PSMART: Parameter Server based Multiple Additive
Regression Trees System

Jun Zhout, Qing Cuit, Xiaolong Lif, Peilin Zhao', Shenquan Qu¢, Jun Huang*
fAnt Financial Group, *Alibaba Cloud
Hangzhou, China
{jun.zhoujun, cuiging.cq, xLli, peilin.zpl, shenquan.gsq, huangjun.hjl@alibaba-inc.com

ABSTRACT

In this paper, we describe a Parameter Server based Multiple
Additive Regression Trees system, or PSMART for short.
Empirically, PSMART scales MART to hundreds of billions
of samples and thousands of features in production.

Keywords
MART; LambdaMART; Parameter Server; XGBoost

1. INTRODUCTION

Nowadays, Machine Learning approaches have been ex-
tensively adopted by many Internet companies to extract
information from Big Data, which can help them to make
smart decisions to increase business output such as Gross
Merchandise Volume [4]. Among the existing ML methods,
MART and its extensions, such as LambdaMART, are wide-
ly used in industrial practices [3, 1], because of their high
adaptability, practical effectiveness and strong interpretabil-
ity. While the existing implementations of MART have been
effectively applied to many generic cases with million level
instances, it can not handle industrial datasets with hun-
dreds of billions of samples and thousands of features [2]. In
addition, the existing implementations can only be deployed
in some independent ML environment, since they can not
handle all kinds of failures in a complex production environ-
ment with many simultaneous tasks (e.g. Hive SQL, Map
Reduce, Graph, MPI). To this end, in this work, we intro-
duce PSMART, a Parameter Server (PS) based distributed
learning system that reliably scales MART to support hun-
dreds of billions of samples and thousands of features in
the clusters. Our contributions are: (1) We built a gener-
al MART system based on PS which enjoys efficient sparse
communication, better fault tolerance and ease of use (like
the SQL style) etc; (2) We implemented a distributed Lamb-
daMART with a query id based partitioning strategy. Due
to these techniques, the system can scale near linearly across
nodes, so that it is the fastest and the most scalable and sta-
ble MART implementation to the best of our knowledge.

(©2017 International World Wide Web Conference Committee (IW3C2),
published under Creative Commons CC BY 4.0 License.

WWW 2017 Companion, April 3-7, 2017, Perth, Australia.

ACM 978-1-4503-4914-7/17/04.
http://dx.doi.org/10.1145/3041021.3054225

O

879

2. RELATED WORK

Among all the existing work, XGBoost [2] is the most
related to our PSMART. Specifically, XGBoost is a par-
allel tree boosting system based on Rabit!, with approxi-
mate split-finding algorithm. However, it currently does not
support distributed LambdaMART. In addition, Rabit only
provides a limited fault tolerance mechanism and does not
optimize the communication efficiency for sparse dataset-
s. Our system can recover quickly because of the robust
failover mechanism of PS. Light GBM [7] is another tool like
XGBoost at present (parallel learning based on the socket
or MPI, with a different regularization method). However,
it also does not support failover and sparse communication.

3. PS BASED SMART

Parameter Server. Inside Alibaba, we have implement-
ed a PS system [6, 8], which supports fault tolerance, and is
deeply optimized for the communication efficiency of sparse
data. On it, we developed PSMART, which is very robust
due to its above advantages. For example, when some n-
odes fail, PSMART can automatically trigger the failover
mechanism and recover from the nearest checkpoint.

MART on PS. To overcome the challenge of the huge
storage need, PSMART employs a data parallelization mech-
anism. Specifically, each worker only stores a subset of the
whole dataset for each feature. Under this mechanism, the
main workflow for splitting a node is as follows: 1) Each
worker calculates the local weighted quantile sketch for the
data subset of the node stored on this worker; 2) Each work-
er pushes the local weighted quantile sketch to servers. The
servers merge the local sketches to a global weighted quan-
tile sketch by a multiway merge algorithm, and then use
it to find the splitting value; 3) Each worker pulls the s-
plitting value from servers and splits samples to two nodes.
The details on producing local weighted quantile sketches
and merging local sketches to a global sketch can be found
at [2]. Repeating the above procedure can build a tree. In
this way, we can build trees one by one following the gradi-
ent boosting framework to get a MART. Although the key
idea is straightforward, there exists one key challenge: when
the number of features gets bigger or the tree gets deep-
er, the computation and communication cost of split-finding
algorithm will become very high. To remedy this issue, we
leverage the communication schema of PS to reduce the cost
of merging local sketches. This can further speed up the w-
hole split-finding algorithm.

LambdaMART on PS. For LambdaMART, the proce-
dure of building trees is the same with general MART al-

"https://github.com/dmlc/rabit

gorithm. However, the training set is composed of pairwise
examples from each query group, which may cause very high
communication cost when the examples are irrationally dis-
tributed across workers. To avoid this problem, we propose
two methods to divide the training samples appropriately.

