Learning Extreme Multi-label Tree-classifier
via Nearest Neighbor Graph Partitioning

Yukihiro Tagami
Yahoo Japan Corporation
Tokyo, Japan
yutagami@yahoo-corp.jp

ABSTRACT

Web scale classification problems, such as Web page tagging
and E-commerce product recommendation, are typically re-
garded as multi-label classification with an extremely large
number of labels. In this paper, we propose GPT, which is a
novel tree-based approach for extreme multi-label learning.
GPT recursively splits a feature space with a hyperplane
at each internal node, considering approximate k-nearest
neighbor graph on the label space. We learn the linear bi-
nary classifiers using a simple optimization procedure. We
conducted evaluations on several large-scale real-world data
sets and compared our proposed method with recent state-
of-the-art methods. Experimental results demonstrate the
effectiveness of our proposed method.

Keywords

Extreme multi-label classification, approximate k-nearest neigh-

bor graph.

1. INTRODUCTION

In this paper, we address a multi-label classification prob-
lem with an extremely large label set (10* to 10°). We
consider a data set D = {(x;,¥:)},, which consists of N
training points, where ¢; € X C R™ is the M-dimensional
feature vector and y; € Y C {0,1}* is the corresponding L-
dimensional label vector. y;; = 1 if the i-th sample has the
j-th label and y;; = 0 otherwise. Multi-label learning aims
to build a classifier, f : RM — {0,1}*, which accurately
predicts the label vector for a given sample.

For example, the traditional one-versus-rest technique,
which learns an independent classifier for each label, needs
to train the same number of binary classifiers as labels. Fur-
thermore, at the prediction phase of this approach, all binary
classifiers are applied to each test point. Thus, as the num-
ber of labels increases, this naive approach might be compu-
tationally expensive in terms of both training and prediction
steps.

(©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW’17 Companion, April 3—7, 2017, Perth, Australia.

ACM 978-1-4503-4914-7/17/04.
http://dx.doi.org/10.1145/3041021.3054204

(0 @

845

To overcome the above problem, some methods have been
proposed [B, 2, B]. FastXML [6] is a tree-based extreme
multi-label classifier. This method learns an ensemble of
multiple trees using random initialization. At the training
phase of each tree, FastXML recursively partitions the fea-
ture space corresponding to the internal node by using a
linear classifier optimized for nDCG-based ranking loss. A
test point traverses the tree from the root node to a leaf
node, and FastXML then predicts labels using empirical la-
bel distribution of training points in the leaf node.

2. PROPOSED METHOD

As described above, FastXML makes a prediction using
the labels of training points in the leaf node that a test
point has reached. This prediction procedure is considered
as a k-nearest neighbor algorithm using all training points
in the feature subspace of the leaf node. From this point of
view, our proposed method attempts to split each internal
node of a tree while keeping as many “nearest neighbors”
on the label space as possible. Thus, we call our proposed
method a “graph partitioning tree” (GPT).

To split data points at each internal node of a tree, we first
construct a k-nearest neighbor graph on the label space.
Each vertex of the graph corresponds to a training point.
A directed edge connects from the i-th vertex to the j-th
one if the j-th point is included in the set of the “nearest
neighbors” of the i-th point on the label space. In this paper,
the set of “nearest neighbors” of the i-th sample is defined
using the inner product between normalized label vectors
y/|y| as follows.

Ta .
N; := arg max Yi Y ,
s:\5|:k,igsjes lyilly;l

where S is the index set in which the number of elements
equals k and |y;| = Zj yi; is the number of labels that a
data point has.

Since the label vectors y are typically sparse, we can ef-
ficiently find the nearest neighbors A; by using an inverted
index. The estimated computational cost for all data points
is Zle nj(n; —1)/2, where n; is the number of data points
that have the j-th label. However, if a few n; corresponding
to “head” labels are near N, which means almost all data
points have the same label, the above cost reaches O(N?) at
the root node. Therefore, we focus on tail labels and ignore
some head labels. We only consider tail labels under the
condition n; < my, to find approximate nearest neighbors

N, using the threshold parameter n;,. Using this simple

Table 1: Statistics of datasets

Dataset #Train #Test #Features #Labels

N Ntest M L
AmazonCat-13K | 1,186,239 306,782 203,882 13,330
Wikil0-31K 14,146 6,616 101,938 30,938
Delicious-200K 196,606 100,095 782,585 205,443
WikiLSHTC-325K | 1,778,351 587,084 1,617,899 325,056
Amazon-670K 490,449 153,025 135,909 670,091

approximation, we only consider tail labels when the node
is close to the root and has a lot of training points. In con-
trast, when the node is near a leaf and includes a relatively
small amount of data, we construct the graph using all la-
bels.

After an approximate k-nearest neighbor graph is con-
structed using N;, we want to learn a linear classifier by
finding the minimum graph cut. In contrast with the com-
mon min-cut problem, we need to partition the graph with
a hyperplane w on the feature space to predict unknown
test points. Thus, in a similar way to stochastic k-means
clustering, we sequentially maximize the following objective
function for each i-th sample.

