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ABSTRACT 

Deep Neural Networks (DNNs) have revolutionized the way that 

machines understand language and have allowed us to create 

models that answer textual questions, translate pairs of languages, 

and intelligently compare document corpora. At the heart of these 

successes lie core techniques that fall into the area of sequence 

understanding. While powerful, dealing with variable-size 

sequences in DNNs requires deep understanding and experience in 

creating such networks, which can be daunting to many scientists 

and engineers. This tutorial will focus on introducing core concepts, 

end-to-end recipes, and key innovations facilitated by the cross-

platform fully open-source Cognitive Toolkit (formerly called 

CNTK) with superior scalability (up to 1000 GPUs) for very large 

data corpora. Specifically, we will present tutorials on basic 

sequence understanding, intermediate sequence-to-sequence 

translation (both with and without attention), and the advanced 

Reasoning Network (ReasoNet) which has achieved industry-

leading results in reading comprehension. 
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1. INTRODUCTION 
Deep Neural Networks (DNNs) are powerful models that have 

achieved state-of-the-art performance on many diverse difficult 

learning tasks. DNNs are powerful because they can perform 

arbitrary parallel computation for a modest number of steps. Large 

DNNs can be trained with supervised backpropagation whenever 

the labeled training set has enough information to specify the 

network’s parameters. Thus, if there exists a parameter setting of a 

large DNN that achieves good results (for example, because humans 

can solve the task very rapidly), supervised backpropagation will 

find these parameters and solve the problem. 

Sequential data poses a challenge for DNNs because they 

traditionally they have required the dimensionality of the inputs and 

outputs to be known and fixed. Recurrent neural networks, however, 

allow DNNs to have loops, and therefore accept data of arbitrary 

lengths. One problem with RNNs is that as the gradients must be 

backpropagated through time, they often become infinitesimally 

small or explode in size. Sutskever et al. [1] have shown that Long 

Short-Term Memory (LSTM) architectures – a slightly more 

complex version of RNNs – can solve general sequence-to-

sequence problems with the vanishing/exploding gradient problem 

taken care of. The LSTM’s ability to successfully learn on data with 

long-range temporal dependencies makes it a natural choice for this 

application due to the considerable time lag between the inputs and 

their corresponding output. Recently, research has shown how the 

human brain pays selective attention to certain parts of the 

enormous amount of information that comes our way by filtering 

out extraneous data that is not currently of import for the task at 

hand. One can extend this concept to neural networks. This 

approach – commonly referred to as “attention” – helps improve on 

challenging sequence-processing tasks where more simple 

sequence-to-sequence models fail, and we will cover it extensively 

in this tutorial. Additionally, we will also walk through the 

Reasoning Network (ReasoNet) framework which has achieved 

industry-leading results in reading comprehension. 

In this tutorial, we will introduce Microsoft’s Cognitive Toolkit, 

also known as CNTK, to solve many DNN-based algorithms 

applied to sequence data. We will introduce the audience to solving 

sequence-to-sequence problems via hands-on tutorials using the 

toolkit. While there are several other deep learning toolkits, we will 

explain several key innovations that are made available in CNTK 

which provide unique advantages over other tools in addition to 

ease of use, speed, and scalability. CNTK achieves such scalability 

via advanced algorithms such as 1-bit SGD [3] and block-

momentum SGD [4]. We will explain these algorithms in the 

tutorial, and how they directly lead to increases in productivity. The 

goal is to enable the audience to build their own sequence-based 

networks and train them in a distributed manner by the end of the 

tutorial. 

2. Sequence Reasoning 
Comprehension of text corpora is predicated by techniques rooted in 

sequence understanding. In the context of NLP, sequences are 

defined as a set of words in a corpus where the positional 

information is modelled and may or may not be of importance in the 

context of the task being performed. In the context of language 

translation, the positions of words in a sentence changes the 

meaning of the text (depending on the language). However, in web 

query language, positional information may not be of much 

consequence, at least for very short queries.  Regardless of the 

domain, the deep learning community has found RNNs using 

LSTM and GRU architectures to be very effective in capturing 

long-range dependencies between word tokens. 

