
Improving the Precision of RDF Question/Answering
Systems— A Why Not Approach

Xinbo Zhang
Peking University

Beijing, China
zhangxinbo@pku.edu.cn

Lei Zou
Peking University

Beijing, China
zoulei@pku.edu.cn

ABSTRACT
Given a natural language question qNL over an RDF dataset D, an
RDF Question/Answering (Q/A) system first translates qNL into a
SPARQL query graph Q and then evaluates Q over the underlying
knowledge graph to figure out the answers Q(D). However, due to
the challenge of understanding natural language questions and the
complexity of linking phrases with specific RDF items (e.g., enti-
ties and predicates), the translated query graph Q may be incorrect,
leading to some wrong or missing answers. In order to improve
the system’s precision, we propose a self-learning solution based
on the users’ feedback over Q(D). Specifically, our method auto-
matically refines the SPARQL query Q into a new query graph Q′
with minimum modifications (over the original query Q). The new
query will fix the errors and omissions of the query results. Further-
more, each amendment will also be used to improve the precision
in answering subsequent natural language questions.
1. BACKGROUND AND MOTIVATION

As more and more RDF Question/Answering (Q/A) systems over
RDF knowledge graphs are designed, which allow users to ex-
press queries in natural language and translate them into SPARQL
queries automatically, RDF is more widely used. Generally, RDF
Q/A systems translate a user’s natural language question qNL into
a SPARQL query graph Q and evaluate Q over the underlying RDF
knowledge graph G to find the answers. However, due to ambigu-
ity of natural language question sentences, the translated Q may
not be correct, which results in errors and omissions of the query
results. According to the analysis of several RDF Q/A systems, we
classify the typical errors into three categories:
(1) Entity/Class Linking Error: Systems link the phrase in users’
questions with a wrong entity/class, reflected in subject or object,
which is chargeable on the imperfect entity-mapping dictionary. As
for the question “Which actress was born in countries in Europe?”
(see Figure 1), the system mistakenly links “countries in Europe”
with class 〈Country〉 instead of the correct one 〈EuropeanCountry〉.
(2) Relation Paraphrasing Error: Q/A systems often reply on a
relation-paraphrase dictionary to extract relations in users’ ques-
tions. A paraphrase is to align a natural language relation phrase
with the corresponding predicate. However, due to mistakes, noise

c©2017 International World Wide Web Conference Committee (IW3C2),
published under Creative Commons CC BY 4.0 License.
WWW 2017 Companion, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3038914

.

and incompleteness of the paraphrase dictionary, Q/A systems of-
ten extract imperfect relations or even wrong relations, reflected
in predicate in RDF triples. As shown in Figure 1, the right predi-
cate should be 〈birthPlace〉, while the system interprets the relation
as 〈deathPlace〉 due to one error in the paraphrase dictionary, i.e.,
mapping “be born (in)” to 〈deathPlace〉.

<occupation>

<Actress>?actress

<country>

?city ?country
<type>

<EuropeanCountry>

<occupation>
<Actress>?actress

<occupation>

<type>

<EuropeanCountry>

<Actress>

 Which actress   was born in                 
countries in Europe?

<type>

<Country>?country

?actress

<birthPlace>

<birthPlace>

?country

Ordinary Query Q Refined Query Q’=Q’
1∪ Q’

2

Q‐(D)
n1 <Marilyn_Monroe>

No. Entity

n2 <Judy_Garland>

r1 <Audrey_Hepburn>

n3 <Lana_Turner>

r2 <Mariene_Dietrich>

r3 <Eva_Green>

r4 <Elizabeth_Taylor>

Q+(D)

QΔ(D)

Q(D)

Q’
1

Q’
2

<deathPlace>

R

Figure 1: Refining Queries based on Users’ Feedback.

(3) Incomplete Query Graph Structure: In some cases, the trans-
lated SPARQL Q is semantically correct but it cannot match all the
expected answers in underlying RDF data graph. See Figure 1,
besides Q′2 with triple “?actress 〈birthPlace〉 ?country”, another
correct SPARQL Q′1 introduces an additional variable “?city” and
a triple “?city 〈country〉 ?country”. Both compose the standard
SPARQLQ′ together, while systems usually lose either of them.

