country and after adopting
that country’s language, migrants often hold on to their eth-
nic food for many years [12]. Food is also a crucial element in
effecting weight gain and loss, with important implications
on obesity and diabetes and other lifestyle diseases. Some
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researchers go as far as claiming that “you cannot outrun a
bad diet” [24].

One important aspect governing our food choices and how
much we consume is how we perceive the food. What do we
perceive to be healthy? Or delicious? What qualifies as a
“salad”? Food perception is typically studied in labs, often
using MRIs and other machinery to measure the perception
at the level of brain activity [19, 38, 27]. Though such care-
fully controlled settings are often required to remove con-
founding variables, these settings also impose limitations re-
lated to (i) the artificial setting the subject is exposed to,
and (ii) the cost and lack of scalability of the analysis.

There are, however, externally visible signals of food per-
ception “in the wild” that can be collected at scale and at
little cost: data on how people label their food images on
social media. What images get labeled as #salad? Which
ones get the label #healthy?

Though useful, these human-provided labels are difficult
to disentangle from the actual food they describe: if someone
labels something as #salad is this because (i) it really is a
salad, or (ii) the user believes that a single lettuce leaf next
to a big steak and fries qualifies as a salad.

We propose to use image recognition to study the “per-
ception gap”, i.e., the difference between what a food image
objectively depicts (as determined by machine annotations)
and how a human describes the food images (as determined
from the human annotations). Figures 1 and 2 show exam-
ples from our dataset.

We find that there are systematic patterns of how this
gap is related to variation in health statistics. For exam-
ple, counties where users are, compared to a machine, more
likely to use the hashtag #heineken are counties with a
higher Food Environment Index. In this particular example,
a plausible hypothesis is that users who are specific about
how they choose - and label - their beer are less likely to
drink beer for the sake of alcohol and more likely to drink it
for its taste.

We then extend our analysis to also include subjective la-
bels applied by humans. Here we find that, e.g., labeling
an image that depicts saki (as determined by the machine)
as #delicious (by the human) is indicative of lower obesity
rates. This again illustrates that not only the perception
of alcohol, as a fun drug to get high vs. as part of a re-
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User: #foodie, #hungry, #yummy, #burger

Machine: #burger, #chicken, #fries, #chips, #ketchup,
#milkshake

Figure 1: A comparison of user-provided tags vs.
machine-generated tags. In this example, the user
uses only #burger to describe what they are eating,
potentially not perceiving the fries as worth men-
tioning, though they are providing subjective judge-
ment in the form of #yummy. However, machine-
generated tags provide more detailed factual infor-
mation about the food plate and scene including
#fries, #ketchup, and #milkshake.

fined dining experience, can be related to health outcomes,
but also that such perception differences can be picked up
automatically by using image recognition.

The rest of the paper is structured as follows. In the next
section we review work related to (i) the perception of food
and its relationship to health, (ii) using social media for
public health surveillance, and (iii) image recognition and
automated food detection. Section 3 describes the collec-
tion and preprocessing of our Instagram datasets, including
both our large dataset of 1.9M images used to analyze food
perception gap and its relation to health, as well as even
larger dataset of ∼ 3.7M images used to train and compare
our food-specific image tagging models against the Food-101
benchmark. Section 4 outlines the architecture we used for
training our food recognition system and shows that it out-
performs all reported results on the reference benchmark.
Our main contribution lies in Section 5 where we describe
how we compute and use the “perception gap”. Our quan-
titative results, in the form of indicative gap examples, are
presented in Section 6. In Section 7 we discuss limitations,
extensions and implications of our work, before concluding
the paper.

User: #pork, #foodie, #japanese, #chicken, #katsu,
#box, #salad, #restaurant, #bento, #rice, #teriyaki

Machine: #teriyakichicken, #stickyrice, #chickenkatsu,
#whiterice, #teriyaki, #peanutsauce, #ricebowl, #spicy-
chicken, #fishsauce, #bbqpork, #shrimptempura, #ahi-
tuna, #friedshrimp, #papayasalad, #roastpork, #sea-
weedsalad, #chickenandrice

Figure 2: Another comparison of user-provided tags
vs. machine-generated tags. Machine-generated
tags provide more detail about the food plate such
as the type of rice, i.e., #stickyrice and #whiterice,
and the dressing on the food item, i.e., #peanut-
sauce.

2. RELATED WORK
Our research relates to previous work from a wide range

of areas. In the following we discuss work related to (i) food
perception and its relationship to health, (ii) using social
media for public health tracking, and (iii) image recognition
and automated food detection.

Food perception and its relationship to health. Due
to the global obesity epidemic, a growing number of re-
searchers have studied how our perception of food, both be-
fore and during its consumption, relates to our food choices
and the amount of food intake. Here we review a small
sample of such studies.