We will start the tutorial by introducing the basic structure of an 

LSTM-based deep network to classify different words in a text 

sequence (aka “slot labelling”). With the basics of network building 

covered, we will introduce sequence-to-sequence models both with 

and without attention [5]. Finally, we will introduce the ReasoNet 

model for performing reading comprehension. 
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2.1 Sequence-to-Sequence 
Sequence-to-sequence models are achieving state-of-the-art results 

in fields as diverse as machine translation, text summarization, and 

syntactic parsing. The framework of sequence-to-sequence 

networks is extremely powerful yet easily adaptable to different 

datasets with little or no domain-specific adaptation. Building from 

the sequence reasoning tutorial, participants will learn the sequence-

to-sequence framework of encoder-decoders, where an input 

sequence is run through an encoder RNN (typically represented by 

an LSTM) to get a thought vector-space representation of its 

content, and then run through a second decoder RNN that translates 

the encoded representation into an output sequence. We will show 

how to implement basic versions of the model in CNTK along with 

some recent variations from the literature including, most 

predominantly, attention, where the decoder learns the specific parts 

of the encoded input that it should concentrate on while generating 

each word (or, more generally, label) in the output sequence, and as 

illustrated below. 

 

Figure 1. Learned attention window for generating phonemes 

from a grapheme-to-phoneme translation sequence-to-sequence 

network with attention. 

The initial sequence-to-sequence networks worked by encoding all 

the information from the input sequence into a single (“thought”) 

vector that the decoder RNN used as a strong context initialization 

to generate an output sequence. While the results have been 

impressive, this framework quickly breaks down as the length of the 

input sequence grows.  

For translating long sentences or even paragraphs, holding all of the 

information in a single vector is untenable, regardless of how much 

capacity is in the network. With attention models, we can solve this 

problem in two important ways:  

(1) the decoder RNN gets access to all the hidden state information 

of the encoder (and thereby the input sequence); and,  

(2) more importantly, the network learns, given the current context 

and position of the word it is generating, which states – as a 

weighted sum – it should use to help it determine the word to 

generate. In this portion of the tutorial, we will show how CNTK 

makes this setup both conceptually easy and able to learn in a fast 

and robust manner. 

2.2 Reasoning Network (ReasoNet)  
The Reasoning Network (ReasoNet) [6] has achieved industry-

leading results in reading comprehension. The ReasoNet model is 

currently the second-best performing model with ExactMatch (EM) 

and F1 scores being 73.42 and 81.75, respectively, on the Stanford 

Question Answering Dataset (SQuAD) [7].  

ReasoNet attacks the problem of teaching a computer to read a 

document and then answer general questions pertaining to the 

contents of that document. Single-turn reasoning models use 

attention mechanisms Error! Reference source not found. with 

associated deep learning models to emphasize specific parts of the 

document which are relevant to the query. However, for many 

sophisticated comprehension tasks, a human reader often revisits 

some specific passage or the question to grasp a better 

understanding of the problem. Recent work has made use of 

multiple turns to infer the relation between query, document, and 

answer [9][10][11]. This approach has been demonstrated to 

produce superior results. We summarize the essence of the original 

paper by Shen et. Al. [6]  in the remainder of this section. 

Existing multi-turn models have a fixed number of hops or 

iterations in their inference, i.e., with predetermined reasoning 

depth, without regard to the complexity of each individual query or 

document. However, a human reader may read a document several 

times and stop when the question in mind has been adequately 

understood (reaching a certain level of confidence) or terminate 

after a certain number of tries.  

ReasoNet tries to mimic the inference process of human readers. 

With a question in mind, ReasoNet reads a document repeatedly, 

each time focusing on different parts of the document until a 

satisfactory answer is found or formed. Moreover, unlike previous 

approaches using fixed numbers of hops or iterations, ReasoNet 

introduces a termination state in the inference. This state can decide 

whether to continue the inference to the next turn after digesting 

intermediate information, or to terminate the whole inference when 

it concludes that existing information is sufficient to yield an 

answer. The number of turns is dynamically modeled by both the 

document and the query, and will be learned automatically 

according to the difficulty of the problem. 

One of the significant challenges ReasoNet faces is how to design 

an efficient training method, since the termination state is discrete 

and not connected to the final output. This prohibits the canonical 

back-propagation method from being directly applied to train 

ReasoNet. Inspired by [12][13], this challenge is tackled by a novel 

deep reinforcement learning method called Contrastive Reward 

(CR) to successfully train ReasoNet. 

The challenge for CNTK (and most other deep learning toolkits) to 

implement Contractive Rewards is that the derivative of the loss 

cannot be directly computed based on the loss formula via Chain-

Rule.  

𝑅 = ∑ 𝜋𝑡,𝑎(
𝑟𝑡,𝑎 

𝑏
− 1)

𝑡,𝑎

 

where,  

𝑏 = ∑ 𝜋𝑡,𝑎𝑟𝑡,𝑎

𝑡,𝑎

 

is referenced in the formula as a constant. Otherwise the backward 

derivative of loss will always be zero. Thus, we introduce a new 

operator, ConstantRef, in CNTK to tackle that challenge. With 

ConstantRef, we can just take the forward output of b in the 

computation of the loss while keeping it as a constant during 

backward propagation.  