Zloga (ciw™"x;) Z logo(—ciw" x;) — Mwl1,

JEN; JEST

where o(z) = 1/(1 + exp(—=2)) is a sigmoid function, S~ is
the set of indices randomly selected from data points that
the node of the tree has, and) is a regularization parameter.
¢; is an indicator variable representing which side of the
partition the i-th point belongs to. ¢; = +1 if wlx; >0
and ¢; = —1 otherwise.

We learn the linear separator w using FTRL-Proximal
algorithm [d] withd AdaGrad [0] learning rate scheduling.

3. EXPERIMENT

Data sets. We evaluated our proposed method using
five large scale multi-label data sets. These data sets were
provided by the Extreme Classification Repository” and had
already been pre-processed and separated into training and
test sets. The statistics for the data sets are summarized in
Table M

Baselines and evaluation setting. We compared GPT

with several state-of-the-art tree-based classifiers: FastXML [6],

PfastreXML [2], and PLT [8]. PfastreXML is the method
that extends FastXML to improve tail label predictions.

We evaluated the performance of the methods with pre-
cision at k (k € {1,3,5}), which is a widely adopted met-
rics for extreme multi-label classification and ranking tasks:
Pak = #ZN’”' Zl 1 Yim(t)- Here, w(k) = j means
that the j- ~th label is ranked in the k- th position by the
predicted score.

In all experiments, we used default hyper-parameters to
train GPT; the number of learners: 50 (the same as the
default value of FastXML and PfastreXML), the threshold
parameter for finding approximate nearest neighbors: ns, =
50, the number of approximate nearest neighbors and ran-
domly sampled points used in learning: |N;| = |S~| = 10,
the number of epochs for optimization w: 10, the initial

! https://manikvarma.github.io/downloads/XC/
XMLRepository.html

846

Table 2: Experimental results

Dataset GPT FastXML PfastreXML PLT
P@1|0.9084 0.9310 0.8994 0.9147

AmazonCat-13K P@3|0.7676 0.7818 0.7724 0.7584
P@50.6255 0.6338 0.6353 0.6102

P@1|0.8476 0.8295 0.8263 0.8434

Wikil0-31K P@30.7322 0.6756 0.6874 0.7234
P@50.6320 0.5770 0.6006 0.6272

P@1|0.4746 0.4320 0.3762 0.4537

Delicious-200K P@3[0.4165 0.3868 0.3562 0.3894
P@5(0.3871 0.3621 0.3403 0.3588

P@1]0.6336 0.4975 0.5810 0.4567
WikiLSHTC-325K P@3{0.3997 0.3310 0.3761 0.2913
P@5(0.2906 0.2445 0.2769 0.2195

P@1|0.4236 0.3697 0.3919 0.3665

Amazon-670K P@3]0.3725 0.3332 0.3584 0.3212
P@5(0.3384 0.3053 0.3321 0.2885

learning rate: no = 0.1, the L; regularization parameter:
A = 4.0, and the maximum number of data points allowed

in a leaf node: 10.

We used C++ implementations provided by the authors
for FastXML and PfastreXML. In this case, the suggested
hyper-parameters were adopted. Since we use ordinary (not
propensity scored) precision at k as evaluation metrics, propen-
sity scores of PfastreXML are set the same value for all la-

bels.
the original paper [8].

For PLT, we only referred to the values reported in

Results. The experimental results are summarized in Ta-

ble B. The bold elements indicate the best performance of
all methods. Our proposed GPT achieved the best perfor-
mances of the four tree-based methods for almost all data
sets. For example, on the WikiLSHTC-325K data set, GPT
was superior to the PfastreXML, which is the second best,
by approximately 5% in absolute terms of P@Q1. On the
dataset, our C++ implementation of GPT made predictions
in 0.9 milliseconds per test point on a single CPU thread.
These experimental results indicate that our proposed graph

partitioning method is promising for extreme multi-label
classification.

4. REFERENCES

[1] J. Duchi, E. Hazan, and Y. Singer. Adaptive
subgradient methods for online learning and stochastic
optimization. J. Mach. Learn. Res., 2011.

[2] H. Jain, Y. Prabhu, and M. Varma. Extreme
multi-label loss functions for recommendation, tagging,
ranking & other missing label applications. In KDD,
2016.

[3] K. Jasinska, K. Dembczynski, R. Busa-Fekete,

K. Pfannschmidt, T. Klerx, and E. Hiillermeier.
Extreme f-measure maximization using sparse
probability estimates. In ICML, 2016.

[4] H. B. McMahan. Follow-the-regularized-leader and
mirror descent: Equivalence theorems and 11
regularization. In AISTATS, 2011.

[5] Y. Prabhu and M. Varma. FastXML: A fast, accurate
and stable tree-classifier for extreme multi-label
learning. In KDD, 2014.

https://manikvarma.github.io/downloads/XC/XMLRepository.html
https://manikvarma.github.io/downloads/XC/XMLRepository.html

	Introduction
	Proposed Method
	Experiment
	References