Killgore and Yurgelun-Todd [19] showed a link between
differences in orbitofrontal brain activity and (i) viewing
high-calorie or low-calorie foods, and (ii) the body mass in-
dex of the person viewing the image. This suggests a re-
lationship between weight status and responsiveness of the
orbitofrontal cortex to rewarding food images.

Rosenbaum et al. [38] showed that, after undergoing sub-
stantial weight loss, obese subjects demonstrated changes in
brain activity elicited by food-related visual cues. Many of
these changes in brain areas known to be involved in the
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regulatory, emotional, and cognitive control of food intake
were reversed by leptin injection.

Medic et al. [27] examined the relationship between goal-
directed valuations of food images by both lean and over-
weight people in an MRI scanner and food consumption at a
subsequent all-you-can-eat buffet. They observed that both
lean and overweight participants showed similar patterns of
value-based neural responses to health and taste attributes
of foods. This suggests that a shift in obesity may lie in how
the presence of food overcomes prior value-based decision-
making.

Whereas the three studies discussed above studied the per-
ception at the level of brain activity, our own work only looks
at data from perception reported in the form of hashtags.
This, indirectly, relates to a review by Sorensen et al. [41] of
studies on the link between the (self-declared) palatability,
i.e., the positive sensory perception of foods, and the food
intake. All of their reviewed studies showed that increased
palatability leads to increased intake. In Section 5.3, we
study a similar aspect by looking at regional differences in
what is tagged as #delicious and how this relates to obesity
rates and other health outcomes.

More directly related to the visual perception of food is
work by Delwiche who described how visual cues lead to
expections through learned associations and how these in-
fluence the assessment of the taste and flavor of food [9]. For
example, when taste- and odor-less food coloring is used the
perceived taste of the food changes and white wine colored
as red wine would begin to taste like a red wine.

McCrickerd and Forde [26] focused on the role of both
visual and odor cues in identifying food and guiding food
choice. In particular, they described how the size of a plate
or a bowl or the amount of food served effect the food intake.
Generally, larger plates lead to more food being consumed.

Closer to the realm of social media is the concept of “food
porn”. Spence et al. [42] discussed the danger that our grow-
ing exposure to such beautifully presented food images has
detrimental consequences in particular on a hungry brain.
They introduce the notion of “visual hunger”, i.e., the desire
to view beautiful images of food.

Petit gave a more positive view regarding the potential of
food porn and social media images and discusses their use in
carefully crafted “multisensory mental simulation” [35]. He
argued that by engineering an appropriate pre-eating expe-
rience involving images and other sensory input food intake
can be reduced and healthy food choices can be encouraged.

Note that our current analysis does not look at the pre-
sentation aspect of food images. It would, however, be in-
teresting and technically feasible to use computer vision to
extract information on how the food is presented and then
attempt to link this back to health statistics.

Social media data for public health analysis. Recent
studies have shown that large scale, real time, non-intrusive
monitoring can be done using social media to get aggregate
statistics about the health and well being of a population [10,
39, 20]. Twitter in particular has been widely used in studies
on public health [33, 36, 32, 21], due to its vast amount of
data and the ease of availability of data.

Connecting the previous discussion on the perception of
food and food images to public health analysis via social
media is work by Mejova et al. [28]. They study data from
10 million images with the hashtag #foodporn and find that,
globally, sugary foods such as chocolate or cake are most

commonly labeled this way. However, they also report a
strong relationship (r=0.51) between the GDP per capita
and the #foodporn-healthiness assocation.

In the work most similar to ours, Garimella et al. [13]
use image annotations obtained by Imagga1 to explore the
value of machine tags for modeling public health variation.
They find that, generally, human annotations provide bet-
ter signals. They do, however, report encouraging results
for modeling alcohol abuse using machine annotations. Fur-
thermore, due to their reliance on a third party system, they
could only obtain annotations for a total of 200k images.
Whereas our work focuses on the differences in how ma-
chines and humans annotate the same images, their main
focus is on building models for public health monitoring.

Previously, Culotta [8] and Abbar et al. [1] used Twitter
in conjunction with psychometric lexicons such as LIWC
and PERMA to predict county-level health statistics such
as obesity, teen pregnancy and diabetes. Their overall ap-
proach of building regression models for regional variations
in health statistics is similar to ours. Paul et al. [34] make
use of Twitter data to identify health related topics and use
these to characterize the discussion of health online. Mejova
et al. [29] use Foursquare and Instagram images to study
food consumption patterns in the US, and find a correlation
between obesity and fast food restaurants.