Unlike traditional reinforcement learning optimization methods 

using a global variable to capture rewards, CR utilizes an instance-

based reward baseline assignment. Using ConstantRef enables us 

to factor part of the forward value in the loss computation. 

Experiments show the superiority of CR in both training speed and 

accuracy. Finally, by accounting for a dynamic termination state 
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during inference and applying the proposed deep reinforcement 

learning optimization method, ReasoNet can achieve the state-of-

the-art results in machine comprehension datasets, including 

unstructured CNN and Daily Mail datasets, and a proposed 

structured Graph Reachability dataset. 

We will show how to implement this powerful deep learning 

framework in CNTK and how to extend it to achieve impressive 

results in reading comprehension. 

3. CNTK Overview 
CNTK was originally designed for speech processing tasks but 

quickly developed into a full-featured deep learning toolkit. It was 

moved to GitHub [2] under the MIT License in 2016 and has 

evolved even further since then. Recently-released CNTK 2.0 

provides support for both C++ and Python APIs and includes 

numerous examples and high-level building blocks. This toolkit was 

the key for Microsoft Research’s recent breakthrough in speech 

recognition by reaching human parity in conversational speech 

recognition [14]. It has been extensively used internally at Microsoft 

for image, text, and speech data with each area benefiting from the 

built-in scalability.  

There are certainly many deep learning toolkits already widely used 

in the deep learning community, including Caffe [15], Cognitive 

Toolkit (CNTK) [2], MxNet [16], TensorFlow [17] Theano [18], 

Torch [19], etc. However, we argue that CNTK has unique 

advantages over these toolkits in the combination of ease of use, 

speed, and scalability.  

Recently, a study done by the Hong Kong Baptist University 

summarizes the performance of different deep learning toolkits [20]. 

Note the version of CNTK used in this analysis is 1.72 which is a 

much older version compared to the latest, and faster, 2.0 release. 

Here is a brief excerpt from their summary: 

1. With a single GPU platform, Caffe, CNTK, and Torch perform 

better than MXNet and TensorFlow on FCNs; MXNet is 

outstanding in CNNs, especially on very large networks, while 

Caffe and CNTK also achieve good performance on smaller 

CNN networks; for LSTM, CNTK obtains excellent time 

efficiency, which is up to 5-10 times better than other toolkits. 

2. With the parallelization of data during training, all the multi-

GPU versions have a considerably higher throughput and the 

convergent speed is also accelerated. CNTK performs better 

scaling on FCN and AlexNet, while MXNet and Torch are 

outstanding in scaling CNNs. 

3. CNTK outperforms Tensorflow in all categories. 

4. CNTK Learners (Optimizers) 
Performance is a key aspect of deep learning toolkits, especially 

with ever increasing network complexity and exponential growth in 

data sizes. However, to facilitate such large-scale computations, one 

needs to move computing to the cloud where any improvement in 

computing efficiency results in equivalent cost savings.  

In this aspect, there are two optimizations that are critical to 

CNTK’s superior scalability. Both are related to reducing 

communication costs between worker nodes. These are:  

(1) 1-bit quantized Stochastic Gradient Descent (SGD) [3]; and 

(2) Block momentum (using incremental block training) [4] 

4.1 1-bit SGD Algorithm 
There are different degrees of parallelism one can explore such as 

data parallelism, model parallelism, and layer parallelism. 1-bit 

SGD exploits data parallelism. The algorithm revolves around 

taking small samples of the minibatch data during training. Deep 

models consist of multiple layers (say several layers of fully 

connected projections, convolutions, recurrences, or a combination 

of these). Typically, each worker (GPU node in a GPU cluster) 

computes the sub-gradient for a given layer and for the minibatch 

sample assigned to the node. The sub-gradients across the different 

worker nodes are pooled in an All Reduce operation. However, this 

introduces a choke point which in the case of 1-bit SGD is 

overcome by distributing the sub-gradients aggregation across all 

the nodes. By distributing the gradients across all the nodes, each 

worker node can aggregate a subset of sub-gradients from other 

nodes. Repeating the process yields the sub-gradients aggregation 

across all the worker nodes.  

While all the workers are efficiently used, we have increased the 

communication between the worker nodes. One way to reduce the 

overhead is to reduce the payload for each communication. As the 

name suggests, 1-bit SGD achieves this by quantizing the gradient 

to a single bit and carrying the quantization error over to the next 

minibatch. We will show how one can greatly leverage this 

optimization while training large models. 

