
Intelligent RDD Management for High Performance
In-Memory Computing in Spark

Mingyue Zhang1,3, Renhai Chen1,3
∗

, Xiaowang Zhang1,3, Zhiyong Feng2,3, Guozheng Rao1,3, and Xin Wang1,3

1School of Computer Science and Technology, Tianjin University, Tianjin, China
2School of Computer Software, Tianjin University, Tianjin, China

3Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, China
{zhangmingyue, renhai.chen, xiaowangzhang, zyfeng, rgz, and wangx}@tju.edu.cn

ABSTRACT
Spark is a pervasively used in-memory computing framework
in the era of big data, and can greatly accelerate the com-
putation speed by wrapping the accessed data as resilient
distribution datasets (RDDs) and storing these datasets in
the fast accessed main memory. However, the space of main
memory is limited, and Spark does not provide an intelligent
mechanism to store reasonable RDDs in the limited memory.
In this paper, we propose a fine-grained RDD checkpointing
and kick-out selection strategy, by which Spark can intelli-
gently select the reasonable RDDs to maximize the memory
usage. The experiment is conducted on a server with four
nodes. Experimental results demonstrate that the proposed
techniques can effectively accelerate the execution speed.

1. INTRODUCTION
Spark is a commonly used in-memory computing engine

for big data processing. The key component in Spark is
Resilient Distributed Dataset (RDD), which is a distributed
memory abstraction that lets programmers perform in-memory
computations on large clusters in a fault-tolerant manner[4].
RDD leverages the main memory to cache the intermediate
results, with which, Spark has a huge advantage over other
large-scale data-intensive frameworks, e.g. Hadoop[1].

Although the in-memory feature of RDD makes Spark
faster than many other non-in-memory big data processing
platform, in-memory feature also brings the volatile prob-
lem. That is, the loss of RDD will cause Spark to recompute
all the missing RDDs on the lineage, and recomputing of a
long lineage chain will introduce the considerable computa-
tion overhead. To address this issue, checkpointing mecha-
nism is integrated in Spark. Checkpointing mechanism can
cut off the lineage and save the data in the external storage
for the coming computing. Spark currently provides an in-
terface for checkpointing, while leaves the decision of which
data to be checkpointed to the user. Users can control stor-
age strategies of RDDs (i.e., main memory or external disk)
and based on that, Spark can cache many multiple RDDs,

∗Renhai Chen is the corresponding author.

c©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW’17 Companion, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4914-7/17/04.
http://dx.doi.org/10.1145/3041021.3054246

.

so that users can reuse intermediate results across multiple
computations.

However, frequently checkpointing the RDDs (slow disk
I/O operations) will significantly influence the performance
of Spark. Whether to checkpoint the RDDs completely de-
pends on the experience of programmers. Since applications
grow very complex, and it is very difficult for programmers
to provide an optimal checkpointing solution. When useless
intermediate results are kept in distributed memory accord-
ing to the storage strategy, it is highly possible to waste
memory space and degrade the performance.

Another important issue in Spark is the memory space re-
placement. When limited memory is used up, Spark needs
to select victim RDDs to reclaim the memory space. Spark
selects the least recently used (LRU[2]) RDD to be replaced.
However, the LRU algorithm just considers whether the par-
titions are used recently, and does not make sure the chosen
one is valueless. For example, if the choice of the victim
RDD is far from its ancestor, we should spend considerable
computing cost in the future.

In this paper, we present an intelligent RDD management
scheme in Spark to help solve the long lineage problem with
less influence on the performance and address the limited
memory space issue. We first present the fine-grained check-
pointing technique to avoid discarding of RDDs with high
using frequency. Then, we discuss how to smartly check-
point some RDDs to eliminate the computation overhead.
To address the limited memory space issue, a novel kick-out
selection scheme is proposed to first cache RDDs with long
lineage graphs containing wide dependencies. Experiments
based on the Spark-1.5.2 platform and big data workloads
demonstrate that the proposed design achieves up to 28.01%
performance improvement over the baseline schemes.

2. INTELLIGENT RDD MANAGEMENT
2.1 Fine-Grained Checkpointing

Spark provides a coarse-grained checkpointing strategy
that discards all the ancestral RDDs of the checkpointed
RDD. This mechanism can avoid the recomputing for the
checkpointed RDD. However, this coarse-grained method
may serious degrade the performance of Spark. Since RDDs
are usually frequently used in the large-scale data-intensive
applications, it is very likely that the discarded ancestral
RDDs are used in the near future. At that time, the spark
should recollect the information about how the RDD was
derived from other RDDs to recompute that RDD, which
introduces considerable computation overhead. To address
this issue, we propose a fine-grained checkpointing strategy.
Different from prior art, fine-grained checkpointing scheme
does not directly discard the ancestral RDDs and globally

873

0 2 0 0 4 0 0 6 0 0 8 0 0
0

5 0 0 0 0 0
1 0 0 0 0 0 0
1 5 0 0 0 0 0
2 0 0 0 0 0 0
2 5 0 0 0 0 0
3 0 0 0 0 0 0

(a) 5 G BEx
ec

uti
on

 Ti
me

 (m
s)

I t e r a t i o n T i m e s

 B a s e l i n e (w e b - S t a n f o r d)
 O u r (w e b - S t a n f o r d)
 B a s e l i n e (w e b - B e r k S t a n)
 O u r (w e b - B e r k S t a n)

0 2 0 0 4 0 0 6 0 0 8 0 0
0

5 0 0 0 0 0
1 0 0 0 0 0 0
1 5 0 0 0 0 0
2 0 0 0 0 0 0
2 5 0 0 0 0 0
3 0 0 0 0 0 0

