
A Systematic Framework to Optimize Launch Times of

Web Apps

Suresh Kumar Gudla, Jitendra Kumar Sahoo, Abhishek Singh, Joy Bose, Nazeer Ahamed

Samsung R&D Institute
Bangalore, India

suresh.gudla@samsung.com

ABSTRACT

Web Applications typically have longer launch times compared to

native applications, especially upon device boot up or if the

browser is not already running in the background. In this paper,

we propose an approach to speed up the launch time for web

applications, by considering the user's usage of web applications

and pre-launching the predicted web applications. We provide

implementation details of our model and perform experiments on

various web applications to measure the effectiveness of the

framework for fast launch of the applications after the device

boots.

Categories and Subject Descriptors

H.3.5 [Information Storage and Retrieval]: Online Information

Services.

Keywords

web apps; launch time; native apps; progressive web apps

1. INTRODUCTION
Native apps and web apps are two categories of apps available for

smartphone users. Android internally takes care of native app

speedup. Web apps, on the other hand, internally use Web

Runtime (WRT) or the Web Browser, which slows them down in

comparison to native apps. One way to speed up the web app

launch time is to consider the user interest and previous web app

usage. In this paper, we discuss such techniques to improve the

launch time of the web apps by picking up the right set of web

apps to pre-load and pre-render.

2. RELATED WORK
Liu et al [1] compared native and web apps performance using

various parameters, and proposed some guidelines to improve the

performance. Others [2-6] have proposed methods for predicting

and prefetching for speedup of native applications. Our approach

is geared for web apps and changing the web engine modules.

3. SYSTEM FRAMEWORK
Our overall architecture is shown in fig. 1. The system on the

mobile device consists of a web app launcher, along with other

modules to intelligently pre-fetch the web app and its content and

thus reduce their launch time. The web app launcher module

consists of a number of sub modules. The Listener module listens

to system level events like Web App launch indications and Boot-

Up broadcasts, and recreates all this information into simple key-

value pairs in the form “attribute = value”. The Rule-Developer

module develops rules based on factors such as the usage of the

web apps by the user. A rule consists of several predicates and

logical operators.

Figure 1. Architecture for the optimized web app framework.

The Score Developer module gives proportional weightage to

various rules and generates the overall weighted score index of a

web app, as shown in fig. 2. This kind of critical rule looks like

Ri = P1 ∩ P2 ∩ P3 …. ∩ Pn (2)

Where Ri is a critical rule identified containing one or more

critical predicates. Pi can be a critical predicate or a sub-rule

having critical predicates. To get the weighted score index of each

web app, we choose the rules which are true and extract the

predicates from them. Each of these predicates are given weights.

We use the weighted sum model to calculate the weighted score

index (WSI) of each web app, as presented in equation 3.

APPi
WSI = ∑(j=1)

n WjPij for i = 1,2 … m (3)

Here, m represents the number of web apps on the device and Pij

represents the predicate used in evaluating for that web app, Wj

the weight associated with that web app, APPi is the ith web app

we are evaluating and APPi
WSI is the WSI value of the ith web app.

After computing the WSI values for all installed web apps, the top

few web apps with the highest WSI index values will be chosen

for pre-fetching.

The Launch Manager takes the weighted score index of each Web

App and decides which web app has to be given to the pre-fetcher

module. The Pre-fetcher module is used to pre-render the

corresponding Web App resources, scripts and html files and

ensure that the actual page is ready for loading in a Tab of the

© 2017 International World Wide Web Conference Committee

(IW3C2), published under Creative Commons CC BY 4.0 License.

WWW 2017 Companion, April 3-7, 2017, Perth, Australia.

ACM 978-1-4503-4914-7/17/04.

http://dx.doi.org/10.1145/3041021.3054206

785

Browser. The Memory Pruner module plays a crucial role when

the system goes down on memory in the case of web apps. The

Statistics module stores relevant data corresponding to the web

app usage and the user’s preferences, and uses this data to

generate a weighted score index. This weighed score index is used

in successive device boot-up.

4. EXPERIMENTAL RESULTS
To test the system, we selected apps from a list of popular

Android apps in India in a few categories. We picked NDTV from

the Entertainment category, Twitter from the Social Network

category, Times of India (TOI) from News category, VIA from the

Travel category and Paytm from the Ecommerce category. We

used Samsung Galaxy Note 5 devices for our test.

4.1 Launch Time Test
In our test, the launch time is measured using high speed cameras

and measured from the launch of the app till the first screen

appears with and without our framework. The graph in Fig. 3

shows above 40% improvement in the launch time of the web

apps with our framework. This could be due to the fact that our

framework takes care of pre fetching and pre rendering of the web

apps, which serves an early composition without loss of data.

4.2 Network Connections Test
We measured the network requests made by web apps with and

without our framework for the selected five apps. We took the

TCP dump from the mobile device until the app is properly

launched and initialized and counted the number of network

requests made by the app manually using Wireshark Network

Analyzer. Fig. 2 shows there is not much difference in the number

of network requests made by the web apps with and without using

our framework. This indicates there is no performance

degradation because of our optimized framework.

Figure 2. Plot of launch times (in sec) and network requests,

without (red) and with (green) our framework.

4.3 CPU Test
The important launch process components executed before

showing the web app home screen to the user are networking,

loading resources, executing scripts, layout and rendering and

user interaction. However the execution order of these modules

differs for each of the apps. Some may prefer parallel processing

and some may prefer sequential execution. In our experiments, we

verified the CPU consumption of the selected apps during the

launch time to evaluate the effectiveness of our framework during

the launch time. We measured the CPU consumption of each of

the web apps by connecting the test device to adb shell and

executing the “top -m 5 -d 1 -n 10”shell command. We have

taken the CPU evaluation values for the trail whose launch time is

nearest to average launch time of web apps during Launch test for

both with and without framework cases. The results of the tests

with and without our framework are plotted in Fig. 3. The plotted

graphs can be fitted with a Gaussian distribution.

Comparing the two graphs, we see that our framework could help

in reducing the width of curve (representing the duration of the

CPU utilization) to a significant extent and height of the curve

(representing the peak of the CPU utilization) marginally.

(a) (b)

Figure 3. CPU utilization of the web apps in a trial (a) without

and (b) with our framework.

5. CONCLUSION AND FUTURE WORK
In this paper we have presented the design of a system to reduce

the web app loading time based on user preferences, and

presented the results of various tests to show its performance. In

future, we plan to generate the rules online based on the user

behavior, further improve the model by incorporating online

machine learning methods and also run the system for a larger

dataset.

6. REFERENCES
[1] Yi Liu et al. Characterizing RESTFul Web Services Usage

on Smartphones: A Tale of Native Apps and Web Apps. In

ICWS, 2015.

[2] Tingxin Yan et. al. Fast app launching for mobile devices

using predictive user context. In MobiSys, 2012.

[3] Ravindranath et al. Give in to Procrastination and Stop

Prefetching. In Hotnets, 2013.

[4] Parate et al. Practical Prediction and Prefetch for Faster

Access to Applications on Mobile phones. In UbiComp,

2013.

[5] R. Baeza-Yates et al. Predicting The Next App That You Are

Going To Use. In WSDM, 2015

[6] C. Zhang et al. Nihao: a predictive smartphone application

launcher. 2012. In MobiCASE, 2012.

786

