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ABSTRACT

Detecting strong ties among users in social and information net-
works is a fundamental operation that can improve performance on
a multitude of personalization and ranking tasks. There are a vari-
ety of ways a tie can be deemed “strong”, and in this work we use a
data-driven (or supervised) approach by assuming that we are pro-
vided a sample set of edges labeled as strong ties in the network.
Such labeled edges are often readily obtained from the social net-
work as users often participate in multiple overlapping networks
via features such as following and messaging. These networks may
vary greatly in size, density and the information they carry — for
instance, a heavily-used dense network (such as the network of fol-
lowers) commonly overlaps with a secondary sparser network com-
posed of strong ties (such as a network of email or phone contacts).
This setting leads to a natural strong tie detection task: given a
small set of labeled strong tie edges, how well can one detect unla-
beled strong ties in the remainder of the network?

This task becomes particularly daunting for the Twitter network
due to scant availability of pairwise relationship attribute data, and
sparsity of strong tie networks such as phone contacts. Given these
challenges, a natural approach is to instead use structural network
features for the task, produced by combining the strong and “weak”
edges. In this work, we demonstrate via experiments on Twitter
data that using only such structural network features is sufficient for
detecting strong ties with high precision. These structural network
features are obtained from the presence and frequency of small net-
work motifs on combined strong and weak ties. We observe that
using motifs larger than triads alleviate sparsity problems that arise
for smaller motifs, both due to increased combinatorial possibili-
ties as well as benefiting strongly from searching beyond the ego
network. Empirically, we observe that not all motifs are equally
useful, and need to be carefully constructed from the combined
edges in order to be effective for strong tie detection. Finally, we
reinforce our experimental findings with providing theoretical jus-
tification that suggests why incorporating these larger sized motifs
as features could lead to increased performance in planted graph
models.
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1 Introduction
Many large social media platforms are constructed so that users
participate in multiple networks simultaneously. On Twitter, for
example, a user can establish links to other users by following
them, or sending them a direct message, or by including them in
a phone book or e-mail address book. Each of these modes of in-
teraction defines a different network on the set of users — while
these networks are clearly related, they represent different types of
connections; you might easily follow someone whom you have no
expectation of ever messaging or contacting by phone. Moreover,
the networks can differ greatly in their usage and sparsity; Twit-
ter users will generally follow multiple other users, but many may
have never populated their phone books.

In these social media contexts, we thus encounter a wide range
of cases in which a network GL with a large number of links co-
exists with an overlapping, but much sparser network GS . As in
the case of the (dense) follower graph and (sparser) phone book
graph on Twitter, the sparsity of GS often comes about for two
reasons. First, in contrast to the follower graph, the phone book
is not the main feature of the site. Second, even for users who
have created links in the sparser graphs GS (such as the phone-
book graph), these links tend to correspond to the user’s strong
ties, and so are less numerous. Despite their sparsity, networks like
the phone-book graph contain information that is immensely valu-
able, in part because of their focus on strong ties; they can be used
for improving relevance and personalization in user/content recom-
mendations, creating more personalized notifications, and other ap-
plications. Many of these tasks can benefit from estimates of edges
likely to belong toGS , even if they haven’t been explicitly reported
by users.

Thus, estimating which edges belong to these types of sparse
graphs GS can be viewed as a type of strong-tie detection problem
[9]. But as we discuss next, our setting adds new aspects to the
problem; existing techniques for strong-tie detection produce weak
performance in our context, and in contrast we develop a set of new
methods that yield significantly more powerful results.

Data-driven strong tie detection Our particular setting of the Twit-
ter network adds some new dimensions to strong tie detection that
we believe haven’t been studied before in concert: (i) a data-driven
formulation of the problem; (ii) extreme sparsity of demographic
features; and (iii) possible ineffectiveness of interaction features.
The first point here is that while the sparse graphs GS that we
consider have significant overlap with the strong-tie structure, they
are not precisely the set of strong ties, and so we need to take a
data-driven approach: rather than starting from sociological prin-
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ciples about strong-tie structure, we use the existing structure of
edges around nodes that participate in GS to learn the features that
are most predictive, The second and third points, about the limi-
tations of demographic and interaction features for our problem,
make clear why new techniques are needed. Recall that these kinds
of features (reciprocity of interaction, engagement volume, and re-
lated measures) have been proven to be the most effective at strong
tie detection in prior work [9]. But in our setting, the demographic
features are quite sparse as users do not need to report demographic
information to use the website. Furthermore, due to the data-driven
approach, interaction features may not be most indicative of the
particular strong tie label we’re trying to predict.

As a concrete way to see the challenge, we began by running
standard strong-tie detection algorithms using as many features from
existing methods [9] as we could (all the high-weight features were
available), trying to predict whether an edge in the Twitter follower
graph was also in the phone-book graph. We found that on a fully
balanced dataset these features only provide a prediction accuracy
of 56% which barely beats the random baseline by 6%. As we will
show in this work, we are able to do much better with the tech-
niques we develop here; our eventual performance will be 87%
accuracy for the same task. Given the poor performance of prior
baselines, it becomes important to understand the challenges in this
particular version of the problem more clearly.

In the motivating applications for the problem, the graph GS
providing the strong tie labels is sparse because many (or most)
users have not yet started using the feature defining GS , leading
to a graph with a large fraction of disconnected or isolated nodes.
And even the nodes that are not isolated have very low degrees. As
a result, standard link-prediction methods cannot be applied on GS
alone to “bootstrap” the internal structure of GS by itself.

