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ABSTRACT 

Apache Spark is an open-source cluster computing framework. It 

has emerged as the next generation big data processing engine, 

overtaking Hadoop MapReduce which helped ignite the big data 

revolution. Spark maintains MapReduce’s linear scalability and 

fault tolerance, but extends it in a few important ways: it is much 

faster (100 times faster for certain applications), much easier to 

program in due to its rich APIs in Python, Java, Scala, SQL and R 

(MapReduce has 2 core calls) , and its core data abstraction, the 

distributed data frame. In addition, it goes far beyond batch 

applications to support a variety of compute-intensive tasks, 

including interactive queries, streaming, machine learning, and 

graph processing. 

With massive amounts of computational power, deep learning has 

been shown to produce state-of-the-art results on various tasks in 

different fields like computer vision, automatic speech 

recognition, natural language processing and online advertising 

targeting. Thanks to the open-source frameworks, e.g. Torch, 

Theano, Caffe, MxNet, Keras and TensorFlow, we can build deep 

learning model in a much easier way. Among all these framework, 

TensorFlow is probably the most popular open source deep 

learning library. TensorFlow 1.0 was released recently, which 

provide a more stable, flexible and powerful computation tool for 

numerical computation using data flow graphs. Keras is a high-

level neural networks library, written in Python and capable of 

running on top of either TensorFlow or Theano. It was developed 

with a focus on enabling fast experimentation. 

This tutorial will provide an accessible introduction to large-scale 

distributed machine learning and data mining, and to Spark and its 

potential to revolutionize academic and commercial data science 

practices. It is divided into three parts: the first part will cover 

fundamental Spark concepts, including Spark Core, functional 

programming ala map-reduce, data frames, the Spark Shell, Spark 

Streaming, Spark SQL, MLlib, and more; the second part will 

focus on hands-on algorithmic design and development with 

Spark (developing algorithms from scratch such as decision tree 

learning, association rule mining (aPriori), graph processing 

algorithms such as pagerank/shortest path, gradient descent 

algorithms such as support vectors machines and matrix 

factorization. Industrial applications and deployments of Spark 

will also be presented.; the third part will introduce deep learning 

concepts, how to implement a deep learning model through 

TensorFlow, Keras and run the model on Spark. Example code 

will be made available in python (pySpark) notebooks. 
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1. INTRODUCTION 
This tutorial is for data scientists who may not already be familiar 

with Spark, distributed systems, and large machine learning. This 

tutorial introduces the underlying statistical and algorithmic 

principles required to develop scalable machine learning 

pipelines, and provides hands-on experience using PySpark, 

TensorFlow and Keras. It presents an integrated view of data 

processing by highlighting the various components of Spark 

pipelines, including exploratory data analysis, feature extraction, 

supervised learning, and model evaluation. Students will use 

Spark to implement scalable algorithms for fundamental statistical 

models. Data intensive industrial applications and deployments of 

Spark will also be presented, in fields such as mobile advertising. 

We present an integrated view of data processing by highlighting 

the various components of these pipelines, including exploratory 

data analysis, feature extraction, supervised learning, and model 

evaluation. You will gain hands-on experience applying these 

principles using Apache Spark, a cluster computing system well 

suited for large-scale machine learning tasks. You will implement 

scalable algorithms from fundamental statistical models (linear 

regression, logistic regression, matrix factorization, principal 

component analysis) to deep learning model while tackling key 

problems from various domains: mobile advertising, personalized 

recommendation, and consumer segmentation. 

The emphasis of this tutorial is scalability and the tradeoffs 

associated with distributed processing of large datasets. The 

tutorial will cover "core" data science topics (e.g., gradient 

descent) as well as related topics in the broader area of human 

language technologies (e.g., distributed parameter estimation, 

graphs algorithms). Content will include general discussions of 

algorithm design, presentation of illustrative algorithms, relevant 

case studies, as well as practical advice in writing Spark programs 

and running Spark clusters. 

Participants will deploy Spark on their multicore laptops and run 

and develop examples there. In addition, we plan to work with 

Amazon Web Services (AWS) and get participants in this tutorial 

(free) access to Amazon's Elastic Compute Cloud (EC2). With 

this "utility computing" service, participants will be able to 

rapidly provision Spark clusters on the fly without needing to 

purchase any hardware. 

Target audience: The tutorial is targeted to most WWW 

attendees, both industry practitioners and researchers who wish to 

learn best practices of large scale data science using next 
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generation tools. The level of the tutorial can be considered 

introductory with hands-on exposure to algorithmic development 

(and pySpark the python API to Spark) and deep learning in 

Spark. 

Prerequisite knowledge of audience: Programming background; 

comfort with mathematical and algorithmic reasoning; familiarity 

with basic machine learning concepts; exposure to algorithms, 

probability, linear algebra and calculus; experience with Python 

(or the ability to learn it quickly). All exercises will use PySpark, 

but previous experience with Spark or distributed computing is 

NOT required. 

2. OUTLINES 
Chapter Topics 

Spark Introduction and 

Hello World 

History of Spark 

Introduction to data analysis with Spark 

Downloading Spark and getting started on 

your local machine 

Parallel computing Divide and conquer, Semaphores, Barriers, 

Shared nothing architectures 

Core Spark Spark intro and basics Functional 

programming 

Transformations and actions, Map-Reduce 

patterns, Dataframes, RDD (no keys), 

pySpark, Pair RDDs, Scala, Spark Shell, 
Broadcast variables 

Spark APIs Java, Scala, Python, R, SQL 

Data analysis and 

handling with Spark 

Tools for exploratory data analysis, 

Standardization, Reservoir Sampling, 
SparkSQL; Join, Statistics in SPARK; 

Algorithms and 

programming in Spark 

Algorithmic design and development with 

Spark 

Developing algorithms from scratch 

 Decision tree learning 

 Naïve Bayes 
Association rule mining 

 aPriori algorithm 
Graph processing algorithms 

 Pagerank 

 Shortest path 

 Friend of friends 

 TextRank 

Unsupervised algorithms 

 Expectation maximization 

Gradient descent algorithms 

 support vectors machines 
matrix factorization 

Spark at Scale  Install Spark on your muiltcore laptop 

Run Spark on an EC2 cluster 

Spark libraries 

 

SparkSQL, MLlib, GraphX, Spark 
Streaming, Spark deployments 

Spark deployments and 

case studies 

Mobile advertising, Recommendation 

engines 

Deep learning Deep learning concept, TensorFlow, Keras, 

Run Keras using TensorFlow backend in 
Spark 
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