
Scalable Deep Document / Sequence Reasoning

with Cognitive Toolkit
Sayan Pathak

Microsoft Research
One Microsoft Way

Redmond, WA 98052 USA

+1 (425) 5387386
sayanpa@microsoft.com

Pengcheng He
Advanced Technology Group

Microsoft China
Beijing China

+86 (10) 59172966

penhe@microsoft.com

William Darling
Microsoft AI and Research

Microsoft Search Technology Center
Munich, Germany

+49 (89) 31766089

wdarling@microsoft.com

ABSTRACT

Deep Neural Networks (DNNs) have revolutionized the way that

machines understand language and have allowed us to create

models that answer textual questions, translate pairs of languages,

and intelligently compare document corpora. At the heart of these

successes lie core techniques that fall into the area of sequence

understanding. While powerful, dealing with variable-size

sequences in DNNs requires deep understanding and experience in

creating such networks, which can be daunting to many scientists

and engineers. This tutorial will focus on introducing core concepts,

end-to-end recipes, and key innovations facilitated by the cross-

platform fully open-source Cognitive Toolkit (formerly called

CNTK) with superior scalability (up to 1000 GPUs) for very large

data corpora. Specifically, we will present tutorials on basic

sequence understanding, intermediate sequence-to-sequence

translation (both with and without attention), and the advanced

Reasoning Network (ReasoNet) which has achieved industry-

leading results in reading comprehension.

Keywords

Deep neural networks; Cognitive Toolkit; CNTK; Sequence to

Sequence, ReasoNet

1. INTRODUCTION
Deep Neural Networks (DNNs) are powerful models that have

achieved state-of-the-art performance on many diverse difficult

learning tasks. DNNs are powerful because they can perform

arbitrary parallel computation for a modest number of steps. Large

DNNs can be trained with supervised backpropagation whenever

the labeled training set has enough information to specify the

network’s parameters. Thus, if there exists a parameter setting of a

large DNN that achieves good results (for example, because humans

can solve the task very rapidly), supervised backpropagation will

find these parameters and solve the problem.

Sequential data poses a challenge for DNNs because they

traditionally they have required the dimensionality of the inputs and

outputs to be known and fixed. Recurrent neural networks, however,

allow DNNs to have loops, and therefore accept data of arbitrary

lengths. One problem with RNNs is that as the gradients must be

backpropagated through time, they often become infinitesimally

small or explode in size. Sutskever et al. [1] have shown that Long

Short-Term Memory (LSTM) architectures – a slightly more

complex version of RNNs – can solve general sequence-to-

sequence problems with the vanishing/exploding gradient problem

taken care of. The LSTM’s ability to successfully learn on data with

long-range temporal dependencies makes it a natural choice for this

application due to the considerable time lag between the inputs and

their corresponding output. Recently, research has shown how the

human brain pays selective attention to certain parts of the

enormous amount of information that comes our way by filtering

out extraneous data that is not currently of import for the task at

hand. One can extend this concept to neural networks. This

approach – commonly referred to as “attention” – helps improve on

challenging sequence-processing tasks where more simple

sequence-to-sequence models fail, and we will cover it extensively

in this tutorial. Additionally, we will also walk through the

Reasoning Network (ReasoNet) framework which has achieved

industry-leading results in reading comprehension.

In this tutorial, we will introduce Microsoft’s Cognitive Toolkit,

also known as CNTK, to solve many DNN-based algorithms

applied to sequence data. We will introduce the audience to solving

sequence-to-sequence problems via hands-on tutorials using the

toolkit. While there are several other deep learning toolkits, we will

explain several key innovations that are made available in CNTK

which provide unique advantages over other tools in addition to

ease of use, speed, and scalability. CNTK achieves such scalability

via advanced algorithms such as 1-bit SGD [3] and block-

momentum SGD [4]. We will explain these algorithms in the

tutorial, and how they directly lead to increases in productivity. The

goal is to enable the audience to build their own sequence-based

networks and train them in a distributed manner by the end of the

tutorial.

2. Sequence Reasoning
Comprehension of text corpora is predicated by techniques rooted in

sequence understanding. In the context of NLP, sequences are

defined as a set of words in a corpus where the positional

information is modelled and may or may not be of importance in the

context of the task being performed. In the context of language

translation, the positions of words in a sentence changes the

meaning of the text (depending on the language). However, in web

query language, positional information may not be of much

consequence, at least for very short queries. Regardless of the

domain, the deep learning community has found RNNs using

LSTM and GRU architectures to be very effective in capturing

long-range dependencies between word tokens.