4.2 Block momentum  
While 1-bit SGD reduces the payload to be communicated between 

worker nodes during each minibatch, Block Momentum operates at 

the block level and splits within each block. Blocks are defined as 

chunks of non-overlapping data partitions of the training set and 

each block is further partitioned into splits.  There are two iterative 

stages within the block momentum algorithm: (a) intra-block 

parallel optimization (IBPO); and (b) block wise model-update 

filtering (BMUF). The details [4] will be covered in the tutorial. 

4.2.1 IBPO 
In this step, we randomly select a block of unprocessed data, and 

generate the block-wise model-update. Within each block the data is 

further partitioned into N splits and distributed to N different 

workers (e.g., GPU cards in a GPU cluster). These workers run in 

parallel to optimize local models with their own split of data. By 

leveraging data-parallelism within the block, the intra-block 

optimization can be conducted with different parallel algorithms. 

Finally, an aggregated model for a given block can be obtained by 

averaging optimized local models across the different sub-blocks 

provided by each of the different workers. from same initial model 

𝑾𝒈(𝑡 − 1). Each local model is optimized by mini-batch based 

SGD for one epoch of the split.  Please be noted that local model 

optimization can also be conducted by 1-bit SGD, ASGD, etc, so 

that each worker can leverage multiple GPU cards to achieve better 

scalability.  Finally, an aggregated model denoted as �̅̅̅�(𝑡)can be 

obtained by averaging N optimized local models. 

4.2.2 BMUF 
Instead of treating the output of IBPO, the aggregated model for 

each block is used to globally reach the final model directly, which 

is model averaging strategy. We treat global model updates as a 

block-level stochastic optimization process and propose a 

Blockwise Model-Update Filtering (BMUF) technique to stabilize 

the learning process. The method involves calculating the model 

update for each block using a technique like SGD with momentum 

trick except that the model update for the current iteration is blended 

with a weighted product of the previous iteration.  

933



Instead of treating the �̅̅̅�(𝑡)  as the finetuned global model directly, 

which is the strategy of model averaging, we treat global model 

update operation as a block-level stochastic optimization process 

and propose a Blockwise Model-Update Filtering (BMUF) 

technique to stabilize the learning process. 

First, we calculate the model-update vector resulting from current 

data block by subtract initial model from the aggregated model: 

𝑮(𝑡) = �̅̅̅�(𝑡) − 𝑾𝒈(𝑡 − 1) 

Then calculate global model-update vector, which is a weighted 

sum of 𝑮(𝑡) and previous global model update vector: 

∆(𝑡) = 𝜁𝑡𝑮(𝑡) + 𝜂𝑡∆(𝑡 − 1) 

This formulation is similar with SGD with momentum trick, so we 

call 𝜁𝑡 block learning rate and 𝜂𝑡 block momentum. 𝜁𝑡 and 𝜂𝑡 can 

be set automatically by an empirical formulation. Then we update 

global model by: 

𝑾(𝑡) = 𝑾(𝑡 − 1) + ∆(𝑡) 

Inspired by Nesterov momentum trick, we generate initial model for 

next data block by 

𝑾𝒈(𝑡) = 𝑾(𝑡) + 𝜂𝑡+1∆(𝑡) 

Broadcast 𝑾𝒈(𝑡) to each worker and repeat IBPO and BMUF until 

all data blocks are processed, which is called one sweep. We can 

fine-tune the model by several sweeps until a stopping criterion is 

satisfied and obtain the final global model.  

4.3 Discussion 
1-SGD uses minibatch level parallelism and BMUF uses Block 

level parallelism with a momentum like update trick to overcome 

scale out challenges of simple model averaging, a wide variety of 

deep learning models can benefit. Due to the synchronization at 

mini-batch level, 1-bit is more sensitive to the I/O latency (because 

once a worker slows down due to I/O, the overall training speed of 

one-mini-batch slows down). BMUF on the other hand 

synchronizes at block level, thus its speed is less sensitive to burst 

I/O latency. However, 1-bit SGD can work as local model optimizer 

for BMUF for optimal scalability across multiple server / multiple 

GPU distributed computing environment.  

5. Tutorial Session 
In this tutorial, we assume the audience is familiar with the basics of 

deep learning. The session will focus specifically on text-based 

modeling of sequences. We encourage the audience to come 

prepared with the latest CNTK version installed on their machines, 

which can be done by following the instructions on the github site 

[2]. Tutorial details will be updated and archived. We will be using 

both slideware and Jupyter Python notebooks. The audience is 

expected to be familiar with Python and the Jupyter notebooks.   
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