Abdullah et al. [2] use smile recognition from images posted
on social media to study and quantify the overall societal
happiness. Andalibi et al. [3] study depression related im-
ages on Instagram and “establish[ed] the importance of vi-
sual imagery as a vehicle for expressing aspects of depres-
sion”. Though these papers do not explicitly try to model
public health statistics, they illustrate the value of image
recognition techniques in the health domain. In the follow-
ing we review computer vision work in more depth.

Image recognition and automated food detection.
Although images and other rich multimedia form a major
chunk of content being shared in social media, almost all
the methods above rely on textual content. Automatic im-
age annotation has greatly improved over the last couple
of years, owing to the recent development in deep learn-
ing [22, 40, 14]. Robust object recognition [49, 6] and image
captioning [16] have become possible because of these new
developments. For example, Karpathy et al. [16] use deep
learning to produce descriptions of images, which compete
with (and sometimes beat) human generated labels. A few
studies already make use of these advances to identify [18,
31, 46, 23] and study [44] food consumption from pictures.
For instance on the Food-101 dataset [5], one of the major
benchmarks on food recognition, the classification accuracy
improved from 50.76% [5] to 77.4% [23] and 79% [31] in
recent years with the help of deep convolutional networks.

Building upon Food-101 dataset, Myers et al. [31] explore
in-depth food understanding, including food segmentation
and food volume estimation in plates, as well as predicting
the calories from food images collected from restaurants.
Unfortunately, the segmentation and depth image annota-
tions used in their work are not publicly shared and cannot
be used as a benchmark.

In addition to the Food-101 dataset, which has 101 classes
and 101K images, there are various other publicly available
smaller datasets, such as: PFID [7], which has 61 classes

1http://imagga.com/auto-tagging-demo
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(of fast food) and 1,098 images; UNICT-FD889 [11], which
has 889 classes and 3,853 images; and UECFOOD-100 [25],
which has 100 classes, and 9,060 images; later this dataset
is expanded to 256 food categories [17]. Unfortunately, the
performance for image recognition in general and food recog-
nition in particular is highly correlated with the size of the
datasets, especially while training deep convolutional mod-
els. In our work, we train deep convolutional networks with
noisy but very large scale datasets collected from Instagram
images.

Rich et al. [37] learn food classifiers by training an SVM
over a set of extracted features from ∼ 800K images col-
lected from Instagram. Our auto-tagger is mainly different
from theirs in three major components, a) we only use food-
related hashtags cleaned through a crowd-sourced process,
b) we train a state-of-the-art deep network on food classi-
fication rather than operating on extracted features, c) we
build upon a much larger image dataset(∼ 3.7M images in
1, 170 categories).

3. DATA COLLECTION

Figure 3: Distribution of collected ∼ 4M images
across US counties.

Instagram data collection. In early 2016 we collected
worldwide data from Instagram covering timestamps be-
tween November 2010 and May 2016 for the following hash-
tags: #food, #foodporn, #foodie, #breakfast, #lunch, #din-
ner. This led to meta information for a total of ∼ 72M
distinct images, ∼ 26M of which have associated locations,
and ∼ 4M of them are successfully assigned to one of the US
counties. Assignments are achieved by matching the longi-
tude and latitude information of images with the polygons
for each county in the US. Computations are performed in
python using the Shapely2 package for geometric process-
ing. The polygons are obtained from the website of the US
Census Bureau3. The distribution of images over the US
counties are visualized in Figure 3.

Clean food-related hashtags. From the collected data,
the top 10,000 hashtags are extracted from the Instagram
posts in the US. Since we are mainly concerned with the food

2https://github.com/Toblerity/Shapely
3https://www.census.gov/geo/maps-data/data/kml/
kml_counties.html

perception, we manually classified these hashtags into food-
related categories with the help of crowd sourcing through
Amazon Mechanical Turk4 services. Each hashtag is seen
by five unique workers, and classified into the following cat-
egories: drinks, part-of-a-dish, name-of-a-dish, other-food-
related, and non-food-related. The hashtags belonging to
the categories of drinks, part-of-a-dish, and name-of-a-dish
are joined together in order to compose our dictionary of in-
terest for food perception analysis. This vocabulary is fur-
ther extended by including the hashtags corresponding to
Food-101 [5] categories, resulting in a vocabulary of 1,170
unique hashtags.

Insta-1K dataset. For each of the 1,170 unique hash-
tags, at most 4250 images are downloaded from Instagram
resulting in a total of ∼ 3.7M images. Note that a single im-
age could be retrieved and used for training several hashtags.
This dataset is referred to as Insta-1K and used for training
the auto-tagger. A subset of the dataset, called Insta-101,
consists of images belonging to the hashtags associated with
the Food-101 categories. Assignment of hashtags to each of
the Food-101 categories is performed manually. This dataset
is used for performance comparisons on Food-101 categories.