Our setting is closer to the “cold-start” problem in recommenda-
tion systems [2, 23, 24], where the challenge is to make recommen-
dations to users for whom the system has no history at all, and the
general idea is to use some source of side information to provide
recommendations to such users. This is where the weak ties pro-
vided by the denser networkGL come into play; even if a user u has
no edges inGS , the weak ties that u has inGL provide information
about the presence of u’s edges in GS . We note that in contrast to
prior work on the cold-start problem, our side information in this
case is a network in its own right. In this respect, our strong tie
detection problem is a question of information transfer. In contrast
to existing work on information transfer, however, we are consid-
ering settings where we may well not have any a priori principles
informing the typical patterns of links in our domain. Thus, we
aim to induce patterns purely from training data, adapting to differ-
ent settings independently of whether any particular hypothesized
structural patterns turn out to be the most effective.

The core of our problem, then, is to combine information from
the weak ties in GL with the strong ties from the subset of nodes
that participate inGS , to predict strong ties for nodes that currently
do not participate in GS . We now discuss some of our techniques
and results for this problem.

Filling in a sparsely-populated network Addressing this ques-
tion requires that we use information latent in both GS and GL.
Intuitively, from the portions of GS that we are able to observe,
we try to infer the typical patterns formed by the edges in GS and
their interplay with edges in GL. We then go to nodes where the
edges of GS are absent, and we look for evidence of similar pat-
terns among the edges ofGL. This provides evidence for where the
hidden edges ofGS might be. For this strategy to work, it is impor-
tant thatGL provide us with sufficient information aboutGS ; a key
aspect of the approach is based on transferring information between

the two graphsGL andGS . In particular, for the “patterns” formed
among the edges of GS , we use the presence of small subgraphs or
motifs that are highly represented in the observable portion of GS .
Given a user a who is incident to no edges of GS — a user with no
strong ties — we try to infer which of a’s incident edges (or weak
ties) in GL are most likely to belong to GS as well. To do this, we
assign each of a’s incident edges in GL multiple scores based on
their participation in certain small subgraphs. Note that the edges
of these subgraphs may have mixed membership in GL and GS ;
in particular, if (a, b) is an edge of GL, then b may have incident
edges in GS even though a does not.

Using the subgraph-induced scores for an edge (a, b) as a vec-
tor of features, we can then learn a classifier for labeling edges of
GL as strong ties based on the nodes in the graph that have inci-
dent edges from GS . In this way, we are not presupposing which
particular motifs are indicative of membership in GS , but instead
identifying the most important motifs from the data.

In evaluations on the Twitter user network, we obtain strong per-
formance in inferring the presence of unobserved labels in several
of the site’s main underlying networks, using only network features.
In particular, adopting an evaluation framework in which we hide
the presence of a subset of the direct messages, phone book, and
email address book edges — thus providing ground truth for our
evaluation — we find that our approach using the mutual following
graph as GL yields high accuracy in detecting strong ties.

Moreover, among the graph motifs that are most important for
the task of classifying edges of GS , we find that motifs on more
than three nodes play a crucial role. This forms an intriguing con-
trast to the work on strong-tie detection within networks of weak
ties — one of the most widely-studied cases of information transfer
between different types of networks — since in that context the key
issue has traditionally been the participation of an edge (a, b) in tri-
angles, which correspond in our framework to features comprised
entirely of a set of three-node subgraphs. For the networks we infer
here, the participation of edges (a, b) in larger motifs turns out to
be vital as well.

The role of larger graph motifs A possible reason for the role of
larger graph motifs in our task is that these larger structures pro-
vide a partial antidote to the problem of sparsity — due to the
number of combinatorial possibilities, they have the potential to
be more abundant than triangles in the training data we have on
GS , particularly when the observed part of GS is highly sparse.
To understand the trade-off between sparsity and the use of larger
structures as features, we propose and analyze a set of generative
network models where this effect appears clearly, and with prov-
able guarantees. Specifically, we consider a mathematical model in
which nodes belong to planted communities, and edges of GS lie
within these communities. As in prior work on random graphs with
planted community structure, we cannot directly observe commu-
nity membership (a proxy for strong ties), but the structure of the
graph conveys latent information about it. Our question, however,
is related to but different from the standard problem of inferring
community membership; rather, we want to classify edges by their
membership in GS , where the random generation of GS is based
on the community structure.

We discover that the qualitative findings from our evaluation
on the Twitter dataset hold for this generative model as well, and
with provable guarantees arising from analysis of the model; mo-
tifs larger than triangles provably help in identifying edges of GS ,
and the gain from these subgraphs increases as the observable por-
tion of GS becomes sparser. Moreover, our approach based on the
frequency of motifs is robust enough that it even yields guarantees

984



when nodes belong to multiple overlapping communities with in-
dependent membership.

Overall, the interaction of the computational evaluation on Twit-
ter and the analysis of the generative models suggests that our con-
crete task, transferring information from one graph to discover strong
ties around isolated nodes in another, is a useful and general prob-
lem that provides insight into the role of local network motifs.

In the remainder of the paper, we first present an experimental
evaluation of our methods on the Twitter dataset, followed by mod-
eling and simulations that seek to provide a theoretical basis for
understanding our experimental observations.

2 Related Work

Our approach is related to several lines of research concerned with
network structure, particularly in the domain of social and infor-
mation networks. More specifically, our work can be seen as po-
sitioned at the intersection of three topics in network analysis: (a)
strong tie detection (albeit under extreme sparsity of features), (b)
link prediction in a case where many nodes are isolated (because
they do not yet participate in GS), and (c) graph information trans-
fer in a purely data-driven manner, i.e. without pre-supposing any
sociological basis.