We will start the tutorial by introducing the basic structure of an

LSTM-based deep network to classify different words in a text

sequence (aka “slot labelling”). With the basics of network building

covered, we will introduce sequence-to-sequence models both with

and without attention [5]. Finally, we will introduce the ReasoNet

model for performing reading comprehension.

© 2017 International World Wide Web Conference Committee (IW3C2),

published under Creative Commons CC BY 4.0 License.
WWW 2017 Companion, April 3-7, 2017, Perth, Australia.

ACM 978-1-4503-4914-7/17/04.

http://dx.doi.org/10.1145/3041021.3051103

931

2.1 Sequence-to-Sequence
Sequence-to-sequence models are achieving state-of-the-art results

in fields as diverse as machine translation, text summarization, and

syntactic parsing. The framework of sequence-to-sequence

networks is extremely powerful yet easily adaptable to different

datasets with little or no domain-specific adaptation. Building from

the sequence reasoning tutorial, participants will learn the sequence-

to-sequence framework of encoder-decoders, where an input

sequence is run through an encoder RNN (typically represented by

an LSTM) to get a thought vector-space representation of its

content, and then run through a second decoder RNN that translates

the encoded representation into an output sequence. We will show

how to implement basic versions of the model in CNTK along with

some recent variations from the literature including, most

predominantly, attention, where the decoder learns the specific parts

of the encoded input that it should concentrate on while generating

each word (or, more generally, label) in the output sequence, and as

illustrated below.

Figure 1. Learned attention window for generating phonemes

from a grapheme-to-phoneme translation sequence-to-sequence

network with attention.

The initial sequence-to-sequence networks worked by encoding all

the information from the input sequence into a single (“thought”)

vector that the decoder RNN used as a strong context initialization

to generate an output sequence. While the results have been

impressive, this framework quickly breaks down as the length of the

input sequence grows.

For translating long sentences or even paragraphs, holding all of the

information in a single vector is untenable, regardless of how much

capacity is in the network. With attention models, we can solve this

problem in two important ways:

(1) the decoder RNN gets access to all the hidden state information

of the encoder (and thereby the input sequence); and,

(2) more importantly, the network learns, given the current context

and position of the word it is generating, which states – as a

weighted sum – it should use to help it determine the word to

generate. In this portion of the tutorial, we will show how CNTK

makes this setup both conceptually easy and able to learn in a fast

and robust manner.

2.2 Reasoning Network (ReasoNet)
The Reasoning Network (ReasoNet) [6] has achieved industry-

leading results in reading comprehension. The ReasoNet model is

currently the second-best performing model with ExactMatch (EM)

and F1 scores being 73.42 and 81.75, respectively, on the Stanford

Question Answering Dataset (SQuAD) [7].

ReasoNet attacks the problem of teaching a computer to read a

document and then answer general questions pertaining to the

contents of that document. Single-turn reasoning models use

attention mechanisms Error! Reference source not found. with

associated deep learning models to emphasize specific parts of the

document which are relevant to the query. However, for many

sophisticated comprehension tasks, a human reader often revisits

some specific passage or the question to grasp a better

understanding of the problem. Recent work has made use of

multiple turns to infer the relation between query, document, and

answer [9][10][11]. This approach has been demonstrated to

produce superior results. We summarize the essence of the original

paper by Shen et. Al. [6] in the remainder of this section.

Existing multi-turn models have a fixed number of hops or

iterations in their inference, i.e., with predetermined reasoning

depth, without regard to the complexity of each individual query or

document. However, a human reader may read a document several

times and stop when the question in mind has been adequately

understood (reaching a certain level of confidence) or terminate

after a certain number of tries.

ReasoNet tries to mimic the inference process of human readers.

With a question in mind, ReasoNet reads a document repeatedly,

each time focusing on different parts of the document until a

satisfactory answer is found or formed. Moreover, unlike previous

approaches using fixed numbers of hops or iterations, ReasoNet

introduces a termination state in the inference. This state can decide

whether to continue the inference to the next turn after digesting

intermediate information, or to terminate the whole inference when

it concludes that existing information is sufficient to yield an

answer. The number of turns is dynamically modeled by both the

document and the query, and will be learned automatically

according to the difficulty of the problem.

One of the significant challenges ReasoNet faces is how to design

an efficient training method, since the termination state is discrete

and not connected to the final output. This prohibits the canonical

back-propagation method from being directly applied to train

ReasoNet. Inspired by [12][13], this challenge is tackled by a novel

deep reinforcement learning method called Contrastive Reward

(CR) to successfully train ReasoNet.

