
PoDiGG: A Public Transport RDF Dataset Generator

Ruben Taelman Ruben Verborgh
Tom De Nies Erik Mannens

Ghent University – imec – IDLab, Belgium
{firstname.lastname}@ugent.be

ABSTRACT
A large amount of public transport data is made available by many
different providers, which makes rdf a great method for integrating
these datasets. Furthermore, this type of data provides a great source
of information that combines both geospatial and temporal data.
These aspects are currently undertested in rdf data management
systems, because of the limited availability of realistic input datasets.
In order to bring public transport data to the world of benchmarking,
we need to be able to create synthetic variants of this data. In this
paper, we introduce a dataset generator with the capability to create
realistic public transport data. This dataset generator, and the ability
to configure it on different levels, makes it easier to use public
transport data for benchmarking with great flexibility.

Keywords
Public Transport, Dataset Generator, Benchmark, Linked Data, rdf

1. INTRODUCTION
The effectiveness and efficiency of Linked Data and rdf data

management systems are mostly measurement using benchmarks.
Benchmarks usually require a real-world or synthetic input dataset
to see how well systems handle and process this data. A major
drawback of individual real-world datasets is their limited variety. In
order to properly test the limitations of systems, it must be possible
to introduce variations into the dataset, for example, making the
dataset ten times larger. These variations must however still result
in realistic datasets, which share characteristics with real data [6].

Public transport data is an especially interesting source of data,
since it is made available by many different data providers, and it
contains characteristics on several levels such as geospatial stops and
temporal connections. These properties can uncover strengths or
weaknesses of certain systems through benchmarking. Furthermore,
the interlinked, multi-leveled nature of public transport data makes
it particularly interesting for its representation as Linked Data.
In order to be able to measure the performance of rdf data

management systems in the public transport domain, we introduce
a mimicking algorithm that is able to generate public transport
data. This generator is inspired by real-world transit network design

©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW’17 Companion, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4914-7/17/04.
http://dx.doi.org/10.1145/3041021.3054210

.

and scheduling methodologies, in order to mimic realistic public
transport data at different levels that can be configured using various
parameters.

2. RELATED WORK
The de-facto standard for public transport schedule data is gtfs1,

in which transit feeds are represented by a series of csv files with
specific columns contained in a zip file. gtfs uses the following
terminology for transit schedules:
Stops are geospatial locations where vehicles halt and passengers

can get on or off.
Routes contain a sequence of stops.
Trips are serviced routes that are instantiated by time.
In order to make the publication of such data in rdf scalable for
public route planning, Linked Connections [4] was introduced, where
a connection is a hop from one stop to another in a trip, and is the
primary element to represent public transport schedules. We use the
Linked Connections methodology to serialize our generated datasets,
because of its inherently linked structure, which makes it ideal for
rdf datasets.

The process of public transit network planning is typically catego-
rized in five sequential steps [2, 7]: (1) design of routes (2) setting
of frequencies (3) development of timetables (4) vehicle scheduling
and (5) driver scheduling. The first step is usually referred to as the
strategic step of transit network planning, while steps 2 and 3 are
referred to as the tactical steps. In this work, we are only concerned
about the first three steps because vehicle and driver scheduling
information is not needed for travelers.

3. GENERATOR
We assume a correlation between the population distribution of

a region and its transit network design and scheduling: we expect
that more populated areas will have easier access to public transport,
and that those areas will also have more frequent connections to
other places. In reality, the public demand for populated areas
is a factor that is always taken into account in transit network
design methodologies [7]. In fact, when we look at the population
distribution of Belgium and the Netherlands and compare this with
the distribution of train stops, we measure a positive correlation2 of
0.439 for Belgium and 0.442 for the Netherlands.
We use the population distribution of a region as input to our

generator, and create a transit network and its scheduling in four
steps: (1) the placement of stops, (2) connecting stops using edges,
(3) generation of routes and (4) scheduling of timely trips over

1https://developers.google.com/transit/gtfs/
2p-values in both cases < 0.00001

843

http://dx.doi.org/10.1145/3041021.3054210
https://developers.google.com/transit/gtfs/


routes Finally, all this data is serialized as rdf using the Linked
Connections3 and gtfs4 ontologies.
While real-world public transit planning methodologies assume

stops and paths between them to be part of the input to the process,
our algorithm also includes these as part of the generation process.
Furthermore, our algorithm does currently not consider the vehicle
and driver scheduling to be part of the generation process.

3.1 Stops Generator
The goal of the first step is to generate a realistic placement of

stops in a two-dimensional area subdivided in discrete cells of equal
size. For a preconfigured number of stops, we iteratively tag random
cells as stops, where each stop is given a certain size based on
its population value. This random selection is based on a Zipf-
distribution where cells with a higher population value have a higher
chance to be tagged as a stop than cells with a low population value.
This distribution can be scaled to select minimum and maximum
population values at which to tag stops.

3.2 Edges Generator
After stops have been generated, edges are created in order to

form paths between stops. This generator will always create one
connected transit network graph, where all stops are reachable from
all other stops by any given path consisting of edges. In order to
do this, the generator consists of two clustering phases and one
so-called “loose stops”-phase.