As we discussed in the introduction, previous work on strong tie
detection [10, 9, 18] yields only limited effectiveness in our setting
both due to feature sparsity (even of small network motifs such as
triads) and due to our data-driven labeling goal; we seek to transfer
information from a denser graph on the same set of nodes. Existing
methods for strong-tie detection have used structural information
based on triangles, following ideas from sociology [11, 18, 6, 13,
26], whereas we make use of motifs larger than triangles. Other
studies that have looked at information transfer include analysis of
advisor-advisee relationships [30], romantic relationships [1], and
other types of relationship transfer [17, 27, 28]. Our goal, however,
is to transfer information without a priori sociological principles to
guide the process.

A number of fields have developed frameworks for analyzing
small subgraphs that occur frequently in larger networks; such for-
malisms have been termed network motifs [20], the triad census
[7], and frequent subgraph mining [16, 31], and have been used
in extremal graph theory [3] and social media analysis [29]. Our
work takes a different perspective as its starting point; rather than
using the frequency of a given subgraph as the key criterion, we are
proceeding in a more supervised fashion, using data to infer which
subgraphs are most informative for our task.

Another relevant line of work is the network completion problem
[14, 15]. Results in this area propose generative models recreating
an entire graph to infer missing parts of a given partial graph. These
methods have also been developed primarily without the goal of
handling a large fraction of isolated nodes; and they only scale up
to hundreds of thousand of nodes, which is much smaller than our
graphs of interest.

The transfer of graph information bears a distant relationship
to transductive learning [12] and label propagation [32], although
these methods typically propagate node attributes from labeled to
unlabeled nodes, while we use the network structure to infer infor-
mation about edges. The structure of our generative models draws
motivation from stochastic block models [4, 19, 21, 22]; for us,
such models provide a setting in which phenomena we observe in
our computational evaluation appear with provable guarantees, pro-
viding a certain level of qualitative insight into how they operate.

3 Methods and Experiments
We now describe our methods for predicting strong ties by com-
bining information from two different graphs GL and GS , and we
discuss the results of experiments on the Twitter graph.

3.1 Prediction Task

We begin with the formal set-up for our prediction task. Recall
that we are given two graphs: a denser graph GL = (V,EL) that
contains all the edges available to us for analysis; and an overlap-
ping, sparsely populated graph GS = (V,ES), which contains the
reported strong ties. We will think of the edges in ES as being la-
beled with their strong-tie status. Recall that one of our primary
motivations is to detect strong-tie labels for users who have not re-
ported any strong ties. However, to set up a formal prediction task,
we need a ground-truth labeled set that we can compare our pre-
dictions to. Thus, we propose the following evaluation framework
to evaluate methods for predicting strong ties. We pick a small set
of test nodes Vtest ⊂ V and remove all of their edges in ES while
retaining their edges in EL. Doing this process will simulate the
setting where we do not have any strong ties reported around the
test nodes. The prediction task for a supervised machine learning
algorithm is to build a model on the remaining graph that is able to
predict for each v ∈ Vtest, which of v’s edges in EL was a removed
edge from ES .

Let dL(v) denote the degree of node v in GL, and let dS(v)
denote the degree of v inGS . Our test set of nodes Vtest is a random
subset of the nodes in V subject to the condition that dS(v) > 0
for all v ∈ Vtest. We define Vtrain = V − Vtest. We call the induced
graph of Gi (again, i ∈ {L, S}) on Vtrain and Vtest to be Gi,train and
Gi,test, respectively.

To reflect a scenario in which nodes in Vtest are users who have
not adopted the feature that grants us Es, we allow the algorithm
to only utilize GL,train and GS,train for training a model. Once the
algorithm trains its model, it is given access to GL,test and the algo-
rithm’s prediction task is to output exactly one edge for each node
v ∈ Vtest, namely the edge that is the algorithm’s best guess for be-
longing in GS,test. The precision of the algorithm for a given set of
test nodes is the fraction of correct guesses; in traditional informa-
tion retrieval parlance it is known as precision in the first position,
or p@1. Thus, we are considering a setting in which a user joins
the platform and links to a few people in the heavily-used network
GL, but does not adopt the sparsely-used network GS ; based on
this, we wish to report a link that is likely to be a strong tie for this
user.

3.2 Twitter Dataset

We now describe the graphs that we analyze, all of which are pro-
duced by interactions between users on Twitter.1 We study four
undirected graphs built from different types of interactions between
users on Twitter. The nodes in these graphs are the Twitter users
(note that a user may not correspond to an individual, since other
account types are possible on Twitter), and the interpretation of the
edge depends on the graph being considered. The graphs are as
follows:

• Mutual Follow: this is the graph of users who follow each
other on Twitter. Since we focus on symmetric relationships on
Twitter, this results in an undirected graph.
• Phone Book: Twitter users often import their phone books for

finding their friends on Twitter. That feature gives rise to a
graph in which we have an edge between two users if and only

1All the Twitter data has been analyzed in an anonymous, aggre-
gated form to preserve private information.
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if both users have imported their phone book and have each
other’s phone number.
• Email Address Book: users can also import their email ad-

dress book on Twitter, and analogous to the phone book, we
can construct an email graph where an edge exists if both users
have each other in their email address book.
• Direct Message: Users on Twitter can also send private mes-

sages to each other, and these are called direct messages. Thus,
we can consider an undirected graph in which there is an edge
between each pair of users who have sent at least one direct
message to each other.

For our computational experiments, we collected a single com-
plete snapshot of all these graphs on July 30, 2015. The mutual
follow graph contains hundreds of millions of users, and tens of
billions of edges. The portion of other graphs that we consider are
approximately a tenth the size of the mutual follow graph.2 As
the Mutual Follow graph is much more densely populated than the
others, we create three instances of our prediction task: in each,
the Mutual Follow graph forms GL, and one of the other graphs
(Phone Book, Email Address Book, or Direct Message) forms GS .
We only preserve edges inGS that also belong toGL; this removes
less than 0.5% of edges, so it is a simplification with negligible im-
pact for our purposes.