County health statistics. To see if signals derived from
this online data are linked to patterns in the “real world”, we
obtained county-level health statistics for the year 2016 from
the County Health Rankings and Roadmaps website 5. This
dataset includes statistics on various health measures that
range from premature death and low birth weight to adult
smoking, obesity and diabetes rates. From these statistics
we decided to focus on the following nine health indicators:
Smokers (in %, lower is better), Adult Obesity (in %, lower is
better) Food Environment Index (from 1=worst to 10=best,
higher is better), Physically Inactive (in %, lower is better),
Excessive Drinking (in %, lower is better), Alcohol-impaired
Driving Deaths (in %, lower is better), Diabetes Prevalence
(in %, lower is better), Food Insecurity (in %, lower is bet-
ter), and Limited Access to Healthy Food (in %, lower is
better).

Food perception gap dataset. We sampled images
from the initial collection of ∼ 4M Instagram posts associ-
ated with the US counties. Our county dictionary has 2,937
fips codes whereas the County Health Statistics dataset has
3,141 fips codes. Therefore, we used the 2,846 counties
that were common in both datasets. 91 counties in our
county dictionary without corresponding health statistics
were dropped. We then kept the 194 counties with at least
2,000 posts. Finally, we removed images without at least
one human tag appearing in at least 20 out of the 194 coun-
ties. This was done to remove images whose users might
have very particular tagging behavior, resulting in a dataset
of 1.9M posts used for food perception gap analyses.

4. MACHINE TAGGING
For training the food auto-tagger we utilized the state of

the art deep convolutional architectures called deep residual
networks [14]. These architectures have a proven record of
success on a variety of benchmarks [14]. The main advan-
tage of the deep residual networks is their residual learning
framework which enables easier training of much deeper ar-
chitectures (i.e. with 50, 101, 152 layers). The layers in

4https://www.mturk.com/mturk
5http://www.countyhealthrankings.org/rankings/data
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Table 1: Cross-dataset performances of deep resid-
ual networks on Food-101 categories. Note that the
model performs 80.9% accuracy on Food-101, 1.9%
higher than the previously reported state of the
art [31].

T
ra

in
ed

o
n Tested on

Food-101 Insta-101 mean

Food-101 80.9 40.3 60.6

Insta-101 74.5 51.5 63.0

the residual networks are reformulated as learning resid-
ual functions with reference to the layer inputs, instead of
learning unreferenced functions as utilized in [40, 22]. Con-
sequently, residual networks can train substantially deeper
models which often result in better performances.

We particularly train the deep residual network with 50
layers obtained from [14]. For benchmarking analysis, the
model is first trained on Food-101 and Insta-101 datasets.
As it is also mentioned in [31], with 750 training and 250
test samples per category, Food-101 is the largest publicly
available dataset of food images. On the other hand, our
Insta-101 dataset has 4,000 training and 250 test samples
per category collected from Instagram, though they are not
manually cleaned. The task is to classify images into one of
the existing 101 food categories. In the training procedure,
the final 1000-way softmax in the deep residual model is re-
placed with a 101-way softmax, and the model is fine-tuned
on the Insta-101 and Food-101 datasets individually. Train-
ing the deep residual model on Food-101 dataset, resulted
in ∼ 2% improvement over the previously reported state of
the art [31]. This illustrates that our auto-tagging architec-
ture is highly competitive. The accuracies of the models are
reported in Table 4 for comparison.

The model trained with Insta-101 dataset performs re-
markably well on Food-101 test set with an accuracy of
74.5%. Even though it is trained on the noisy social media
images, on average our Insta-101-based classifier performs
∼ 2.5% better than the Food-101-based model, probably
due to the increase in training samples from 750 to 4,000,
which comes for free through Instagram query search. We
also report the mean cross-dataset performance of the Insta-
101 model with increasing number of training samples in
Figure 4. Note that around 2500 samples per category the
Insta-101 model reaches the performance of Food-101 model.
The experiments on Food-101 categories suggest that, de-
spite their noisy nature, Instagram images are valuable re-
sources for training deep food classification models.

The final auto-tagger is trained with the Insta-1K dataset,
1,170 categories with corresponding images collected from
Instagram. Its accuracy is computed as 51.5% on the held-
out test set. For each image the top 30 hashtags identified
by the auto-tagger are used for the perception gap analysis.

5. METHODS

5.1 Modeling Regional Variation in Health
Statistics

At a high level, our main analytical tool is simple corre-
lation analysis of individual variables with “ground truth”
county-level health statistics (see Section 3). This approach

Figure 4: Mean cross-dataset performance of Insta-
101 model trained with increasing number of train-
ing samples per category. Note that around 2500
samples per category Insta-101 model reaches the
performance of Food-101 model.

provides clues for hypotheses concerning causal links to ex-
plore further in separate studies.

