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ABSTRACT
Learning reliable embeddings requires large data and is not
trivial to be adapted to specific tasks due to certain con-
straints. For queries, the lack of sufficient context can pro-
hibit learning quality representations and thus effective query
understanding. We propose to project embeddings from a
source space learned with natural language into a target
space on queries. The projection function is learned via
an overlap vocabulary set shared by both source and tar-
get spaces. Experimental results show that both linear and
nonlinear embedding projections can help query intent clas-
sification and query slot tagging, even when the amount of
data used for learning the projection is limited.
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1. INTRODUCTION
Conventionally, word embeddings are trained via neural

networks in an unsupervised manner on large-scale free text
corpora, such as Wikipedia, news articles, or web text, which
are often expressed in natural language. Although word em-
bedding has demonstrated to be useful in NLP tasks, its ef-
fectiveness is highly dependent on the size of data and the
availability of sufficient context. As a result, learning re-
liable embeddings from queries may be hindered since the
average length of a web query is very short, providing lim-
ited amount of context. Directly using embeddings trained
from free text for queries may also result in impotence since
query language is very different from natural language.

In this paper, we propose to project embeddings from
a source space learned with large, natural language cor-
pora, into a target space on queries where the context is
much more limited. Unlike existing embedding projection
approaches that requires mapping among languages [5] or
knowledge concepts [4], our embedding projection focuses
on providing an inexpensive way to finding reliable repre-
sentations for a target task where building embeddings has
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Figure 1: The concept of learning and applying
embedding projection between source and target
spaces.

certain challenges (e.g., queries lack context). We propose to
learn the projection function by minimizing the distance be-
tween the word embeddings from source and target spaces,
which are connected by a set of overlapped vocabulary. In
practice the vocabulary size can be very small. This design,
when starting a new task, has potential to address cold-start
problems considering that the amount of initial data in the
target domain is often very limited. Therefore it provides
an effective means for goal-specific tasks to leverage exist-
ing generic embeddings without having to re-train over large
corpora.

We evaluate our approach using two common query un-
derstanding tasks, namely intent classification and slot tag-
ging. Experimental results on public and commercial query
logs show that our embedding projections can help these
two tasks, where the result of using projected embbedings
outperforms using either space or target embeddings.

2. EMBEDDING PROJECTION
Our framework of embedding projection is shown in Fig-

ure 1. The left big box represents the source embedding
space S, where the embeddings of words inside this space
are learned in a conventional unsupervised manner. The
right big box stands for the projected embedding space T.
Embedding projection from S to T is learned via the shared
words (w ∈ O), represented by the small green boxes in both
spaces. Based on this shared vocabulary, our goal is to find
an f such that

∀w ∈ O : E(wT) = f(E(wS)) (1)

where E(w) refers to the embedding for w. Once f is found,
projected embeddings for any arbitrary word w ∈ S can be
constructed by simply applying f to its source E(wS).

We consider two approaches to building f . For linear
projection, f is intrinsically a matrix P that aligns the
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embeddings from S to T such that∑
w∈O

‖ES(w)P − ET(w)‖2 ≤ ε (2)

This formula can be solved by least square fitting. The as-
sumption is that there exists a transformation between the
two spaces where one can be mapped to the other through
linear operations.

Non-linear projection presents a more generic way to
projecting embeddings from S to T. In practice , the projec-
tion is implemented with a two-layer perceptron, which can
be formulated as

f(ES(w))w∈O = G(2)(b(2) + W (2)(G(1)(b(1) + W (1)ES(w))))
(3)

Here W and b are weight matrix and bias vector, respec-
tively. G is the activation function, which is tanh in this
paper. The superscripts (1) and (2) denote the first and
second layer. The parameters are updated through stochas-
tic gradient descent based on back-propagation algorithms.

3. EXPERIMENTS

3.1 Experiment Settings
We evaluate our projection approaches on two labeled

datasets. The first is a benchmark dataset, ATIS [1], which
is widely used in the community for intent classification and
slot tagging. It contains 26 different intents and 153 slot
types. In total there are 4978 utterances for training and
893 for testing. The second dataset is from annotated search
logs, which contains 100,000 queries with 104 intents and 36
slot types. We use 80% of the dataset for training and the
rest for testing. Labeled datasets form the target space T,
and the embeddings trained from T are regarded as target
space embeddings E(wT). For training embeddings from
source space S, we use the Wikipedia dataset from its lat-
est dump of articles1, containing over 2 billion words. All
labeled and unlabeled data are tokenized and normalized in
our experiments. The embeddings from source and target
spaces are trained by word2vec [3] with the continuous bag-
of-word structure. In this task we use a bidirectional LSTM
(bLSTM) with one hidden layer of 256 units for learning
slots and intents jointly. The bLSTM is trained by minimiz-
ing the categorical cross entropy error over each training set
using Adam optimizer [2]. In our experiments, we keep the
hyper-parameters of the bLSTM fixed and test with different
input embeddings.

3.2 Results
We have three sets of experiments: (1) directly use S em-

beddings trained from Wikipedia; (2) directly use T em-
beddings from ATIS or commercial queries; (3) apply the
projected embeddings, S → T. Another key factor that af-
fects the projection performance is the choice of the shared
word set O. To construct O, we rank the words in the target
space according to their frequencies, and then select top n
frequent term to form O. We test n = 10, 100 and 1000
for learning f . Results are shown in Table 1, where intent
classification is measured by accuracy and slot tagging by
F1. The best result in each column is marked bold.

Table 1 shows that both linear and nonlinear projections
effectively adapt the embeddings from S to T. All projected

1https://dumps.wikimedia.org/enwiki/latest/

Table 1: Performance of query understanding on
ATIS and Queries with using different embeddings.

ATIS Queries
Embeddings Intent Slot Intent Slot

S 93.17 93.08 84.14 82.70
T 94.74 94.26 85.06 88.20
S → T : O(10) linear 93.51 94.29 85.97 87.89

non-linear 93.28 94.08 84.91 84.56
S → T : O(100) linear 93.88 94.44 85.56 86.38

non-linear 93.71 93.98 86.18 87.38
S → T : O(1000) linear 94.40 93.96 85.44 84.97

non-linear 94.39 94.10 86.45 88.61

embeddings yield better performance than source embed-
dings, even when using only very limited data for learning
the projection (i.e., small n). This property is useful to
cold-start scenario in real applications. Second, the size of
O affects the projection performance. In general, linear pro-
jection works better than nonlinear projection when the size
of O is very small (e.g., O(10)). By enlarging O, however,
the performance of linear projection tends to drop, especially
on the evaluation of queries. This may be caused by that
using more data increases the difficulty of solving the linear
fitting between two matrices. For real traffic web queries,
the assumption that S and T should be linearly correlated
is less realistic in practice. For nonlinear projection, its per-
formance improves with the increase of the size of O. Third,
our results suggest that the projected embeddings can per-
form better than the embeddings directly learned from tar-
get space. The reason might be that the source embeddings
trained from very large dataset can bring more reliable se-
mantic relationship over to the target space by projection.

4. CONCLUSIONS
We proposed an approach to embedding projection for im-

proving query understanding, in terms of intent classification
and slot tagging. Experiments on two datasets showed that
this technique can improve results of using either source or
target embeddings only. Our approach combines the ben-
efits of leveraging more reliable embeddings learned from
large data and the adaption to task-specific languages. Mov-
ing forward, we are interested in studying the effect in cold
start problems and different ways to creating projections.
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