(b) 1 0 G BEx
ec

uti
on

 Ti
me

 (m
s)

I t e r a t i o n T i m e s

 B a s e l i n e (w e b - S t a n f o r d)
 O u r (w e b - S t a n f o r d)
 B a s e l i n e (w e b - B e r k S t a n)
 O u r (w e b - B e r k S t a n)

0 2 0 0 4 0 0 6 0 0 8 0 0
0

5 0 0 0 0 0
1 0 0 0 0 0 0
1 5 0 0 0 0 0
2 0 0 0 0 0 0
2 5 0 0 0 0 0
3 0 0 0 0 0 0

Ex
ec

uti
on

 Ti
me

 (m
s)

I t e r a t i o n T i m e s

 B a s e l i n e (w e b - S t a n f o r d)
 O u r (w e b - S t a n f o r d)
 B a s e l i n e (w e b - B e r k S t a n)
 O u r (w e b - B e r k S t a n)

(c) 2 0 G B

Figure 1: Comparison of the baseline and our proposed schemes with different memory size configurations.

determines the discarded RDDs, which is discussed in Sec-
tion 2.3.

2.2 Lineage vs. Checkpointing
Although lineage can always be used to recover RDDs af-

ter a failure, such recovery may be time-consuming for RDDs
with long lineage chains [4]. Thus, we consider to checkpoint
some RDDs to eliminate this computation overhead.

In general, checkpointing is useful for RDDs with long lin-
eage graphs containing and frequent recovery. We take these
two factors to guide the selection of RDDs for checkpointing,
and use the following equations to model this event.

L ≥ C × (1 − ω) (1)

In Equation (1), L and C denote the recovery time via
recomputing and checkpointing, respectively. ω (0 ≤ ω ≤ 1)
presents the frequency of failures. If the condition described
in Equation (1) is satisfied, we will perform the checkpoint-
ing.

2.3 Kick-Out Selection
To reclaim the limited memory space, Spark selects the

least recently used (LRU) RDD to be replaced. However, the
LRU algorithm just considers the temporal locality, and it
does not exploit the unique features of RDD, which results in
low memory utilization. In general, RDDs with long lineage
graphs containing wide dependencies should have the first
priority to use the memory space. This is because the long
lineage graph will introduce noticeable computation over-
head, and wide dependency implies the high-probability ac-
cessing in the future. So, caching this kind of RDDs can
minimize the computation overhead introduced by mem-
ory replacement, and correspondingly maximize the memory
utilization.

P =

{
L

Lmax
+ D

Dmax
if RDD is not checkpointed

C
Cmax

+ D
Dmax

if RDD is checkpointed
(2)

We assign a priority P to each RDD, and the RDD with
high P has the high priority to use the memory space. The
priority P is calculated according to Equation (2). In this
equation, L and C are discussed in Section 2.2, and D repre-
sents the degree of dependency. We normalized the recovery
time and dependency to the range between 0 and 1 by di-
viding the maximum number (i.e., Lmax, Cmax, and Dmax).

3. EVALUATION

3.1 Experimental Setup
We deploy Spark to manage four server nodes. Each server

node is equipped with 64GB memory, 13TB hard disk drive,
and 2.2GHz Intel CPU. The operating system is Ubuntu
14.04. The version for Scala is 2.10.4. We use Hadoop-
2.6.0, Scala-2.10.4, and Spark-1.5.2 for all experiments. The
memory assigned to Spark is variable, and we set it as 5G,
10G, or 20G under different conditions.

Table 1: Characteristics of datasets

Name Nodes Edges Description

web-Stanford 281,903 2,312,497 Web graph of Stanford.edu
web-BerkStan 685,230 7,600,595 Web graph of Berkeley and Stanford

We choose 15 graph datasets from SNAP [3] to do com-
prehensive experiments. Because of the limited space, we
select two representative datasets as examples to show the
effectiveness of the proposed scheme. The characteristics
of datasets are shown in Table 1. The numbers of nodes
and edges have a great influence on the execution time and
memory usage. The whole iterative process finishes until the
processing is convergence.

3.2 Experimental Results
Figure 1 illustrates the performance improvement by com-

paring of the baseline and our proposed schemes with differ-
ent memory size configurations. The baseline scheme is the
original Spark design. The performance is improved by up
to 28.01% (13.63% on average) compared with the baseline
schemes.

4. CONCLUSIONS
In this paper, we present an intelligent RDD management

method to enhance the performance of Spark. We analysed
the long computation lineage and low memory space man-
agement issues. Based on these issues, we propose three
techniques, namely, fine-grained checkpointing, lineage vs.
checkpointing, and kick-out selection. Experimental results
demonstrate the proposed scheme can effectively enhance
the performance of Spark.

5. ACKNOWLEDGMENTS
This work is supported by the National Natural Science

Foundation of China (61672377 and 61373165), the Key
Technology Research and Development Program of Tian-
jin (16YFZCGX00210), the National Key Research and De-
velopment Program of China (2016YFB1000603), and the
Tianjin Science and Technology Commissioners Project (15JCT-
PJC56400).

6. REFERENCES
[1] Apache. Hadoop, 2017. http://hadoop.apache.org/.

[2] D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min,
Y. Cho, and C. S. Kim. LRFU: A spectrum of policies
that subsumes the least recently used and least
frequently used policies. IEEE Transactions on
Computers, 50(12):1352–1361, 2001.

[3] Stanford. Stanford Network Analysis Project, 2017.
http://snap.stanford.edu/.

[4] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In
NSDI’12, pages 1–14, 2012.

874

