
Time-Series Adaptive Estimation
of Vaccination Uptake Using Web Search Queries

Niels Dalum Hansen
University of Copenhagen/IBM

nhansen@di.ku.dk

Kåre Mølbak
Statens Serum Institut

KRM@ssi.dk

Ingemar J. Cox
University of Copenhagen
ingemar.cox@di.ku.dk

Christina Lioma
University of Copenhagen

c.lioma@di.ku.dk

ABSTRACT
Estimating vaccination uptake is an integral part of ensuring public
health. It was recently shown that vaccination uptake can be
estimated automatically from web data, instead of slowly collected
clinical records or population surveys [2]. All prior work in this
area assumes that features of vaccination uptake collected from
the web are temporally regular. We present the first ever method
to remove this assumption from vaccination uptake estimation:
our method dynamically adapts to temporal fluctuations in time
series web data used to estimate vaccination uptake. We show
our method to outperform the state of the art compared to
competitive baselines that use not only web data but also curated
clinical data. This performance improvement is more pronounced
for vaccines whose uptake has been irregular due to negative
media attention (HPV-1 and HPV-2), problems in vaccine supply
(DiTeKiPol), and targeted at children of 12 years old (whose
vaccination is more irregular compared to younger children).

1. INTRODUCTION AND RELATED WORK
Vaccination programs are an efficient and cost effective method

to improve public health. With sufficiently many people vacci-
nated the population gains herd immunity, meaning the disease
cannot spread. Timely actions to avoid drops in vaccination
coverage are therefore of great importance. Many countries have
no registries of timely vaccination uptake information, but rely
for example on yearly surveys. In such countries estimations of
near real-time vaccination uptake based solely on web data are
valuable. We extend prior work in this area [2], which showed
that vaccination uptake can be estimated sufficiently accurately
from web search data. Our extension consists of a new estimation
method that adapts dynamically to temporal fluctuations in
the signal (web search queries in our case) instead of assuming
temporal stationarity as in [2]. This contribution is novel within
vaccination uptake estimation.

Linear models have been used previously to estimate health
events, for instance by combining data from multiple sources with
an ensemble of decision trees [5], or, closer to our work, by using
query frequencies for influenza like illness [1] or vaccination uptake
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estimation [2]. These approaches are designed for stationary
time-series analysis, i.e. they assume data is generated by a
stationary stochastic process. Our motivation is that vaccina-
tion uptake often does not follow stationary seasonal patterns.
External events such as disease outbreaks, suspicion of adverse
effects, or temporary vaccine shortages can alter uptake patterns
for shorter or longer periods of time. Hence, while historical
data is a good estimator in stable periods, as shown in [2], we
reason that adapting the estimation to any unstability can reduce
estimation error. We experimentally confirm this on all official
children vaccines data used in Denmark between 2011 - 2016.

2. AGGREGATION WITH REGRESSION
TREES FOR TIME SERIES ADAPTATION

To account for seasonal non-stationarity, we use an online
learning method, Aggregation Algorithm (AA) [6], designed to
automatically reduce estimation error in a changing environment.
AA was recently used in time series prediction combined with an
ensemble of ARIMA models [3]. However, we reason that ARIMA
models, or other traditional time series models, are not likely to
be sufficient for vaccination uptake estimation in cases where:
(i) there is more than one data source, e.g. vaccine uptake data
and search frequency data, and (ii) when the time series data
to be estimated are assumed to be unavailable (near real-time).
To address these challenges, we combine AA with regression
trees, motivated by recent research showing that random forests
outperform ARIMA models on avian influenza prediction [4]. A
random forest, i.e. an ensemble of decision trees, is well suited for
our problem since it is easy to extend to multiple data sources.

Our method works as follows: We initially generate a set of
regression trees. For each time step the ensemble of regression
trees is retrained based on the initial set of trees and a weighted
sum is used to make the estimation. AA is used to continuously
update the weights of each tree. Each regression tree is trained
based on a set of features and training samples. For each tree a
feature set is drawn with replacement from the complete feature
set. Training samples are selected based on time-relative indices,
where index 0 corresponds to the current time step. The indices
are uniformly drawn with replacement from the interval [0 :s],
where s is a window size. We use trees with different window
sizes to account for stationarity and non-stationarity of the signal.

Our adaptive vaccination estimation algorithm is shown in Algo-
rithm 1, where η is the learning rate, RT a set ofN regression trees,
i the amount of initial training data and y the vaccination uptake.