The challenge for CNTK (and most other deep learning toolkits) to

implement Contractive Rewards is that the derivative of the loss

cannot be directly computed based on the loss formula via Chain-

Rule.

𝑅 = ∑ 𝜋𝑡,𝑎(
𝑟𝑡,𝑎

𝑏
− 1)

𝑡,𝑎

where,

𝑏 = ∑ 𝜋𝑡,𝑎𝑟𝑡,𝑎

𝑡,𝑎

is referenced in the formula as a constant. Otherwise the backward

derivative of loss will always be zero. Thus, we introduce a new

operator, ConstantRef, in CNTK to tackle that challenge. With

ConstantRef, we can just take the forward output of b in the

computation of the loss while keeping it as a constant during

backward propagation.

Unlike traditional reinforcement learning optimization methods

using a global variable to capture rewards, CR utilizes an instance-

based reward baseline assignment. Using ConstantRef enables us

to factor part of the forward value in the loss computation.

Experiments show the superiority of CR in both training speed and

accuracy. Finally, by accounting for a dynamic termination state

932

during inference and applying the proposed deep reinforcement

learning optimization method, ReasoNet can achieve the state-of-

the-art results in machine comprehension datasets, including

unstructured CNN and Daily Mail datasets, and a proposed

structured Graph Reachability dataset.

We will show how to implement this powerful deep learning

framework in CNTK and how to extend it to achieve impressive

results in reading comprehension.

3. CNTK Overview
CNTK was originally designed for speech processing tasks but

quickly developed into a full-featured deep learning toolkit. It was

moved to GitHub [2] under the MIT License in 2016 and has

evolved even further since then. Recently-released CNTK 2.0

provides support for both C++ and Python APIs and includes

numerous examples and high-level building blocks. This toolkit was

the key for Microsoft Research’s recent breakthrough in speech

recognition by reaching human parity in conversational speech

recognition [14]. It has been extensively used internally at Microsoft

for image, text, and speech data with each area benefiting from the

built-in scalability.

There are certainly many deep learning toolkits already widely used

in the deep learning community, including Caffe [15], Cognitive

Toolkit (CNTK) [2], MxNet [16], TensorFlow [17] Theano [18],

Torch [19], etc. However, we argue that CNTK has unique

advantages over these toolkits in the combination of ease of use,

speed, and scalability.

Recently, a study done by the Hong Kong Baptist University

summarizes the performance of different deep learning toolkits [20].

Note the version of CNTK used in this analysis is 1.72 which is a

much older version compared to the latest, and faster, 2.0 release.

Here is a brief excerpt from their summary:

1. With a single GPU platform, Caffe, CNTK, and Torch perform

better than MXNet and TensorFlow on FCNs; MXNet is

outstanding in CNNs, especially on very large networks, while

Caffe and CNTK also achieve good performance on smaller

CNN networks; for LSTM, CNTK obtains excellent time

efficiency, which is up to 5-10 times better than other toolkits.

2. With the parallelization of data during training, all the multi-

GPU versions have a considerably higher throughput and the

convergent speed is also accelerated. CNTK performs better

scaling on FCN and AlexNet, while MXNet and Torch are

outstanding in scaling CNNs.

3. CNTK outperforms Tensorflow in all categories.

4. CNTK Learners (Optimizers)
Performance is a key aspect of deep learning toolkits, especially

with ever increasing network complexity and exponential growth in

data sizes. However, to facilitate such large-scale computations, one

needs to move computing to the cloud where any improvement in

computing efficiency results in equivalent cost savings.

In this aspect, there are two optimizations that are critical to

CNTK’s superior scalability. Both are related to reducing

communication costs between worker nodes. These are:

(1) 1-bit quantized Stochastic Gradient Descent (SGD) [3]; and

(2) Block momentum (using incremental block training) [4]

4.1 1-bit SGD Algorithm
There are different degrees of parallelism one can explore such as

data parallelism, model parallelism, and layer parallelism. 1-bit

SGD exploits data parallelism. The algorithm revolves around

taking small samples of the minibatch data during training. Deep

models consist of multiple layers (say several layers of fully

connected projections, convolutions, recurrences, or a combination

of these). Typically, each worker (GPU node in a GPU cluster)

computes the sub-gradient for a given layer and for the minibatch

sample assigned to the node. The sub-gradients across the different

worker nodes are pooled in an All Reduce operation. However, this

introduces a choke point which in the case of 1-bit SGD is

overcome by distributing the sub-gradients aggregation across all

the nodes. By distributing the gradients across all the nodes, each

worker node can aggregate a subset of sub-gradients from other

nodes. Repeating the process yields the sub-gradients aggregation

across all the worker nodes.