In order to avoid spurious correlations, we perform 10-
fold cross validation, leaving 19 (or 20) counties out and
computing correlations using the rest of the 174 (or 173)
counties at each fold. We then report average correlations
and their standard errors in our results.

Also, when reporting significance values for r correlation
coefficients, we apply the Benjamini-Hochberge procedure [4]
to guard against false positives. As an example, in Table 2
a significance level of .05 corresponds to a “raw” significance
level of .00328± .000075.

We compute correlations for four different types of feature
sets: (i) human tag usage probabilities, (ii) machine tag us-
age probabilities, (iii) perception gap weights, and (iv) con-
ditional probabilities for the usage of #healthy, #delicious,
and #organic given machine tags. These will be described
in the following.

5.2 Quantifying the Perception Gap
They key contribution of this work is the analysis of the

“perception gap” and how it relates to health. Abstractly,
we define the perception gap as the difference between how
a machine and a human annotate a given image. Concretely,
we compute it as follows.

First, we iterate over all images. Images that do not have
at least one machine tag and at least one human tag in the
same vocabulary space (comprising the set T of 1,170 tags
described in Section 4) are ignored.

This was done as it is hard to quantify the disagreement
between two annotators when one annotator does not say
anything or uses a different (hashtag) language. For each
valid image we normalize the weights wi for both the ma-
chine tags Tm and the human tags Th to probabilities such
that

∑
i∈Th wh

i = 1 =
∑

i∈Tm wm
i . Values for wh

i where

i ∈ T \Th or for wm
i where i ∈ T \Tm are set to 0. For i ∈ T

the gap value is then defined as gi = wm
i −wh

i . These values
are then first averaged across all images for a (county,user)
pair. We first aggregate at the user level, within a given
county, to avoid that a single user with a particular hashtag
usage pattern skews our analysis. Next, the user level values
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are further aggregated by averaging them into a single fea-
ture vector for each county. Note that each aggregated value
gi will be between 0 and 1 and that

∑
i∈T |gi| is a measure

of the absolute overall labeling differences between humans
and the machine in a given county. This difference is upper
bounded by 2.

To obtain the human-only or machine-only distributions,
we run the same filtering pipeline, simply setting wm

i = 0
(for human-only) or wh

i = 0 (for machine-only). Figure 1
gives an illustration by example of the qualitative aspects
our perception gap can pick up. The image shown, which
is a real example, is tagged by the user as #foodie, #hun-
gry, #yummy, #burger, and by the machine as #burger,
#chicken, #fries, #chips, #ketchup, #milkshake. After ig-
noring the user tags that are not included in our machine-tag
dictionary, we compute the gap value gex1 for this particular
image as
−5/6 #burger

1/6 #chicken, #fries, #chips, #ketchup, #milkshake

0 all other hashtags

5.3 Variation in Subjective Labels
In the above, we computed a perceptual difference for

“what the food objectively is” or for “what is worth nam-
ing”, all related to objective names of items in the picture.
Here, we describe a methodology to compute a similar dif-
ference for subjective labels.

As our machine annotations (see Section 4) deliberately
exclude subjective tags, we can no longer use the previous
approach of looking at human-vs.-machine usage differences
within a common vocabulary space. Instead, we define a
set of subjective labels of interest lh containing labels such
as j =#healthy, and then for each machine tag i ∈ Tm

compute the probability P (j|i).
Concretely, we first iterate over all images who passed the

filters for the previous “objective gap” analysis. For these
images, we compute the aforementioned conditional proba-
bility probability at the image level where it is either 1 (if
machine tag i is present) or 0 (if it is not). Note that values
for tags i′ ∈ Tm not present in the image are not consid-
ered. We then aggregate these values within each (county,
user) pair to obtain probabilities for a given user in a given
county to have used label j given one of his images was auto-
tag as i. We then further combine these probabilities at the
county level by aggregating across users. If a tag i′ ∈ T was
never present on a single image in the county then the cor-
responding value P (j|i′) is not defined. To address this, we
impute such missing values by averaging the conditional ex-
pectation computed across all the counties with no missing
values. For our analysis we used the human labels #healthy,
#delicious, and #organic, comprising both health, taste and
origin judgment.

6. RESULTS
Table 2 shows the top five tags in terms of the “boost”

they receive in correlation rgi when using the gap values
gi compared to the correlations rwm

i
and rwh

i
for features

wm
i and wh

i respectively. Concretely, the boost is defined as
|rgi | −max(|rwm

i
|, |rwh

i
|).