Imperfect machine learning methods and costly manual anno-
tation make the entity-mapping dictionary and relation-paraphrase
dictionary inconsistent, incomplete and of poor quality, which cause
error (1) and (2). The lack of sentence-structure dictionary causes
the absence of partial structure, which generates error (3). There
are two goals in this work. First, based on the users’ feedback
over query results Q(D), our method can automatically refine the
original query Q into a new query graph Q′ with minimum mod-
ifications over Q, where Q′ fixes the errors and omissions of the
results. Furthermore, each amendment (from Q to Q′) is used to
correct and enrich the dictionaries, which finally improve the pre-
cision in answering subsequent natural language questions.
2. PROBLEM DEFINITION AND METHOD

Given a natural language question qNL over an RDF dataset D,
an RDF Q/A system generates an original query graph Q. The user
acquires an answer set Q(D) and gives judgments. So we receive
a new answer set R, where R includes the right answers Q+(D)
marked by the user and the missing answers Q∆(D) given by the

877



r2

<Roman_Holiday>

<My_Fair_Lady>

<Actress>

<Switzerland> <Country>

<Brussels>

<Belgium>

<EuropeanCountry>

<Tolochenaz>
<City>

K‐hop Neighborhood Graph

<Blonde_Venus>

<Shanghai_
Express>

<Actress>

<France> <Country>

<Berlin>

<Germany>

<EuropeanCountry>

<Germany>

<EuropeanCountry>

<Singer>

<Penny_Dreadful>

<Camelot>

<Actress>

<France>
<EuropeanCountry>

<Cleopatra>

<Butterfield_8>

<Actress>

<Califonia> <USA>

<London>

<UK>

<EuropeanCountry>

<England>

<EuropeanCountry>

r1

r3

r4

r1

r2

r3

r4

Compressed Graph
“…”

“…”

“…”

“…”

Frequent Patterns & Reconsitution

P1

P2

P3

<type>P4

<Actress>

<Country>

<EuropeanCountry>

<EuropeanCountry>
<Actress>

<Actress>
<EuropeanCountry>

<EuropeanCountry>
<Actress>

P5

<Country>
<Actress>

…

P1 {r1,r2} 3E+1V 0 0

No. Cover
Edit 

Distance
ExtraAns Punish

P2 {r2,r3,r4} 1E+1V 0 0

P4 {r2,r3,r4} 2E+1V 0 0
P3 {r1,r2} 2E+1V 0 0

P5 {r2,r3,r4} 1E 34 3

…………………

Figure 2: Bottom-up algorithm.

user, excludes the wrong answers Q−(D) indicated by the user,
that is, R = Q+(D) ∪Q∆(D), and Q−(D) ∩ R = ∅. Our goal
is to get a refined query Q′ = Q′1 ∪Q′2 ∪ . . . ∪Q′s, s ≥ 1, which
can cover all the answers inR and exclude the answers in Q−(D),
also minimize the edit distance between Q andQ′.

The proposed system framework is separated into two parts: On-
line Processing and Log Dealing. Online Processing stage imple-
ments a Bottom-up method and a Candidate-selection method to
ensure the expected modification of this query. And we design a
Rule-Mining algorithm in Log Dealing stage to refine the existing
entity-mapping dictionary and relation-paraphrase dictionary, and
also build up a sentence-structure dictionary, which will improve
existing Q/A systems and subsequent question-answering.
Online Processing During this stage, the new answer set R after
assessments of the user is fed into the Bottom-up algorithm. After
obtaining candidate graphs, we take them along with Q as input to
get the refined SPARQL through the Candidate-selection method.
Bottom-up: This part starts from new answer set R and captures
the common feature of accepted answers.
(1) Get Neighborhood Graphs. For each answer in R, we find the
subgraph induced by its k-hop neighbors.
(2) Get Compressed Graphs. We design a method to compress the
size of neighborhood graphs. First, we find all simple paths start-
ing from each answer to change the graph into a tree. Then, ignore
labels of entities and we can figure out that many paths share same
edge label. Insert those paths into a prefix tree, so redundancy ver-
tices and edges are removed. The original neighborhood graphs are
compressed obviously while their main structures are still kept.
(3) Mine frequent patterns. We devise to extract the common pat-
terns among the Compressed Graphs, so we can deduce the ex-
pected query graph. We annotate the nodes on the tree with the
label of level, and mine frequent patterns from all these trees using
gSpan described in [1], altogether denoted by set P .