While all the workers are efficiently used, we have increased the

communication between the worker nodes. One way to reduce the

overhead is to reduce the payload for each communication. As the

name suggests, 1-bit SGD achieves this by quantizing the gradient

to a single bit and carrying the quantization error over to the next

minibatch. We will show how one can greatly leverage this

optimization while training large models.

4.2 Block momentum
While 1-bit SGD reduces the payload to be communicated between

worker nodes during each minibatch, Block Momentum operates at

the block level and splits within each block. Blocks are defined as

chunks of non-overlapping data partitions of the training set and

each block is further partitioned into splits. There are two iterative

stages within the block momentum algorithm: (a) intra-block

parallel optimization (IBPO); and (b) block wise model-update

filtering (BMUF). The details [4] will be covered in the tutorial.

4.2.1 IBPO
In this step, we randomly select a block of unprocessed data, and

generate the block-wise model-update. Within each block the data is

further partitioned into N splits and distributed to N different

workers (e.g., GPU cards in a GPU cluster). These workers run in

parallel to optimize local models with their own split of data. By

leveraging data-parallelism within the block, the intra-block

optimization can be conducted with different parallel algorithms.

Finally, an aggregated model for a given block can be obtained by

averaging optimized local models across the different sub-blocks

provided by each of the different workers. from same initial model

𝑾𝒈(𝑡 − 1). Each local model is optimized by mini-batch based

SGD for one epoch of the split. Please be noted that local model

optimization can also be conducted by 1-bit SGD, ASGD, etc, so

that each worker can leverage multiple GPU cards to achieve better

scalability. Finally, an aggregated model denoted as 𝑾̅̅̅(𝑡)can be

obtained by averaging N optimized local models.

4.2.2 BMUF
Instead of treating the output of IBPO, the aggregated model for

each block is used to globally reach the final model directly, which

is model averaging strategy. We treat global model updates as a

block-level stochastic optimization process and propose a

Blockwise Model-Update Filtering (BMUF) technique to stabilize

the learning process. The method involves calculating the model

update for each block using a technique like SGD with momentum

trick except that the model update for the current iteration is blended

with a weighted product of the previous iteration.

933

Instead of treating the 𝑾̅̅̅(𝑡) as the finetuned global model directly,

which is the strategy of model averaging, we treat global model

update operation as a block-level stochastic optimization process

and propose a Blockwise Model-Update Filtering (BMUF)

technique to stabilize the learning process.

First, we calculate the model-update vector resulting from current

data block by subtract initial model from the aggregated model:

𝑮(𝑡) = 𝑾̅̅̅(𝑡) − 𝑾𝒈(𝑡 − 1)

Then calculate global model-update vector, which is a weighted

sum of 𝑮(𝑡) and previous global model update vector:

∆(𝑡) = 𝜁𝑡𝑮(𝑡) + 𝜂𝑡∆(𝑡 − 1)

This formulation is similar with SGD with momentum trick, so we

call 𝜁𝑡 block learning rate and 𝜂𝑡 block momentum. 𝜁𝑡 and 𝜂𝑡 can

be set automatically by an empirical formulation. Then we update

global model by:

𝑾(𝑡) = 𝑾(𝑡 − 1) + ∆(𝑡)

Inspired by Nesterov momentum trick, we generate initial model for

next data block by

𝑾𝒈(𝑡) = 𝑾(𝑡) + 𝜂𝑡+1∆(𝑡)

Broadcast 𝑾𝒈(𝑡) to each worker and repeat IBPO and BMUF until

all data blocks are processed, which is called one sweep. We can

fine-tune the model by several sweeps until a stopping criterion is

satisfied and obtain the final global model.

4.3 Discussion
1-SGD uses minibatch level parallelism and BMUF uses Block

level parallelism with a momentum like update trick to overcome

scale out challenges of simple model averaging, a wide variety of

deep learning models can benefit. Due to the synchronization at

mini-batch level, 1-bit is more sensitive to the I/O latency (because

once a worker slows down due to I/O, the overall training speed of

one-mini-batch slows down). BMUF on the other hand

synchronizes at block level, thus its speed is less sensitive to burst

I/O latency. However, 1-bit SGD can work as local model optimizer

for BMUF for optimal scalability across multiple server / multiple

GPU distributed computing environment.