The first method is to use a multiway number partitioning
algorithm [5] to divide the query ids into different worker-
s. Then, samples with the same query id are assigned to
the same worker where the id belongs to. As a result, the
training samples are divided as evenly as possible, and the
workload on workers is balanced. The detailed steps are list-
ed as follows: 1) For each query id, scan the whole dataset
to count the number of samples with it; 2) Each worker
calculates the partition according to the multiway number
partitioning algorithm [5]; 3) Each worker loads the training
samples with query ids which belongs to the worker.

The second method is an approximate method, in which
we need to store the samples of the same query id contin-
uously in the file system. Then each worker loads evenly
divided data as usual. If samples with the same query id
are assigned into two workers, they will be treated as sam-
ples with two different query ids. Even though the approx-
imate method could lose some pairwise samples, it empiri-
cally works well for most of our tasks.

4. PERFORMANCE

In this section, we report the performance of our PS-
MART on four industrial datasets on problems of CTR (click
through rate) and CVR (click value rate), which are sum-
marized in Table 1. We also successfully tested even bigger
datasets with hundreds of billions of samples, which XG-
Boost cannot handle at all.

Table 1: Dataset description and statistics.

Dataset Description #Feat. #Sample(M)
Rec CTR Items recommendation 78 84

Search CTR Search results ranking 592 1,000

Ads CVRI1 Search ads ranking 698 2,067

Ads CVR2 Search ads ranking 698 10,245

We adopt the well-known XGBoost as our baseline. S-
ince both methods can achieve basically the same AUC (e.g.
0.7368 for Ads CVR2 set) at state-of-the-art level without s-
tatistically significant differences, they are mainly compared
by memory consumption and computational time which are
two key factors in the production environment. To make a
fair comparison, all algorithms adopt the same experimental
setup. Specifically: tree number=500, max depth=6, tree
method=approximate split-finding, min child weight=100,
data and feature sample rate=1.0, bin number=128. All the
experiments are conducted on the same production cluster
with two twelve-core Intel Xeon CPU E5-2430 (2.2GHz) and
96GB of memory (all the data are loaded into memory).

Memory consumption: The peak total memory used
are summarized in Table 2, which shows PSMART consumes
slightly less memory than XGBoost. Moreover, XGBoost
are tried on Ads CVR2 more than ten times and never suc-
ceed. The reason is that, when the dataset is very large,
many computation nodes are needed so that the probability
of failures of some nodes is very high. But, Rabit only offers
limited fault tolerance so that when the tracker node fails it
can not recover, but our PSMART system supports robust
failover mechanism so that it can recover easily.

Computational time: Figure 1 shows the running time
of all the algorithms on all the datasets. Here, we observe

880

Table 2: Peak total memory use on training sets.

Al M2 Rec CTR Search CTR Ads CVRI Ads CVR2
PSMART 162G 775G 371G 357G
XGBoost 176G 1,810G 3,912G N/A

that PSMART is significantly more efficient than XGBoost.
This is because that the PS system enjoys sparse commu-
nication and traffic control optimizations, which make PS
more efficient than Rabit. Thus the waiting time of PS-
MART is extremely reduced and the CPU resources are fully
utilized.

I PSMART = XGBoost
250
v
& 200
S
g 150 -
= 100
4
g 50 E
Foo— mE
Rec CTR Search CTR Ads CVR1 Ads CVR2

Figure 1: Runtime comparison on four training sets.

Finally, we would like to emphasize that when the scale of
dataset becomes greater, more computation nodes are need-
ed so that the probability of failures of some nodes is highly
increased. However, if the tracker node failed for XGBoost,
the whole job can not be recovered quickly, which makes it
unsuitable to extremely big training data. Conversely, our
PSMART system dumps the intermediate model and local
variables into distributed memory, thus the training can be
recovered from the nearest iteration easily. Due to these dif-
ference, our PSMART enjoys higher scalability and robust-
ness than XGBoost, so that it is more suitable for industrial
production applications.

5. CONCLUSION

We introduce a PS based distributed learning system, PS-
MART, that reliably scales MART to support hundreds of
billions of samples and thousands of features in production.
Experiments in Alibaba’s production environment validates
the advantages of PSMART in memory and time consump-
tion against the state-of-the-art XGBoost.

6. REFERENCES

[1] C. J. Burges. From ranknet to lambdarank to
lambdamart: An overview. Learning, 11:23-581, 2010.
T. Chen and C. Guestrin. Xgboost: A scalable tree
boosting system. In SIGKDD, 2016.

D. Cossock and T. Zhang. Statistical analysis of bayes
optimal subset ranking. Trans. Infor. Theory, 2008.
P. Jiang and et al. Life-stage prediction for product
recommendation in e-commerce. In KDD, 2015.

R. E. Korf. Multi-way number partitioning. In IJCAI
2009.

M. Li, D. G. Andersen, A. J. Smola, and K. Yu.
Communication efficient distributed machine learning
with the parameter server. In NIPS, 2014.

Microsoft. https://github.com/microsoft/lightgbm.

E. P. Xing and et al. Petuum: A new platform for
distributed machine learning on big data. In KDD,
2015.