As an example on how to read Table 2, the entry “chick-
enkatsu (.31 ± .007)” as the Top 1 in the Obese row means
that the counties where the machine is more likely than the
human to use the tag #chickenkatsu tend to have higher
obesity rates. Furthermore, this correlation is significant at
p = .05, even after applying the Benjamini-Hochberge pro-
cedure. The fact that values are ranked by their boost in
correlation further means that the correlation of .31 ± .007
is not solely due to regional variation in what the machine
tags as #chickenkatsu. In this particular case, the machine-
only correlation is rwm

i
= .19 ± .008 and the human-only

correlation is rwh
i

= .18± .007.

Whereas Table 2 shows the results for the perception gap
on objective tags (see Section 5.2), Table 3 shows results
for the subjective gap (see Section 5.3). For this, tags from
the space of the 1,170 machine tags are ranked according to
the boost in correlation that the conditional probability of a
human using, say, #healthy achieves, compared to the cor-
relation for the unconditional probability of a human using
#healthy.

As an example for how to read Table 3, the entry“smooth-
ies (−.30 ± .009)” in the column for #healthy and the row
for Diabetes Prevalence means that counties with a higher
conditional probability of P(human says #healthy | machine
says #smoothies) tend to be counties with higher levels of
diabetes prevalence. As we rank by the boost in correlation
over the probability for simply P(human says #healthy), in
this case −.30± .009 vs. −.27± .011, this correlation is not
fully explained by variation in #healthy alone. As before,
only correlations significant at p=.05, after the Benjamini-
Hochberge procedure, are included in the table.

7. DISCUSSION AND LIMITATIONS
By looking at the “healthy” and “organic” columns in Ta-

ble 3 we see that, with the exception of Excessive Drinking,
all health statistics indicate correlations in the good direc-
tion for all the examples shown. At a high level this seems to
indicate that when humans deliberately call one particular
food #healthy or #organic, rather than using these tags in-
discriminately, this indicates a county with generally better
health statistics. However, the pattern for what exactly this
particular food has to be is far more mixed.

Similarly for the perception gap analysis in Table 2, we
observe correlations in the (reasonably) good direction in
general. For instance, “the machine says #chickenkatsu (or
#koreanfriedchicken for that matter) but the human does
not” is a sign of a high obesity region while “the machine
says #clubsandwich (or #cobbsalad for that matter) but
the human does not” is a sign of a low obesity region. Sim-
ilarly for diabetes prevalence, #burritos shows positive cor-
relation whereas #crabmeat and #sushiroll show negative
correlation. However, in many other cases it is admittedly
harder to interpret the results. For example, whereas “the
machine says #sugarcane but the human does not” is a sign
of high alcohol-impaired driving deaths, for #chicagopizza
the trend is “the human says #chicagopizza but the machine
does not.” Likewise, the link between physical inactivity and
hashtags such as #prawns and #fishnchips is not apparent.

It is worth clarifying how our work differs fundamentally
from analyzing the co-occurrence of hashtags. For exam-
ple, we could hypothetically have studied how #burger and
#salad are used together and whether their co-occurrence
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Table 2: For each of the nine health measures, top five tags with the highest correlation boost of the perception
gap over the maximum of the correlations of machine-only and human-only tags. Values in parentheses are
the mean and standard error of r correlation values across the 194 counties after 10-fold cross validation.

Health metric Top 1 Top 2 Top 3 Top 4 Top 5

AlcDrivDeath chicagopizza (−.24± .008) sugarcane (.22± .010) brisket (−.27± .006) redpepper (.20± .009) mojito (.22± .008)
DiabetesPrev crabmeat (−.27± .007) burritos (.29± .005) sushiroll (−.31± .008) carpaccio (−.23± .006) surfandturf (.24± .009)
ExcessDrink beefribs (−.24± .009) horseradish (.25± .007) strawberries (.24± .010) greeksalad (.24± .010) flautas (−.21± .007)
FoodEnvInd instabeer (−.32± .010) heineken (−.31± .006) cornedbeefhash (−.26± .005) sushiroll (.30± .009) jerkpork (−.29± .007)
FoodInsecure instabeer (.29± .008) beerstagram (.25± .010) skirtsteak (.27± .009) sushiroll (−.29± .010) heineken (.24± .007)
LimitedAccess breadpudding (−.39± .008) horchata (.46± .005) heineken (.32± .009) quail (−.31± .009) beersnob (.28± .007)
Obese chickenkatsu (.31± .007) clubsandwich (−.33± .004) cobbsalad (−.25± .005) moscato (−.22± .005) koreanfriedchicken (.22± .007)
PhysInactv prawns (.34± .008) fishnchips (.29± .009) burritos (.28± .007) boilingcrab (.30± .006) fishandchips (.32± .007)
Smokers crabmeat (−.30± .007) breadbowl (.24± .006) umamiburger (.26± .008) pupusas (.24± .012) horchata (.24± .010)