We construct Vtest by randomly choosing 5% of the nodes that
satisfy the following pair of conditions: (i) they have an edge in
GS , and (ii) their degree in GL is between 10 and 75. This degree
restriction onGL reflects the motivating scenario in which the users
in Vtest are relatively lighter users (or new users) of the platform,
for whom we are trying to infer edges in networks they have not
yet populated (while still having enough edges to predict). The
smallest Vtest over the three different graphs we look at includes
roughly 29000 nodes.

3.3 Prediction Algorithms

Our algorithms for predicting strong ties will operate as follows.
We start with a node a ∈ Vtest that has no incident edges inGS , and
we would like to identify an edge in GL, incident to a, that in fact
belongs to GS . Let B be the set of neighbors of a in GL. Because
of the simplifying assumption, motivated above, that ES ⊆ EL,
the candidate edges incident to a that we are choosing among all
consist of edges from a to a node in B.

We develop a number of score functions, each of which assigns
a number to every node in B. We can use each individual score
as a predictor in itself, by sorting the nodes in B according to the
score, selecting the highest-scoring b ∈ B, and declaring (a, b) to
be the predicted edge in ES .3 A few of these scoring functions
are used in the literatures on strong tie detection and on link pre-
diction, and we use them as baselines. Recall from the introduction
that interaction features under-perform, so these are in fact stronger
baselines for the prediction task. We also use the scores as features
and combine them using a machine-learning algorithm trained on
the nodes in Vtrain for which we have ground-truth edges belonging
to ES . By comparing the performance of different scores, as well
as combinations of them, we can thus determine which structures
are most effective at transferring information from GL to the un-
populated parts of GS . The fact that our scores include standard
baselines from link prediction and strong-tie prediction enables us

2We are unable to share the exact size of these graphs but we note
the relative sparsity of the strong tie graphs.
3We break ties based on degree (smaller is prioritized) and the time
the user joined the platform (earlier is prioritized).

to quantify the gains from scores corresponding to more complex
structural formulations.

In order to define our scoring functions, we introduce the fol-
lowing notation. Given a graph G and a node v in the graph, we
use N(G, v) to denote the neighbors of v in G and the operator
Ego(G, v) to refer to the ego network (the induced subgraph on
N(G, v) ∪ {v}) of the node v in G. Recall that we use a for
the node in Vtest for whom we are predicting an edge in ES , and
B = N(G, a). We also use C to denote the set of nodes at dis-
tance exactly two from a in GL. The scoring functions we use are
given in Table 1. We divide the scoring functions into two groups,
Group 1 and Group 2. In both groups, we also include a composite
score that uses linear regression to combine all the scores (and their
logarithms) in the group to form a single machine-learning classi-
fier. Scoring functions in Group 1 are standard benchmarks from
link prediction and strong-tie prediction, and they provide a base-
line for comparison. Scoring functions in Group 2 use larger graph-
theoretic structures; where the Group 1 scores are based primarily
on triangles and counts of mutual neighbors, the scores in Group
2 use counts of 4-node structures (squares) and 5-node structures
(pentagons), with the formal specifications provided in Table 1. We
also counted network motifs such as the complete graph of size 4
and 5 but they were too sparse and did not help the prediction.

Before presenting our results, we illustrate the scoring functions
with a toy example. In Figure 1, the dashed edges represent weak
ties and the solid edges represent strong ties. Note that edges la-
beled as strong ties also count as weak ties. Consistent with the no-

a

b1

b2

b3

b4

c1

c2

c3

c4

c5

Figure 1: A simple graph centered around node a.

tation above we are looking at node a and all the strong ties of a are
hidden. The scores for node b1 on this small graph are: Degree=5,
Embeddedness=2, Adamic-Adar= 1

log(5)
+ 1

log (6)
, H1=5, Triangles=1,

Square Inside= 1 (Square through b2 and b3), Square Outside=1
(Square through c2 and b2), Pentagon Inside=0 and finally Pen-
tagon Outside=1 (Pentagon through c1, c2 and b2).

The focus of this work is on finding useful scoring functions for
prediction, but we also want to briefly mention computational con-
siderations for these. Computing small sub-structures such as tri-
angles, squares and pentagons on large graphs is well-known to be
a challenging problem; the triangles case in particular has a large
literature and many provably efficient approximations [25]. We
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Table 1: The definition of all the scoring algorithms evaluated experimentally.

Name Definition Optimization Group
Random neighbor A simplistic baseline that picks a node in B uniformly at random N/A 1

Lowest degree neighbor5 Picks the node b ∈ B with the minimum degree dL(b) minimization 1
Embeddedness Picks the node b ∈ B that has maximum number of mutual neighbors with a maximization 1

Adamic-Adar
The score assigned to b ∈ B is

∑
v∈{B∩N(GL,b)}

1
log(dL(v))

which is a weighted version of
Embeddedness giving a greater weight to mutual neighbors with a lower degree

maximization 1

H1 This heuristic function assigns dL(b) as the score for b ∈ B if dS(b) > 0 and 0 otherwise minimization 1
Triangle This method finds N(GS , b) ∩B for every b ∈ B maximization 1

Basic ML model This method builds an LR model using features from rows above maximization 1

Square inside
For every b ∈ B, this algorithm reports the number of cycles with 4 nodes (or squares)

containing the edge (a, b) with the other two nodes in the cycle also being in B.6 maximization 2

Square outside
For every b ∈ B, this function reports the number of cycles with 4 nodes (or squares)

containing the edge (a, b), exactly one other node in B and one node in C.6 maximization 2