5. Tutorial Session
In this tutorial, we assume the audience is familiar with the basics of

deep learning. The session will focus specifically on text-based

modeling of sequences. We encourage the audience to come

prepared with the latest CNTK version installed on their machines,

which can be done by following the instructions on the github site

[2]. Tutorial details will be updated and archived. We will be using

both slideware and Jupyter Python notebooks. The audience is

expected to be familiar with Python and the Jupyter notebooks.

ACKNOWLEDGMENTS

We would like to thank Frank Seide, Principal Researcher at

Microsoft Research and CNTK architect, Redmond USA and Qiang

Huo, Principal Research Manager at Microsoft Research Asia

(MSRA), Beijing, China for sharing their research materials on 1-bit

SGD and BMUF algorithms, respectively. Additionally, we would

like to thank Kai Chen from MSRA for BMUF algorithm

summarization.

6. REFERENCES
[1] Sutskevar, I., Vinyals, O., and Le, Q.V.. “Sequence to

sequence with neural networks,”

https://arxiv.org/pdf/1409.3215.pdf, 2014

[2] Cognitive Toolkit (formerly CNTK),

https://github.com/Microsoft/CNTK/wiki

[3] Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D., “1-bit

stochastic gradient descent and its application to data-parallel

distributed training of speech DNNs,” in Proceedings of

Interspeech, 2014.

[4] K. Chen and Q. Huo, “Scalable training of deep learning

machines by incremental block training with intra-block

parallel optimization and blockwise model-update filtering,” In

Proceedings of ICASSP, 2016.

[5] Luong, M.T., Pham H. and Manning, C.D. Effective

approaches to attention based neural machine translation.

https://arxiv.org/abs/1508.04025.

[6] Shen, Y., Huang, P., Gao, J., and Chen, W., “ReasoNet:

Learning to stop reading in machine comprehension,”

https://posenhuang.github.io/papers/reasonet_iclr_2017.pdf.

[7] The Stanford Question Answering Dataset (SQuAD),

https://rajpurkar.github.io/SQuAD-explorer/

[8] Bahdanau, D., Cho, K., and Bengio. Y. “Neural machine

translation by jointly learning to align and translate,” in

Proceedings of the International Conference on Learning

Representations, 2015.

[9] Hill, F., Bordes, A., Chopra, S. and Weston. J., “The

Goldilocks principle: Reading children’s books with explicit

memory representations,” in Proceedings of the International

Conference on Learning Representations, 2016.

[10] Dhingra, B, Liu, H., Cohen, W.W. and Salakhutdinov, R.

“Gated-attention readers for text comprehension,” CoRR,

abs/1606.01549, 2016.

[11] Sordoni, A., Bachman, P., and Bengio, Y, “Iterative alternating

neural attention for machine reading,” CoRR, abs/1606.02245,

2016.

[12] Williams. R.J., “Simple statistical gradient-following

algorithms for connectionist reinforcement learning,” Machine

Learning, 8(3-4):229–256, 1992.

[13] Mnih, V., Heess, N., Graves, A et al., “Recurrent models of

visual attention,” In Advances in Neural Information

Processing Systems, pp. 2204–2212, 2014.

[14] Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M.,

Stolcke, A., Yu, D., and Zweig, G., “Achieving Human Parity

in Conversational Speech Recognition,”

https://arxiv.org/abs/1610.05256.

[15] Caffe, https://github.com/BVLC/caffe.

[16] MxNet, https://github.com/dmlc/mxnet

[17] Tensorflow, https://github.com/tensorflow/tensorflow

[18] Theano, https://github.com/Theano/Theano

[19] Torch, https://github.com/torch/torch7/wiki/Cheatsheet

[20] Shi, S, Wang, Q., Xu., P., and Chu, X., “Benchmarking state-

of-the-art deep learning software tools,”

https://arxiv.org/pdf/1608.07249v6.pdf

[21] Tutorial session titled, Scalable deep document / sequence

reasoning with Cognitive Toolkit

https://github.com/Microsoft/CNTK/wiki/WWW-2017-

Tutorial

934

https://arxiv.org/pdf/1409.3215.pdf
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1610.05256
https://github.com/BVLC/caffe
https://github.com/dmlc/mxnet
https://github.com/tensorflow/tensorflow
https://github.com/Theano/Theano
https://github.com/torch/torch7/wiki/Cheatsheet
https://arxiv.org/pdf/1608.07249v6.pdf
https://github.com/Microsoft/CNTK/wiki/WWW-2017-Tutorial
https://github.com/Microsoft/CNTK/wiki/WWW-2017-Tutorial

