
On the Primitivity of SPARQL 1.1 Operators

Xiaowang Zhang
School of Computer Science and Technology,Tianjin University, Tianjin 300350, China
Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin 300350, China

Key Laboratory of Computer Network and Information Integration, Ministry of Education, Nanjing, China
xiaowangzhang@tju.edu.cn

ABSTRACT
The paper studies the primitivity of the eleven basic oper-
ators used in the SPARQL 1.1 query language. This pa-
per shows that the six operators BIND, FILTER, GRAPH,
property path, SELECT, and VALUES are primitive while
the left five operators AND, EXISTS, MINUS, OPT, and
UNION, are not primitive. It is surprised that OPT and
UNION which are primitive in SPARQL 1.0 become no
longer primitive in SPARQL 1.1.

Keywords
RDF databases; SPARQL 1.1; primitive operator; expres-
sive power

1. INTRODUCTION
As a recurring interest topic in the classical topic of graph

databases [1], the primitivity of an operator is to deter-
mine whether the operator can be expressed in terms of the
other operators. The standard query language for RDF (Re-
source Description Framework) data, a popular data model
for information in the Web, is SPARQL 1.1 [4] by extend-
ing SPARQL 1.0 [3] with important features such as nega-
tion, subqueries, aggregation, and regular expressions, which
those features will enrich the ability to represent more ex-
pressive queries [2, 6].

Zhang and Van den Bussche [5] investigated that, among
five SPARQL 1.0 operators: AND, UNION, OPT, FILTER,
and SELECT, only AND is not primitive where AND can
be expressible by OPT and FILTER.

The main goal of this paper is to investigate the primitiv-
ity of the eleven basic operators in the SPARQL 1.1 query
language. We show that the six operators BIND, FILTER,
GRAPH, property path, SELECT, and VALUES are prim-
itive while the left five operators AND, EXISTS, MINUS,
OPT, and UNION, are not primitive.

This paper is further organized as follows. In the next
section, we introduce syntax and semantics of SPARQL 1.1

c©2017 International World Wide Web Conference Committee (IW3C2),
published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4914-7/17/04.
http://dx.doi.org/10.1145/3041021.3054260

.

operators. Section 3 shows the five non-primitive operators
and Section 4 shows the left six primitive operators.

2. RDF AND SPARQL 1.1
In this section we recall SPARQL1.1 operators, closely

following the SPARQL formalization in [4].

RDF graphs.
Let I, B, and L be infinite sets of IRIs, blank nodes and

literals, respectively.
A triple (s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L) is called an

RDF triple. An RDF graph is a finite set of RDF triples.
A dataset DS is of the form (G, {(g1, G1), . . . , (gk, Gk)})

whereG,G1, . . . , Gk are RDF graphs and g1, . . . , gk are IRIs.
We call G the default graph and (g1, G1), . . . , (gk, Gk) named
graphs. Let named(DS) = {g1, . . . , gn} and DS(def) = G
and DS(gi) = Gi for i = 1, . . . , k.

SPARQL 1.1 operators.
SPARQL 1.1 patterns are constructed by using triple pat-

terns (possibly adopting property paths) and operators: AND,
OPT, FILTER, UNION, GRAPH, SELECT, EXISTS, BIND,
MINUS, and VALUES, where SELECT (nested operation is
not allowed in SPARQL 1.0), EXISTS, MINUS, BIND, and
VALUES are newly added in SPARQL 1.1. The semantics
of patterns is defined in terms of sets of so-called mappings,
which are simply total functions µ : S → U on some finite set
S of variables. The semantics is based on a three-valued logic
with truth values true, false, and error and the semantics in
this paper is set-based while the semantics is bag-based in
the practical applications [3].

3. EXPRESSIVITY OF OPERATORS
Let us abbreviate the operator AND by A; BIND by B;

EXISTS by E ; FILTER by F ; MINUS byM; GRAPH by G;
OPT by O; property path by P; subqueries by S; UNION
by U ; and VALUES by V. We can denote any fragment
of SPARQL 1.1, where only a subset of those operators is
available, by the letter word formed by the operators that
are available in the fragment.

An operator can not contribute the expressivity of a frag-
ment if it is expressible by the fragment. Formally, we
should define what we mean when we say that some opera-
tor X is “expressible” in some fragment W. We will simply
take this to mean here that for every pattern P in the frag-
ment WX (i.e., adding X to W) there exists a pattern Q in
the given fragment W such that for any graph G, we have

875



JP KG = JQKG [5]. In this sense, we say that P and Q are
equivalent, denoted by P ≡ Q.

We know that EXISTS is already expressible in AFS [2]
and MINUS is already expressible in OFS [5] as follows:

P FILTER EXISTS(Q) ≡ SELECTvar(P )(P ANDQ).

P MINUSQ ≡ SELECTvar(P )(((P OPT (?x, ?y, ?z))OPT

(QOPT (?x, ?y, ?u))) FILTER ¬bound(?u)),

where ?x, ?y, ?z, ?u are fresh variables.
Firstly, we can express OPT in AMSU .

Proposition 1. Let P and Q be two patterns.

P OPT Q ≡ (P ANDQ) UNION SELECTvar(P )(PAND

(?x, ?y, ?z) MINUS (QAND (?x, ?y, ?z))

where ?x, ?y, ?z are three fresh variables.