Pentagon inside
This method counts the number of cycles of length 5 for each b ∈ B containing edge

(a, b) where all 5 nodes are inside Ego(GL, a).6
maximization 2

Pentagon outside
This method counts the number of cycles of length 5 for each b ∈ B containing edge

(a, b) where 3 nodes are inside Ego(GL, a) and the other nodes are in C.6 maximization 2

Enhanced ML model This method builds an LR model using all scores listed above as features maximization 2

briefly note that for practical purposes, heuristics based on neigh-
borhood sketches such as HyperLogLog [8] can be used to effi-
ciently compute these features in a MapReduce [5] computation.
We provide a brief description of this heuristic in section 7.1. We
emphasize however that in our experiments, we do not use any ap-
proximations since our training/test data size was small enough to
be tractable with exact computation.

3.4 Performance on Prediction Task

We evaluated each of the scoring algorithms presented in Table 1
on the prediction task outlined above, in which we seek to pre-
dict a single edge in ES incident to the given node a. We present
the results in terms of their precision — the fraction of instances
on which the predicted edge indeed belongs to ES . Rather than
providing just an overall precision number, we present our results
grouped according to the degree of the node a. This is to reflect the
fact that there is a gradation based on difficulty: nodes of higher
degree naturally form harder instances for some algorithms, since
there are more candidate edges to choose from (for instance, the
baseline of random guessing goes down correspondingly). On the
other hand, some algorithms are able to efficiently exploit more
available information from the larger neighborhood, and hence this
presentation highlights the dependence of our methods on degree.

The precision results are shown in Figures 2 and 3. Note that in
these figures, we organize the algorithms according to the Group
classification in Table 1, discussed above. As seen in figure 3,
the Enhanced LR model performs much better than the Simple LR
model that combines all the other baseline algorithms that were
proposed previously in the literature. We highlight that there is a
large 17%, 12% and 10% gain in precision in the direct message,
phone book and Email prediction task, respectively. And it is im-
portant to note that we achieve these gains only by adding slightly
larger network motifs falling entirely inside or one step outside the
ego-network. We emphasize the raw precision value here as well
— a priori it would seem that a precision of 75% for phone book
prediction using just the network motifs would be too much to ask.
The results speak for the power of the motifs approach.

We now discuss further the performance of the algorithms in
Group 2, depicted in Figure 3. These algorithms differ from the
Group 1 benchmarks based on prior work in two aspects: (a) they

4This is similar to the IDF heuristic used in information retrieval.
5The edges not incident to a in the cycles should be in GS,train.

look at richer motifs in the ego network, such as squares and pen-
tagons, and (b) they also look beyond the ego-network for comput-
ing the scores. First, we observe that looking at the richer motifs
even in the ego-network is fruitful as the squares inside and pen-
tagons inside algorithms outperform the triangle algorithm, albeit
only slightly. However, the results from looking beyond the ego-
network, as demonstrated by the squares outside and pentagons
outside algorithms, are mixed. Only in the email graph does the
squares outside algorithm beat the others comprehensively. Intu-
itively, looking beyond the ego-network results in a trade-off be-
tween sparsity and signal strength: the signal strength of struc-
tures trails off with increasing distance from the ego network, but
the number of structures found increases due to increasing com-
binatorial possibilities. From the results, it seems that the square
motifs potentially are a “sweet spot” in this trade off, and we in-
vestigate this issue in the next section in more depth. It is evi-
dent from the performance results shown in Figure 3 that the LR
models outperforms all the other methods and the model using
the Group 2 features outperforms the model using Group 1 fea-
tures from prior work. In examining the enhanced LR model, we
find that three significant features in the model that we learned are
log(square-inside), log(square-outside) and log(triangles). Since
the LR model outperformed both these individual features as well,
this suggests that the model is combining information from in-
side and outside the ego network. And this combined algorithm
achieves a much higher precision compared to individual scores.
Of course, the LR model has access to more features than any in-
dividual score; but one might still not apriori expect the features
from inside and outside the ego network to complement each other
enough to achieve this level of increased precision.

We also note that results on the email graph are a bit different
from the other two. In particular, the lowest-degree neighbor al-
gorithm is worse than the random neighbor algorithm on the email
graph, and the square-outside algorithm performs better than the
square-inside algorithm (and all others for that matter). We hy-
pothesize that this might be due to the noisy nature of the email
graph compared to direct messages and phone book. Namely, pres-
ence in another user’s email address book is a much weaker signal
than having a private conversation or being in another user’s phone
book. Finally, we observe that precision is often lower for high de-
gree nodes, which is perhaps surprising as high degree nodes have
more connections/patterns in their neighborhood that an algorithm
could potentially exploit. However, as noted at the outset, there
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(a) Direct Message (b) Phonebook (c) Email Address Book

Figure 2: Precision at 1 for group 1 scoring functions

(a) Direct Message (b) Phonebook (c) Email Address Book

Figure 3: Precision at 1 for group 2 scoring functions and the linear model from group 1

is also the added difficulty from having to choose from among a
larger set of neighbors, which is illustrated by the random baseline.
And the latter effect is clearly stronger, as the plots indicate.

3.5 Predicting Multiple Edges

The prediction task formulated above focuses on producing a sin-
gle prediction. But one might suspect that if a scoring algorithm
performs well on this task, then it should also provide high preci-
sion in the setting where multiple predictions are generated. In this
section, we test this hypothesis experimentally. The task we set up
for the algorithm is as follows: we take a set of nodes from our
test set that have at least five edges in GS and given an algorithm’s
scores, we report the five neighbors with the highest score to be its
prediction; thus measuring p@5.6 The results of this experiment
when we setGS to be the phone book graph are shown in Figure 4.