propensity was linked to health statistics. For the sake of
argument, let us assume that we would have found that a
positive association was linked to counties with lower obesity
rates. However, we would then not have been able to tell
if (i) healthier regions have more people consuming burgers
with a salad on the side, or if (ii) in healthier regions people
are simply more likely to label a lone lettuce leaf as #salad.
If the purpose of the analysis was to model regional variation
in health statistics then this distinction might be irrelevant.
But if the goal was to detect relationships between the per-
ception of food and health statistics – as is the case in our
work – then this distinction is crucial.

Note that, at the moment, we deliberately trained the ma-
chine tagger only on objective tags related to food, e.g., the
name of a dish. Training a machine for more subjective tags,
such as #delicious or #healthy, would have made it impos-
sible to separate the dimension of “what is it” from “how
does a human perceive it”. However, it might be promising
to train a machine on aspects related to the presentation of
food. As discussed in Section 2, how the food is presented to
the consumer has important implications on how much of it
will be consumed. When the food is presented and arranged
by the consumer themselves, e.g., in the setting of a home-
cooked meal, this could still provide a signal on whether the
food is “celebrated” or not in a gourmet vs. gourmand kind
of fashion.

One potential limitation of our work is language depen-
dency. As we cannot look into users’ brains to study the
perception at the level of neurons, we rely on how they self-
annotate their images. However, a Spanish-speaking person
will likely use other annotations than an English-speaking
person, which eventually affects our analyses. For example,
#chimichanga and #taquitos show up in our analysis as in-
dicators of low obesity rates in the column for Delicious and
row for Obese in Table 3 even though both of them are deep-
fried dishes from Mexican, or Tex-Mex, cuisine. Similarly,
there can be regional variations and the same food could
have one name in a high obesity area and a different name
in a low obesity area.

Another risk comes from the inherent noise of the machine
annotation used. Though its performance is state-of-the-art
(see Section 4), it is still far from perfect. In the extreme
case, if the machine annotations were uncorrelated with the
image content then the perception gap we are computing
would, on average, simply be the distribution of the human
tags. As such, the gap and the human features would be
picking up the same signals.

To guard against the previous two points we never solely
report results for the perception gap analysis but, always,

compare it back to the results when using only human an-
notations or only machine annotations. Both Table 2 and
Table 3 are ranked by the boost in correlation over using
only human annotations or only machine annotations.

Though our current analysis focuses on image analysis,
it is worth contemplating what a similar analysis of text
would look like. At a high level, we try to separate “what
something contains” from “how it is described”. In the NLP
domain, this roughly corresponds to differentiating between
topic detection [45] and writing style identification [52]. As
for images, these two are often entangled: if an author of a
blog uses the term “death” is that because of (i) the topic
they are discussing (e.g., a war story), or because of (ii)
their writing style and mood (potentially indicating depres-
sion)? Clearly separating these two concepts, the what and
the how, could potentially help with challenges such as iden-
tifying depression.

The current work uses image recognition exclusively to
study how a certain food is labeled by a human in relation
to what it objectively shows. However, a computer vision
approach could be used for automating other aspects of an-
alyzing food images. As an example, it could be promising
to automatically analyze food plating, i.e., the aesthetic ar-
rangement of food in appealing images. Recent research
studies have indicated that attractive food presentation en-
hances diners’ liking of food flavor [30, 51] as well as their
eating behaviours and experiences [43]. In addition, Zam-
pollo et al. [50] have demonstrated the diversity of food plat-
ing between cultures. Extending these ideas in mind, a com-
puter vision approach could be applied to perform a study to
that of Holmberg et al. [15] to investigate food plating (and
its potential correlation with food health) across cultures
and age groups.

Both regional variation in perception gap and in food plat-
ing behavior could conceptually be used for public health
monitoring by training models similar to what was done by
Garimella et al. [13]. We briefly experimented with this us-
ing our gi gap features. However, these secondary signals,
i.e., how something is perceived differently by humans and
machines, did not add predictive performance over the pri-
mary signals, i.e., how something is labeled by humans or
machines alone. We see the real value of our approach less in
“now-casting” of public health statistics and more in analyz-
ing the psychology of food consumption and food sharing.

