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ABSTRACT
Network representation is the basis of many applications
and of extensive interest in various fields such as informa-
tion retrieval, social network analysis, and recommendation
systems. Majority of previous methods on network repre-
sentation only considered incomplete aspects of the problem,
such as link structure, node information, or partial integra-
tion. The present paper proposes a comprehensive network
representation model, which seamlessly integrates the text
information, node label, and first-order and second-order
proximity of a network. The effectiveness of the introduced
strategies is experimentally evaluated. Results demonstrate
that our method is better than state-of-the-art techniques.
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1. INTRODUCTION
Information network representation is an important re-

search issue because it is the basis of many applications [2],
such as document classification in citation networks, func-
tional label prediction in protein-protein interaction net-
works, potential friend recommendation in social networks.
However, the rich and complex information (i.e., link struc-
ture and node contents) found in information networks im-
poses a great challenge for effectively representing networks.

To address the issue, several deep-learning based approaches
have been introduced [1, 2, 4, 5] in recent years, where the
node content is usually represented as text information in-
dicating the properties of a node [3]. Most previous studies
only utilized one kind of information. The work in [2] fo-
cused on the node content whereas others [1, 4] explored
link structure. Although a few previous models [3, 5] com-
bined both content information and network structure, they
did not preserve the complete network structure and the
node content was only partially utilized.

In this paper, we propose effective techniques to learn net-
work representation by modeling both node content infor-
mation and network structure comprehensively. This study
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aims to seamlessly integrate text information, node label,
first-order and second-order proximities together. The ex-
perimental evaluation demonstrates the superior performance
of our strategies on the benchmark datasets.

2. THE PROPOSED MODEL
Let G = (V,E,C, L) denotes a given network, where V =
{vi} is the node set, E = {eij} is the edge set, C = {ci}
is the set of text information, and L = {li} is the set of
class labels. Our goal is to seek a low-dimensional vector
for each node of a given network. The architecture of our
model is shown in Fig. 1.We learn an effective feature vector
representation preserving both the link structure and the
node content, which will be applied to many tasks (e.g.,
paper classification).

As shown in Fig. 1, we first construct the first-order node
relation module. Given a network, the set of connected
nodes is obtained and the joint probability between vi and vj
is p1(vi, vj) = 1

1+exp(~ui·~uj)
, where ~ui and ~uj are the vector

representation of nodes vi and vj ,respectively. The first-
order proximity indicates the similarity between two ver-
tices. The weight wuv on a edge euv between two nodesu, v
indicates the first-order proximity between u and v. In our
study, the directly linked vertices are assumed to have sim-
ilar representations. Therefore, the objective function

L1 = −
∑

(vi,vj)∈E
logp1 (vi, vj) (1)

is minimized to preserve the first-order proximity.
For the second-order node relation module, we adopt sev-

eral stunted random walks to generate the node sequences.
We then apply DeepWalk [4] on these sequences to learn
the node representation. The second-order proximity is the
similarity between the neighborhood network structure. If
two nodes share many common neighbors, we assume that
they are similar, which indicates high second-order proxim-
ity. Therefore, we maximize the likelihood of neighbor nodes
given a node vi to preserve the second-order proximity. The
objective function is as follows:

L2 =

N∑
i=1

∑
s∈S

∑
−b≤j≤b,j 6=0

logP (vi+j |vi) (2)

where N is the number of nodes, b is the context width (win-
dow size), s is a node sequence, and P (vj |vi) is computed

as: P (vj |vi) =
exp(~uT

j .~ui )∑|V |
k=1

exp(~uT
k
.~ui )

.

We employ the state-of-the-art approach, i.e., Doc2vec [2],
which utilizes text to learn the vector representation for doc-
uments as our content2vec module. Specifically, if one node
contains a label, the label is treated as a word and merged
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Figure 1: Architecture of our model

into the comprehensive text information (e.g., the abstract
of the paper in the citation network) as the content of the
node.Therefore, we can maximize the following objective:

Lc =

|L|∑
i=1

logP (w−b : wb|li) +

N∑
i=1

logP (w−b : wb|vi) (3)

where w is a word in the text information of vi, b is the
window size of word sequence, and li is the label of vi.

By maximizing the objectives O1 = (∂ − 1)L1 + ∂Lc and
O2 = (1 − ∂)L2 + ∂Lc, and concatenating the two vectors
learned by the two objectives as the final result of the rep-
resentation of each node, we can obtain the network repre-
sentation preserving the first-order proximity, second-order
proximity, and the content information.

3. EXPERIMENTS
We conduct an important task, i.e., node classification, on

two benchmark datasets: (1) CiteSeer-M101. It contains 10
categories with 10,310 papers and 77,218 citations. Titles
are treated as the text information; and (2) DBLP dataset2.
Abstracts are treated as the text information. The setting
is the same as that of [3], which has 30,422 nodes and 41,206
edges. To reduce the influence of classifiers, a common linear
SVM is used in all the methods. In each network, p% nodes
are randomly selected as training set, the rest are testing
set. The experiments on Citeseer-M10 are independently
conducted 10 times for each setting and the average values
are reported. On DBLP, the experiments are conducted once
for each setting3. As previous work did, we report Macro-
F1 as the evaluation metric. Default parameters are set:
dimension d=50, window size b=10, text weight ∂=0.8.

Our model is evaluated by comparing with five techniques
(Table 1). DeepWalk [4] and Node2vec [1] are structure-
based that exhibit inferior performance because the network
is rather sparse. Doc2Vec [2] is based on text and works bet-
ter on DBLP than CiteSeer-M10. TADW [5] and TriDNR
are inferior to our approach, although these two methods
also consider the text and structure. However, they cannot
capture complete structure and utilize whole text informa-
tion. Our model exhibits consistent superior performance
and is much better than the state-of-the-art methods.

Each proposed technique is evaluated (i.e., Fig. 2). Con-
sidering only the first-order proximity and content informa-
tion yields unsatisfactory results. Incorporating the second-
order proximity can greatly improve performance.

1http://citeseerx.ist.psu.edu/
2http://arnetminer.org/citation (V4 version is used)
3For long version please visit http://123.56.138.34/cide
webpage/publications/lh/www_2017_extension.pdf

Table 1: Performance comparison between ours and
the state-of-the-art on Macro-F1
methods DBLP CiteSeer-M10

%p 30% 50% 70% 30% 50% 70%

deepwalk 0.4364 0.4311 0.4337 0.2875 0.2967 0.3073
node2vec 0.4703 0.4714 0.4784 0.4507 0.4402 0.4612
TADW 0.6603 0.6717 0.6780 0.4886 0.4980 0.5030
TriDNR 0.7315 0.7425 0.7523 0.6685 0.7046 0.7272
Doc2vec 0.7082 0.7219 0.7289 0.3992 0.4052 0.4021

Ours 0.7526 0.7645 0.7761 0.6982 0.7278 0.7461

Figure 2: Performance of each strategy on different
training proportion

4. CONCLUSIONS
We have introduced an effective network representation

model, which comprehensively integrates text information
and network structure. The experimental evaluation demon-
strates the effectiveness of our strategies.
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