We briefly note that the results are quite consistent with the ones
for the prediction task: the Enhanced LR model outperforms the
rest of the algorithms and baselines. Hence, it seems reasonable to
conclude that relative performance on predicting even one edge is
a good indicator of performance on predicting multiple edges.

4 Theoretical Modeling
A key observation from our experimental results is that larger mo-
tifs than triangles — in particular, squares — provide a substantial
performance boost on the strong tie prediction task. In this section,
we aim to provide theoretical insight into why this should be the
case. Specifically, in what settings can one expect richer motifs

6Note that our ground truth data has only binary labels, and hence
a ranking metric such as NDCG isn’t applicable here.

Figure 4: Precision at 5 on the phone book graph for a selection
of methods. There is no node such that dL < 16 and dS ≥ 10,
therefore the plot does not start from 10. The symbols (g1) and
(g2) at the end of the legends show the group of the scoring
function based on table 1.

such as squares to be more useful as features for strong tie predic-
tion?

In order to study this question analytically, we define two sim-
ple graph models that are motivated by stochastic block models.
While the graphs produced by these models are much simpler than
what we encounter in practice, they serve as tractable structures
that capture some of the essential features of the networks in our
applications. Given a graph model, we can study the usefulness
of motifs by posing it as a feature sparsity question: are squares a
more discriminative feature than triangles because of their higher
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prevalence? As we will see, this indeed turns out to be true, and
we will show via analytical results and simulations that for certain
parameter ranges in these graph models, squares are more discrim-
inative features than triangles.

To start with, we define a prediction task that reflects our ex-
perimental evaluation (though it is not exactly equivalent). Given
a graph G(V,E) with hidden labels L = f(e) → {0, 1} for all
e ∈ E, an algorithm is required to predict the hidden labels for
edges. We will attempt to represent patterns for edges marked with
label 1 via a graph generation model. The edges labeled as 1 in
these models will act as strong ties and edges labeled as 0 will be
the weak ties.

This task is quite similar to our empirical task, with a few dif-
ferences. First, recall that in the empirical task, we had to guess
only one edge as being a strong tie. Here, however, we ask for an
algorithm that labels all the edges adjacent to the test node. An-
other difference between this model and our prediction task is the
fact that in the theoretical analysis our algorithm does not have ac-
cess to the labeled strong ties and will treat all the ties as weak ties.
We emphasize that the main purpose of this section is to study the
relative discriminative power of squares and triangles features.

4.1 Graph Models

A key step in formulating a theoretical model is to have a graph
model that abstracts some of the important structural properties of
friendship structures in real-world networks. Our approach is to
use “planted community” models so that there is a clear structure
that an algorithm can learn. Furthermore, in addition to the planted
structure, we also need to appropriately represent the sparsity and
noisiness of data represented in online ties of the real-world offline
networks. Hence, in all the models proposed here, the underlying
friendship structure in the graph is perturbed via sparsification and
by adding noisy edges to the graph.

4.1.1 Single Planted Model

We start with a basic model, which we term the single planted
model. This is a stochastic block model graph with n nodes and
dn
c
e communities each consisting of c nodes. For parameters p, q,

and r, the probability of an edge between nodes in the same com-
munity is p q√

c
, and the probability of an edge between nodes in

different communities is r.
The graph generated by this model constitutes GL, and the sub-

graph consisting only of edges inside communities is GS . We can
then imagine removing edges incident to a subset of nodes Vtest in
GS , corresponding to the isolated nodes in our prediction task.

We can think of the edge probabiltiy p q√
c

inside communities
arising as follows: we imagine p as the probability that each pair of
nodes within a community knows each other, and q√

c
as the prob-

ability that two such people in fact form a link between each other
on the platform. This second filtering of the links via q√

c
makes the

task more realistic and more challenging.

4.1.2 Double Planted Model

This model is an extension of the single planted model. We create
two different random graphs G1 and G2 using the single planted
model. We call the subsets of the edges inside the community G1S

and G2S . The union of G1S and G2S will create our graph GS .
Edges between two nodes that do not share a community are added
with probability r. In this case each node is in exactly two commu-
nities. The final graph created by this process will be GL. We call
the communities inGL that come fromG1S the Type-1 Group, and
the communities that come from G2S the Type-2 Group.

4.2 Theoretical Analysis
Now we theoretically analyze the performance of squares and tri-
angles as predictors for finding edges in GS in the planted mod-
els proposed above. Throughout this analysis, we will set the ran-
dom noise edge probability as r = lnn

n
, and the group size to be

c = α1 lnn. From this point on we define ρ = pq. Due to similar-
ity between the proofs for the Single and Double Planted Model we
will state our claims without proofs for the Single Planted Model,
and provide more details for the Double Planted Model.

We will show that in these models squares are on average a more
discriminative feature than triangles. In particular, we will make
this claim by examining the gap between the expected value of the
two features for edges within a group versus edges between groups.
Given an edge (x, y), denote the number of triangles and squares
that the edge belongs to as ∆(x, y) and 2(x, y).

4.2.1 Single Planted Model
THEOREM 1. For all edges (x, y), we have E [∆(x, y)] < 1.

For edges that go between different communities we have
E [2(x, y)] < 1, and for edges in the same community we have
E [2(x, y)] >

(
1− 5

n

)√
cρ3 '

√
cρ3.