The first agglomerative hierarchical clustering phase first considers
all stops to be part of a different cluster. Each cluster always has
a center point representing the average location of all stops in that
cluster. This phase loops until all clusters have an inter-cluster
distance larger than a preconfigured value. These distances are
always calculated using Euclidian distances of the cells in their
two-dimensional area.

After this first step, we have clusters of stops that lie close to each
other. In the next step, we consider border stops, similar to border
stations [1], as the only stops in a cluster that can be used to transfer
to (border) stops in other clusters. This step ensures that all clusters
eventually form one connected network.
The final step aims to resolve the problem of loose stops, which

means that the two previous steps result in a significant amount of
stops that are connected with only one other stop, i.e., they have a
degree of one, which does not occur frequently in reality. This step
aims to resolve this problem by detecting these loose stops, searching
for other stops in the opposite direction of the single present edge,
and adding an edge for the first stop that can be found in a given
area.

3.3 Routes Generator
Once we have a network of stops connected by edges, we can start

the placement of routes over this network. In order to simulate long
and short distance routes, this generation phase is divided into two
steps: first we create long routes connecting large stops, and after
that, we create smaller routes connecting smaller stops.

For the first step, we create a list of the largest stops, where the size
of this list is configurable. For each of these largest stops, the shortest
path in the network to all other largest stops is calculated using the
A* search algorithm and instantiated as a route. All sufficiently large
stops on that route are also included as stops for that route.
Next, smaller routes are generated by iteratively selecting two

random large stations, connecting them through a heuristically-
determined shortest path, and including all passed stops in the route.
This is done until a preconfigured number of routes is generated.
3http://semweb.mmlab.be/ns/linkedconnections
4http://vocab.gtfs.org/terms

3.4 Trips Generator
Finally, we generate trips based on the created routes. This is

done by continuously picking a random route, with a larger chance
on longer routes, and instantiating that route in time as a trip. This
is done until a pre-configured number of trips has been created.
The instantiation of a trip is done by choosing a random starting

time of the trip, based on a preconfigured time distribution. The
default time distribution is based on the logs of the route planning api
(iRail5) in Belgium [3]. The stop times are calculated for each stop
in the trip by estimating the time it takes for a train to go from one
stop to the next, including preconfigured speedup times, maximum
vehicle speeds and required waiting times at stops.

4. CONCLUSIONS
By taking into account the strategic and tactical steps within transit

network planning, and combining it with the population distribution
of an area, we were able to create a realistic public transport dataset
generator. podigg is implementation6 of this algorithm, and is
available under an open license.

In order to determine the realism of our mimicking algorithm, we
aim to measure and improve the realism [6] of generated datasets in
future work. Furthermore, this generator provides a basis for more
extensive public transport data generation, for example mimicking
the vehicle and driver scheduling in transport networks. Finally,
this system can also be extended to serve as input to rdf stream
processing systems [5], where the original transit schedules are used
as static background knowledge, and real-time vehicle delays can be
represented as rdf data streams.
The proposed dataset generator, and its flexible configurability,

makes it easier for benchmarking rdf data management systems
with realistic input datasets of different sizes at different interlinked
levels, including the temporal and spatial dimension.

Acknowledgements
This work was funded by the H2020 project HOBBIT (#688227).

5. REFERENCES
[1] H. Bast, M. Hertel, and S. Storandt. Scalable transfer patterns.
[2] A. Ceder and N. H. Wilson. Bus network design. Transportation

Research Part B: Methodological, 20(4):331–344, 1986.
[3] P. Colpaert, A. Chua, R. Verborgh, E. Mannens, R. Van de

Walle, and A. Vande Moere. What public transit api logs tell us
about travel flows. In Proceedings of the 6th USEWOD
Workshop on Usage Analysis and the Web of Data, pages
873–878, Apr. 2016.

[4] P. Colpaert, A. Llaves, R. Verborgh, O. Corcho, E. Mannens,
and R. Van de Walle. Intermodal public transit routing using
Linked Connections. In Proceedings of the 14th International
Semantic Web Conference: Posters and Demos, 2015.

[5] E. Della Valle, S. Ceri, F. van Harmelen, and D. Fensel. It’s a
streaming world! Reasoning upon rapidly changing
information. Intelligent Systems, IEEE, 24(6), Nov 2009.

[6] S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea. Apples
and oranges: a comparison of rdf benchmarks and real rdf
datasets. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data, pages
145–156. ACM, 2011.

[7] V. Guihaire and J.-K. Hao. Transit network design and
scheduling: A global review. Transportation Research Part A:
Policy and Practice, 42(10):1251–1273, 2008.

5https://hello.irail.be
6https://github.com/PoDiGG/podigg-lc

844

http://semweb.mmlab.be/ns/linkedconnections
http://vocab.gtfs.org/terms
https://hello.irail.be
https://github.com/PoDiGG/podigg-lc

	Introduction
	Related Work
	Generator
	Stops Generator
	Edges Generator
	Routes Generator
	Trips Generator

	Conclusions
	References