Finally, we show that UNION is also expressible inAOSV.

Proposition 2. let P and Q be two patterns, we consider
a pattern Q′ in AOSV s.t. P UNION Q ≡ Q′ as follows:

Q′ = SELECTS((((P1 OPT P2) OPT P3) OPT P4) AND P5)

where ?x, ?y, ?z are fresh variables and a, b, c, d are fresh con-
stants; and

S = var(P ) ∪ var(Q)

P1 = (VALUES (?x) {(a), (b)})
P2 = (P OPT (VALUES (?x, ?y) {(a, c)})
P3 = (Q OPT (VALUES (?x, ?y) {(b, c)})

P4 = (VALUES (?y) {(d)})
P5 = (VALUES (?y) {(c)})

4. PRIMITIVITY OF OPERATORS
An operator X is “primitive” if X cannot be expressible

by other operators.
Clearly, based on the discussions in Section 3, the five op-

erators, namely, AND, EXISTS, MINUS, OPT, and UNION,
are not primitive since AND is not primitive [5].

In the rest of this paper, we will discuss the primitivity of
the left six operators.

As we well known, the transitivity is not expressible in
first-order logic and SPARQL 1.0 has the same expressivity
of first-order logic [3]. It is clear that path property is not
expressible in SPARQL1.0. Then property path is primitive
since other newly added operators are still expressible in
first-order logic [4].

To show the primitivity of BIND, we need a lemma.

Lemma 3. Let P be a BIND-free pattern and DS a dataset.
For each mapping µ ∈ JP KG, the image of µ is in const(DS)∪
const(P ).

Proposition 4. BIND is primitive.

Proof (Sketch). Consider the following pattern:
P = (?x, r, ?y) BIND CONCAT(?x?y) AS ?z and the dataset
DS = ({(a, r, b)}) where {a, b, ab} ∩ const(Q) = ∅.

Let us now turn to the question of primitivity of FILTER.
Analogously, we can conclude the following lemma [5].

Lemma 5. Let DS = (G) where G is the complete graph
on two constants a, b ∈ I (i.e., G = {a, b} × {a, b} × {a, b}).
Let P be any FILTER-free pattern with {a, b}∩const(P ) = ∅.
If there exists some mappings µ ∈ JP KDS and M ⊆ dom(µ)
such that µ(?x) ∈ {a, b} for all ?x ∈ M and µ(?y) 6∈ {a, b}
for all ?y ∈ dom(µ) − M then for all mapping µ′ : M →
{a, b}, we can conclude that µ′ ∪ µ|dom(µ)−M ∈ JP KDS.

Proposition 6. FILTER is primitive.

Proof (Sketch). Consider the following pattern:
P = (?x, ?y, ?z) FILTER ?x =?y and DS be the dataset
from Lemma 5. In [5], by Lemma 5, we can conclude that
µ = (?x → a, ?y → b, ?z → a) is a mapping in JP KDS .
Therefore, we have arrived at a contradiction.

Proposition 7. GRAPH is primitive.

Proof (Sketch). Consider the following pattern:
P = GRAPH c (?x, ?y, ?z) and the dataset DS = (∅, G)
where G = {(c, c, c)} with c 6∈ const(Q).

Finally, we will show that SELECT is primitive.

Lemma 8. Let DS = (G) be a dataset. For any SELECT-
free pattern P , if const(P ) ∩ const(G) = ∅ then JP KG does
not contain the empty mapping µ∅ (i.e., dom(µ∅) = ∅).

Proposition 9. SELECT is primitive.

Proof (Sketch). Consider the following pattern:
P = SELECT∅(?x, ?y, ?z) and a dataset DS = (G) where
G = {(a, a, a)} with a 6∈ const(Q) = ∅.

Proposition 10. VALUES is primitive.
Proof (Sketch). Consider the following pattern:

P = (VALUES (?x), {(c)}) and the empty dataset DS∅.

Finally, we can conclude the most important result.

Theorem 11. Only operators BIND, FILTER, GRAPH,
property path, SELECT, and VALUES are primitive.

Acknowledgments
This work is supported by the National Key Research and
Development Program of China (2016YFB1000603), the Na-
tional Natural Science Foundation of China (61502336), the
Key Technology Research and Development Program of Tian-
jin (16YFZCGX00210), and the open funding project of Key
Laboratory of Computer Network and Information Integra-
tion (Southeast University), Ministry of Education (K93-9-
2016-05).

5. REFERENCES
[1] R. Angles and C. Gutierrez. Survey of graph database

models, ACM Comput. Surv., 40(1)(2008): article 1.

[2] R. Kontchakov and E. Kostylev On expressibility of
non-monotone operators in SPARQL In: Proc. of
AAAI’16, pp. 369–379.

[3] J. Pérez, M. Arenas, and C. Gutierrez, Semantics and
complexity of SPARQL. ACM Trans. Database Syst.,
34(3)(2009): article 16.

[4] SPARQL 1.1 query language, W3C Recommendation,
March 2013.

[5] X. Zhang and J. Van den Bussche, On the primitivity
of operators in SPARQL, Inf. Process. Lett.,
114(9):480–485, 2014.

[6] X. Zhang, J. Van den Bussche, and F. Picalausa, On
the satisfiability problem for SPARQL patterns, J.
Artif. Intell. Res., 56: 403-428, 2016.

876