Thus, edges inside and between groups have a significant difference
in the expected number of squares they are involved in, roughly
equal to

√
cρ3. Hence, in the single planted model the squares

feature is expected to be more discriminative than triangles.
The functions ∆ and 2 have an integer range, and for these fea-

tures to be distinguishable they have to be non-zero, and the prob-
ability of an edge outside a group being in a triangle or square con-
verges to zero. So the power of the triangle/square feature is equiv-
alent to the probability of being in a triangle/square. For an an edge
inside a group, the probability it is in a triangle is 1−(1−( ρ√

c
)2)c−2

and the probability it is in a square is 1 − (1 − ( ρ√
c
)3)(c−2)(c−3).

The latter is much larger for sparser (smaller ρ) graphs leading to
another indication that squares are a better feature than triangles.

4.2.2 Double Planted Model
THEOREM 2. In the double planted model, E [∆(x, y)] < 1

and E [2(x, y)] < 1 for all edges (x, y) where x and y are not
in the same community. For edges (x, y) where x and y are in the
same community, E [∆(x, y)] < 2 and E [2(x, y)] >

√
cρ3.

We start by stating two basic properties of the double planted
model, formalized in the following lemmas. We skip the proofs as
they are based upon a standard application of Chernoff bounds.

LEMMA 1. For a sufficiently large constant α1(> 4.1
δ2

), with
high probability(> 1− 2

cn
), each group’s size is in [(1−δ)c, (1+δ)c].

LEMMA 2. For a sufficiently large constant α1(> 4.1
δ2

), with
high probability, no Type-1 group has an intersection of size more
than α2(≤ 3) with any Type-2 group.

The above two properties provide us with the tools to analyze the
expected values of the triangles and squares features.

LEMMA 3. For any nodes x and y, we have E [∆(x, y)] ≤ 1,
except the case when x and y share the same group in both types,
in which case E [∆(x, y)] ≤ 2. However, this latter event is rare.

PROOF. These are the three cases we need to analyze:
x and y have two common groups: The probability of x and y
sharing both groups is ( c

n
)2, and conditioned on that, we can upper-

bound E [∆(x, y)] by: 2 c
n

( ρ√
c
)2 + (n−c

n
)2( lnn

n
)2 < 2.
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x and y are in the same group: The third node z, can be in the
same group as x and y, can share a group with only one of them or
be an outsider to both nodes. The upper bound for the probability of
any of these events happening is 2c

n
, c
n

and n−c
n

. So the probability
of triangle (x, y, z) existing is:

c
n

( ρ√
c
)2 + 2 c

n
n−c
n

( ρ√
c
)( lnn

n
) + (n−c)

n
n−2c
n

( lnn
n

)2

By multiplying (n− 2) by the value above, we will find an upper-
bound for E [∆(x, y)] which is smaller than 1.
x and y are in different groups: Each third node z, can be in the
same Type 1 group with x and the same Type 2 group with y or
vice-versa, it can also share a group with either one of x or y but
not both, or it can be an outsider to both nodes. An upper-bound
for the probability of having triangle (x, y, z) is:

2( c
n

)2( ρ√
c
)2 + 2 2c

n
(n−c
n

)( ρ√
c
)( lnn

n
) + ( (n−2c)

n
)2( lnn

n
)2

Now if we multiply this by n− 2 it will be the expected number of
triangles which is less than 1.

In summary, for the common cases, E[∆(x, y)] < 1, and even
for the rare case in which x and y have two groups in common,
E[∆(x, y)] < 2. Thus, one might not expect triangles to be a
useful feature in discriminating between the two kinds of ties.

Now, we present an analysis for the use of squares as features.

LEMMA 4. If x and y are in a different group, E [2(x, y)] < 1
and if they share a group, E [2(x, y)] ≥

√
cρ3.

PROOF. We will analyze this via a case analysis, as before:
x and y are in the same group: The number of squares includ-
ing (x, y) in this case is lower-bounded by the expected number of
squares when all four nodes are inside the same group. The proba-
bility of the other two nodes being in the same group is ( c

n
)2 so the

probability of a square with the specific ordering of x, u, v, y will
be ( c

n
)2( ρ√

c
)3 =

√
cρ3

n2 .
There are (n − 2)(n − 3) candidate pairs leading to the claimed
lower-bound. If these two nodes share two groups then with a
similar method and using Lemma 2 we can get a lower-bound of
2
√
cρ3.

x and y are in different groups: When x and y are in different
groups, there are two ways a square can form that includes (x, y).
The first way is for the square to include an edge whose ends do
not share a group. The second is for each of the four edges to have
ends that share a group. Note that this second situation is not possi-
ble in the single planted model, but becomes possible in the double
planted model whenever there are two other nodes u and v where
(x, u),(u, v) and (v, y) each have a group in common. We will call
such a pair (u, v) a potential bad pair for (x, y).

The case in which the square involves an edge whose ends do
not share a group is the easier case; the expected number of such
squares is very small due to the low probability on such cross-group
edges, and we omit the details here. We now consider the case of
a square whose edges lie within groups; we bound the expected
number of such squares by bounding the number of potential bad
pairs for two nodes.

We know that each of x and y have at most 2c(1 + δ) shared
group members. A neighbor of x and a neighbor of y should
be in the same group to create a bad pair. We name the groups
that exclude x and y, Sj,1, . . . , Sj,n

c
−2 where j ∈ {1, 2} de-

notes which group type it is, and the groups including x and y as
S1,x, S2,x, S1,y, S2,y . We know that the number of potential bad
pairs is:

(a) Single Planted Model

(b) Double Planted Model

Figure 7: Precision, recall and F1 score when p = 0.85 and
variable q. (a) Single planted model (b) Double planted model

∑2
j=1[|Sj,x ∩S3−j,y|+

∑n
c
−2

i=1 |Sj,x ∩S(3−j),i||Sj,y ∩S(3−j),i|]

So by Lemma 2 we know, the terms |S1,x ∩ S2,y| and |S2,x ∩
S1,y| are upper bounded by a small constant. We also know |Sj,y∩
S3−j,i| and |Sj,x ∩ S3−j,i| for 1 ≤ j ≤ 2, are non-zero for at
most (1 + δ)c terms and when they are non-zero, By Lemma 2 we
know that they are bounded by a small constant. Therefore, the
inner sum will be at mostO(c). Therefore, the expected number of
potential bad pairs is O(c) which means it is less than γc (where
γ << 2α2

2) with high probability.7 Now that the grouping is done
we add the edge probabilities. Since each edge is inside a group it
will exist with probability ρ√

c
which means the expected number of

bad squares is γc( ρ√
c
)3 <

2α2
2ρ

3

√
c

. This number for a large enough
n is smaller than 1.