Finally, computer vision could help to obtain health labels
not only at the county level but at the individual level. Con-
cretely, Wen and Guo have proposed a method to infer a per-
son’s BMI from a clean, head-on passport style photo [48].
Though this particular method is unlikely to deal with the
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Table 3: For each of the nine health metrics and each of the three subjective tags j ∈
{healthy,delicious,organic} we show (up to) the top five tags i in terms of correlation boost of using P (j|i)
over simply P (j). Here i is one of the 1,170 tags assigned by the machine. Only correlations significant at
p=.05 (after applying the Benjamini-Hochberge procedure to guard against false positives) are shown. Values
in parentheses are the mean and standard error of r correlation values across the 194 counties after 10-fold
cross validation.

Health Metric Healthy Delicious Organic

AlcDrivDeath

cinnamonrolls (−.24± .003) capresesalad (−.30± .009) crepes (−.27± .005)
maple (−.23± .005) breadsticks (−.28± .007) popcorn (−.25± .007)

crawfish (−.23± .008) beefcarpaccio (−.28± .010) poachedegg (−.24± .011)
vanillabean (−.23± .006) baguette (−.27± .010) crawfish (−.25± .009)
coconutoil (−.21± .008) redsauce (−.27± .007) beefstew (−.23± .003)

DiabetesPrev

smoothies (−.30± .009) saki (−.31± .007) jambalaya (−.31± .006)
thyme (−.29± .005) crabmeat (−.28± .006) carnitas (−.31± .005)

cilantro (−.28± .008) burritos (−.27± .009) chocolate (−.31± .006)
gyro (−.27± .010) chimichanga (−.26± .007) vinaigrette (−.30± .004)

bananas (−.27± .009) octopus (−.26± .006)

ExcessDrink

newyorkpizza (.24± .006) barbecue (−.23± .008) koreanfriedchicken (.27± .008)
bacardibuckets (−.22± .015) burrito (.22± .006) burritobowl (.25± .005)

cilantro (.22± .009) winepairing (.21± .009) appetizers (.23± .005)
dessert (−.23± .005) beefcarpaccio (−.19± .011) whiterice (.23± .004)

frenchpastry (.20± .011) kalesalad (.21± .010) cobbsalad (.23± .007)

FoodEnvInd

carnitas (.35± .006)
seasalt (.34± .006)

coconutwater (.32± .006)
greendrink (.32± .005)
greenchile (.31± .003)

FoodInsecure

carnitas (−.35± .006)
greendrink (−.33± .005)

seasalt (−.33± .007)
greenchile (−.32± .003)
kalesalad (−.32± .008)

LimitedAccess

chorizo (−.24± .008) takoyaki (−.38± .004) beans (−.22± .004)
basil (.22± .009) gin (−.37± .005) southerncomfort (−.22± .005)

calzone (−.21± .007) grits (−.20± .006)
catfish (−.21± .012) grapefruit (.19± .006)
muffin (.20± .017) onionrings (−.19± .008)

Obese

sweettea (−.35± .004) saki (−.37± .007)
chickpea (−.34± .006) taquitos (−.35± .006)

smokedsalmon (−.33± .006)
chimichanga (−.33± .006)

fishtaco (−.33± .007)

PhysInactv

chickpea (−.20± .011) saki (−.21± .009)
maple (−.22± .006) babybackribs (.20± .008)

cashews (−.18± .010) wine (−.20± .010)
pitayabowls (−.19± .006)

bbqsauce (.19± .005)

Smokers

goatcheese (−.33± .010) saki (−.41± .005)
chickpea (−.29± .008) soupoftheday (−.37± .003)
banana (−.23± .008) milkshakes (−.37± .006)

roastbeef (−.21± .011) smokedsalmon (−.34± .007)
cupcake (−.21± .009)
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messiness of social media profile images, exploratory work
has shown that inferring weight category labels from social
media profile images seems feasible [47]. We are currently
working on these aspects of a more holistic food image scene
understanding.

8. CONCLUSIONS
In this work, we define the “perception gap” as the mis-

alignment or the difference in probability distributions of
how a human annotates images vs. how a machine anno-
tates them. To the best of our knowledge, this is the first
time that this type of perception gap has been studied. By
using county-level statistics we show that there are system-
atic patterns in how this gap relates to health outcomes.

In particular we find evidence for the fact that conscious
food choices seem to be associated with regions of better
health outcomes. For example, labeling particular foods as
#healthy, rather than random images in a county, or beer
with its brand name, rather than generic descriptions, cor-
relates favorably with health statistics. Similarly, posting
images of saki and emphasizing the #delicious taste appears
to be a positive indicator. Paraphrasing Shakespeare, a rose
by any other name might smell as sweet, but labeling your
food differently might be related to health.

As time goes on, we expect our methodology to further
improve in performance due to (i) continuous improvement
in image recognition and decrease in error rates, and due to
(ii) the potential to use individual level health labels, instead
of county level ones, also due to improvement in computer
vision [48, 47].
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