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ABSTRACT
Machine intelligence is attracting increasing attention from both
industry and academia. However, the problem of how to make
machines innovate novel hypothesis is underexplored. Automatic
hypothesis generation can effectively shorten research process. In
this work, we try to build an embedding based genetic algorithm to
learn “experience” from past data, mine latent semantic informa-
tion, and then propose the new scientific hypotheses. To our best
knowledge, we are the first who propose to use an embedding based
genetic algorithm for scientific hypothesis generation. Experiments
show that our method outperforms the state of the art.

1. INTRODUCTION
Many people would like to see into the future. However, it is

hard to process all known knowledge to discover unknown knowl-
edge for human beings. Validating whole trials needs much time
and money. In this paper, we are interested in how to let machines
propose novel and reasonable scientific hypotheses, which can ef-
ficiently accelerate scientific progress. Based on Wikipedia, scien-
tific hypothesis is referred to a trial solution (S) to a problem (P).

In brief, a hypothesis is defined as a triple (P,R,S) in this paper. R
denotes a relation between P and S. Our goal is to extract the known
triples from past literature, and outputs new hypotheses which have
high probability to be validated by experts in the future. However,
previous work [4] misses the latent semantic relationships among
solutions or problems, and cannot predict hypotheses containing
entities out of existing knowledge graph. Intuitively, the generation
of new hypotheses can be simulated as a process of natural evo-
lution. Inspired by this, we think to use an evolutional algorithm,
genetic algorithm (GA) which evolves toward better individuals, to
finish this task. The chromosomes of individuals (triples) are firstly
learned. We propose a joint text and knowledge graph embedding
model to encode semantic information into chromosomes. Then,
the evolutional process is iterated until the algorithm converges and
some highly fit individuals (hypotheses) are survived. Finally, we
recover the names of the new individuals. Our experiments show
that our method outperforms existing work.
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2. TASK AND NOTATION DEFINITION
We let knowledge graph D stand for a set of triples in the form

(p, r, s), p∈P, s∈S, r∈R, where P is the problem entity set, S is
the solution entity set and R is a relation set. We use bold letters p,
r, s to denote the embedding of p, r, s. We denote E = P ∪ S as
the whole knowledge graph entity set. W is denoted as the words
set in domain knowledge related free text corpus.

In detail, as shown in Figure 1, our task takes {[p, r, s]|(p, r, s) ∈
D} as input, and outputs new triple embedding {[p

′
, r

′
, s

′
]}. In

particular, since there is no new relation generation in this work,
we keep r fixed. Then E and W are used to search the name of
p

′
, s

′
. Finally, new hypotheses (P ,R,S) are generated, where

P , R and S are the corresponding names of p
′
, r

′
and s

′
.
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Figure 1: The flowchart of the task .

3. HYPOTHESIS GENERATION
In our framework, chromosomes of individuals are learned at

first. And then, to simulate the natural evolution, new chromo-
somes are generated using GA. Finally, we search the name of the
generated chromosomes in domain knowledge related free text.

3.1 Chromosomes Learning
We propose three methods to learn the chromosomes considering

the knowledge graph and domain knowledge related free text.
KGEGA: The chromosome of a individual (p, r, s) can be rep-

resented as [p, r, s]. Inspired by this, we propose to use knowledge
graph embedding [1] to generate p, r and s, which is named as
knowledge graph embedding based GA model (KGEGA).

TEGA: Considering the entity coverage of KGEGA, we propose
to learn the chromosomes from free text using text embedding [3],
which is named as text embedding based GA model (TEGA).

JEGA: To keep both the precision and coverage, we propose to
encode the text into the knowledge graph embedding. We use a one
layer neural network applied to the text embedding of W. The out-
put of the neural network is used to construct the knowledge graph
embedding using equation (1), which enforces that the s should be
close to the p plus the r if (p, r, s) holds:

Skb(p, r, s) =∥ p+ r− s ∥l1/l2 (1)
p = sigmoid(Wp

T
+ b) s = sigmoid(W sT + b) (2)
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where p
T

and sT are the vector representation of p and s in text
embedding space. The W and b are the parameters. We name this
model as joint embedding based GA model (JEGA).