The separation between E [2(x, y)] and E [∆(x, y)] is as in the
single planted model, and on average, we would expect the squares
feature to be more discriminative compared to the triangles feature.
Hence, even with these simple planted models, we observe a phe-
nomenon where the sparsity of the triangles feature might limit its
usefulness as a feature compared to squares.

4.3 Simulation Results

The theoretical results presented above show a separation in the be-
havior of the expected number of triangles and squares containing
different kinds of edges. We now perform computational simu-
lations to see how these separations in expectation translate into
probabilistic outcomes with concrete values for the parameters.

For all these simulations, we use the prediction framework from
the previous section. In particular, we use the number of triangles,
number of squares, and their logarithms, both separately and com-
bined together, as features. Then, as before, we train an LR model
that is then used to make the predictions on the test set.

Given our theoretical results, we expect a parameter range where
the dominant feature changes from triangles to squares. Hence,
7By applying the Chernoff bounds to two groups of Type-1 having
intersection in a Type-2 group we can easily get a bound of α

2
2
2
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we run an experiment for each parameter to understand how this
switch happens. In each of our experiments, we vary the chosen
parameter over a wide range while keeping all the other parameters
of the model fixed. We observe that for most of our parameters, the
relative usefulness of the triangles and squares remains unchanged
throughout the range. The only parameters that have an effect on
the features’ relative usefulness are the ones that affect the sparsity
of the resulting graph.

The primary parameter of interest in the planted models is q,
since the graph gets sparser as q gets smaller. Hence, in our pre-
sentation below we fix the rest of the parameters and only study the
effect of q in the two planted models. We use the specified gen-
erative process for each model to build hundreds of train and test
graphs. As suggested by Figure 7 the squares features tend to out-
perform the triangles when the graph is sparse. In these simulations
we choose n = 4000, r = ln(n)

n
, the expected size for the groups c

to be 30, p = 0.85 and values in [0.1, 2.5] with a step of 0.1 for q.

5 Conclusion
In this work, we use information about a dense graphGL composed
primarily of weak ties to fill in the strong ties in a sparse graphGS ,
using the frequency of small subgraphs as features. We achieve
high precision on this prediction task; however, we need to go be-
yond structures based on triangles — as in standard approaches for
strong-tie prediction — and look at subgraphs on larger numbers of
nodes. The methodology seems general enough to apply to many
other settings as well.

The relative usefulness of the network structures also presents
a clear trade-off between noisiness and sparsity: from our results
it is evident that small structures that are in direct proximity to
the target node have a higher signal strength than structures that
involve nodes that are farther off. At the same time, these struc-
tures tend to be sparse, and hence in some settings more abundant
structures such as squares are more useful for filling in a sparsely
populated graph. Our theoretical models and results demonstrate
contexts where this can be shown to be the case analytically.

The setting discussed here also opens up several new questions.
In particular, is it possible to quantify the properties of the relation-
ship between GL and GS that are necessary for training on GL to
be useful for filling in GS? We also note that we experimented us-
ing multiple graphs to predict edges in GS and we only observed
a small (∼ 1%) increase in precision. This leads to the possibil-
ity that an understanding of the overlap properties among graphs
might indicate when the use of multiple graphs could be effective
for these types of prediction tasks.
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7 Appendix
7.1 Computing Squares on Large Graphs
Computing the exact number of squares on large graphs can be a
challenging problem. This connects to a large literature on counting
triangles and other network motifs, but the size of the graph in our
problem poses challenges for even the most efficient known tech-
niques. Here, we briefly point out a scalable heuristic that can com-
pute the feature using a randomized algorithm by utilizing Hyper-
LogLog sketches [8]. This approach does not provide good worst
case guarantees as it is, but in practice we’ve observed reasonable
performance from the heuristic. We also note that the counts pro-
duced by these sketches are fed to a classifier, which provides an
additional layer of robustness for error.

Consider a node a with direct neighbors B in GL, and second
degree neighbors C (excluding the nodes distance two away that
are in B). We need to compute the squares feature for each b ∈ B.
A naive method of computing this would involve forming a list of
b’s neighbors that are also in C, and doing pairwise intersections
between the lists of all b’s. We note that one can flip this compu-
tation around, with each c ∈ C having a list of neighbors that is
intersected with the set B, as then each pair in the resulting list has
a unique square path.
This idea can be implemented efficiently with HyperLogLog sketches
that implement intersections [8]. In particular, each c computes a
sketch of its neighbors, and each b is annotated with a sketch of
B’s. Then, for an existing (b, c) edge, the intersection of these
sketches is exactly one more than the number of squares that b par-
ticipates in. This computation can be implemented efficiently in
MapReduce [5].

We re-emphasize that in our experiments in this work, we do not
use this approximation (since the sample size was tractable with
exact computation). We note this algorithm here to demonstrate
that the squares feature can be computed on extremely large graphs
in an efficient manner.
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