Figure 2 shows how to apply Bottom-up on the example we men-
tioned in Figure 1, where Q+(D)={r1,r2}, Q−(D)={n1, n2, n3},
Q∆(D)={r3,r4}, and R={r1,r2,r3,r4}. It displays 3-hop Neigh-
borhood Graphs of answers in R. Take r2 as an example. Merge
paths sharing the same prefix label 〈birthPlace〉 into a common
edge, also 〈starring〉 and 〈occupation〉 in the same way. Note that
we cannot make edges with 〈type〉 as a combination, because they
don’t share the same prefix. And we mine frequent patterns of these
four Compressed Graphs. {P1,P2,P3,P4,P5} is a subset of P .
Candidate-selection: Reconstitute candidates in P with labels of
entities. By following steps, we can obtain the refined queryQ′:
(1) Calculate Weight The weight of each graph Pi in P comprises

4 parts: the number of answers covered in R, the edit distance be-
tween Pi and original query Q, the number of extra answers intro-
duced by Pi (never show in Q(D) and R), the number of answers
in Q−(D) as punishment. Each part is multiplied by a parameter,
determining the significance of either precision or similarity.
(2) Weighted Set Cover For all members in P , each with a weight,
use a greedy algorithm to find a subset Q′ of P , which can cover
all the answers inR, aiming at acquiring minimize weight. Subset
Q′ corresponds to the refined SPARQL.

See Figure 2, P5 covers {r2, r3, r4}. It’s the most similar to Q
because only 〈deathPlace〉 is changed into 〈birthPlace〉. However,
it brings in 34 extra answers and 3 known wrong answers. So it has
a large weight. Finally, we choose {P2, P3} as the best cover.
Log Dealing Rule Mining: Once modify a graph successfully, an-
alyze the modification log and extract the rules. Discover new
knowledge to correct and supplement existing entity-mapping dic-
tionary and relation-paraphrase dictionary, which will avoid error
(1) and (2) for future queries (see Figure 1). Also build up a sentence-
structure dictionary to record query structures corresponding to spe-
cific natural language question(e.g., “be in country” has two corre-
sponding templates:“in . . . country” and “in a city of . . . country”),
which will avert error (3) for subsequent queries. In such way we
build a mechanism to improve subsequent queries by self-learning.
3. EXPERIMENTS

Our experiment is implemented on a 7.8GB DBpedia dataset.
We choose 100 natural questions from QALD-5 whose original an-
swers are not perfect generated by an existing system gAnswer de-
scribed in [2]. Our algorithm can modify 42 of them and receive
correct SPARQL, which solves the three typical errors we proposed
before. Among those 42 cases which are solved perfectly, 84% of
them are fixed in no more than 2 options. For other 58 cases, the
precision improves 30%, recall increases around 80%. After these
modifications, entity-mapping dictionary and relation-paraphrase
dictionary are rectified and sentence-structure dictionary is built
up. When using appeared questions to query the system, the system
never shows similar errors and receives perfect answers.
Acknowledgments. This work was supported by The National Key Re-
search and Development Program of China under grant 2016YFB1000603
and NSFC under grant 61622201, 61532010, 61370055 and 61402020. Lei
Zou is the corresponding author of this paper.

4. REFERENCES
[1] Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern

mining. In ICDM, 2002.
[2] Lei Zou, Ruizhe Huang, Haixun Wang, Jeffrey Xu Yu, Wenqiang He,

and Dongyan Zhao. Natural language question answering over rdf: a
graph data driven approach. In SIGMOD, 2014.

878