3.2 New Chromosomes Generation
This part takes the chromosomes as input, and outputs new chro-

mosomes using GA. In each iteration, the new population is gener-
ated by repeating selection, crossover and mutation until the num-
ber of the new population and current population is same. We select
∥ p+ r− s ∥l2 as fitness function. Finally, new highly fit chromo-
somes will be generated after the algorithm converges.

3.3 Hypothesis Generation
This part takes the new chromosomes, knowledge graph D and

domain knowledge related free text as input, and outputs the hy-
potheses. We take the first and last third of the new chromosome
as a problem vector and a solution vector. The entity (P or S) name
can be found from the D if the corresponding vector exists in the
knowledge graph embedding. Otherwise, we propose to use the
nearest neighbor to search the names in text by evaluating the sim-
ilarity between the entity vector and the text embedding of W.

4. EXPERIMENTS
4.1 Data Collection

In this work, we use two datasets: DBLP and PubMed. We take
the papers published before 2014 as training data, and the papers
published from 2014 to now as evaluation data. Then, the eval-
uation data are randomly split into test data and validation data
halves. (P,R,S) denote (“problem”,“solved-by”,“algorithm”) and
(“disease”,“treated-by”,“drug”) in DBLP and PubMed. (P,R,S) is
simply regarded as a triple when P and S co-occur in a sentence.
Entities are tagged by a NER tool1. About the domain knowledge
related free text, we obtain web sentences containing entities in
DBLP and PubMed from a commercial search engine. We also
crawl question answering data from two websites2.

4.2 Results
The dimension size of knowledge graph and text embedding is

set as 300. The cross and mutation rate in GA are 0.001 and 0.005
respectively. The initial population size is set as the size of D.

Link prediction: This task is designed to complete a triple (p,r,s)
with p or s missing. We use Mean Rank and Hits@10 as metric to
evaluate the performance of the learned chromosomes.

We compare JEGA with other models. The results are shown
in Table 1. The JEGA obtains the best result. Our method can be
easily applied to new knowledge graph embedding models.

Table 1: Link prediction results.
Datasets DBLP PubMed
Metric Mean Rank Hit@10(%) Mean Rank Hit@10(%)

RESCAL[5] 789 14.70 1045 7.41
LFM[2] 341 36.58 423 36.78

Skip-gram[3] 351 39.45 401 45.37
TransE[1] 242 51.46 321 47.89

JEGA 124 59.63 261 58.16
Compare with previous hypothesis generation models: Com-

pared with NMF [4] and BOW-GID [4], the results are shown in
Figure 2. We use Receiver Operating Characteristic curves to mea-
sure performance. From the results, we can see that our proposed
methods (KGEGA, TEGA and JEGA) outperform other models,
and the JEGA achieves the best result. This also indicates that our
1http://nlp.stanford.edu/software/CRF-NER.shtml
2http://stackoverflow.com/ http://www.drugs.com/

methods can efficiently generate hypotheses which are very likely
to be verified in the future.
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(a) DBLP result.
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(b) PubMed result.
Figure 2: Comparison with previous work

Case Studies: Finally, we show other new hypotheses in DBLP
and PubMed with high confidence predicted by our model in Table
2 and Table 3 respectively, which are still not yet verified.

Table 2: New predicted hypotheses in DBLP
Problem Relation Trial Solution

fault prediction Solved-by sparse coding
dialogue systems Solved-by manifold embedding

knowledge graph embedding Solved-by tensor decomposition
text summarization Solved-by sparse coding neural network
video compression Solved-by huffman coding

Table 3: New predicted hypotheses in PubMed
Problem Relation Trial Solution
fibrosis Treated-by oxygen

pneumoperitoneum Treated-by somatostatin
lung cancer Treated-by rituximab
colon cancer Treated-by neostigmine

ovarian cancer Treated-by streptokinase

5. CONCLUSION AND FUTURE WORK
In conclusion, we present a framework for generating hypotheses

using embedding based genetic algorithm. In future work, we will
apply our methods to more domains. Besides, we will design more
fitness functions. Finally, only one-to-one hypotheses are generated
by our models in current work. We will combine multi-solutions to
solve one problem in the future work.
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