3. EVALUATION
To facilitate direct comparison, we evaluate our method on

the same data as [2]: monthly vaccination uptake of all official

773



Algorithm 1 Adaptive time series estimation

Require: RT, η, i
1: W← list with weights, initialize to be uniform
2: X← list with the first i training samples
3: Y ← list with the first i observations of y

4: Ŷ ← empty list of estimations
5: t← current time step, starting at i+1
6: while True do
7: xt← receive new observation from data stream
8: for n=0 to N do
9: Train RT[n] using X and Y

10: Ŷtemp[n]← estimation of RT[n] given xt
11: end for
12: Ŷ [t]←

∑N
n=0W [n]·Ŷtemp[n]

13: Y [t]← observed y at time t
14: for n=0 to N do
15: W [n]←W [n]·exp(−η·(Ŷtemp[n]−Y [t])2))
16: end for
17: W← normalize W
18: X[t]←xt
19: t←t+1
20: end while

children vaccines in Denmark from January 2011 - June 2016.
Vaccination uptake is defined as the total number of people vac-
cinated in a month divided by the birth cohort for that month.
To estimate vaccination uptake, we use frequencies of web search
queries extracted from Google Trends. We use the exact same
frequencies of single term queries provided by [2].

We compare to two baselines: (1) Linear regression with lasso
regularization where the hyper-parameter is found using three
fold cross-validation on the training data; (2) Linear regression
with elastic net regularization where the two hyper-parameters
are also selected using three fold cross-validation. We also include
for reference two upper bounds corresponding to the best score
reported in [2] when using (i) only web data, and (ii) web data
combined with clinical data. These scores are not theoretical up-
per bounds, but just the best scores across all methods evaluated
in [2]. We treat them as performance upper bounds because they
do not correspond to any individual method, but to the best score
per vaccine across all methods reported in [2]. Neither baselines
or upper bounds account for time-series adaptation, i.e. they all
assume data stationarity.

The initial number of training samples, i, is set to 24. All
algorithms are evaluated in a leave-one-out fashion, where all
data prior to the data point being estimated is used for training.
For our algorithm (ATSE) a parameter search is performed by
randomly sampling from the following intervals: Window size
interval 1-46, number of features derived from vaccination data
0-45, number of features derived from web data 0-30, number of
regression trees 500-10000, η between 0.001-0.25.

Table 1 displays the root mean squared error (RMSE) between
the estimated vaccination uptake and the real vaccination uptake
for all methods. Our method yields the overall best performance
compared to the baselines (it outperforms all baselines for 8 out
of 12 vaccines). Our method also outperforms the upper bounds
of [2] (any of the two) for 6 vaccines. This supports our reasoning
that adapting the estimation to temporal fluctuations is a better
strategy than assuming data stationarity. Our method yields
the strongest performance improvements for HPV-1, HPV-2,
MMR-2(12) and DiTeKiPol. All of these vaccines have temporally
irregular uptake patterns, as explained next. HPV-1 and HPV-2
have been subject to a heavy media debate in Denmark, with a
subsequent drop in vaccinations. MMR-2(12) denotes the second
MMR vaccine targeted 12 year-olds. As children grow, parents

Vaccine LASS EN ATSE UBW [2] UBWC [2]
HPV-1 14.6 13.8 10.0* 11.5 9.3
HPV-2 15.9 16.1 10.1 15.4 8.7
MMR-1 12.9 12.9 12.6* 16.5 14.9
MMR-2(4) 15.5 14.7 14.2 12.4 12.3
MMR-2(12) 21.7 21.4 16.0* 20.8 16.5
DiTeKiPol-1 16.2 16.2 10.8 8.0 4.6
DiTeKiPol-2 14.1 14.2 12.4 9.9 7.1
DiTeKiPol-3 10.8 11.1 10.0* 17.1 16.4
DiTeKiPol-4 13.7* 14.3* 14.4* 15.4 14.4
PCV-1 7.5 7.8 10.0 7.7 5.2
PCV-2 9.6* 9.5 10.0 9.6 6.4
PCV-3 9.4* 9.5* 10.1* 10.3 6.6

Table 1: Estimation error when estimating vaccination
uptake from web search queries with our method
(ATSE), Lasso (LASS), Elastic Net (EN), and the
two performance upper bounds of [2] with web search
(UBW) and web search and clinical data (UBWC).
Bold marks best (excluding upper bounds). Asterisk
marks better or equal to any upper bound.

are less likely to follow the recommended vaccination schedule
and fluctuations correlated with measles outbreaks are observed,
thus making the time series less stationary. Lastly, in recent years
there have been problems obtaining a sufficient supply of certain
DiTeKiPol vaccines in Denmark, which might have forced people
to postpone the initial vaccination, hence introducing irregularities
in the signal. For PCV vaccines there have been no noted
irregularities in their uptake patterns, which explains the slight
drop in performance by our method compared to the baselines.

4. CONCLUSION
We presented an automatic method for near real time estima-

tion of health events using web search query data. Our method
combines an Aggregation Algorithm (AA) to automatically reduce
estimation error in changing environments with regression trees.
We applied our method to estimate vaccination uptake in all
official Danish children vaccines, following [2], and showed that
our approach overall outperformed strong baselines that assumed
data to be temporally regular. Our method was particularly
strong estimating uptake for vaccines with known irregularities in
their usage, such as HPV-1, HPV-2, MMR-2(12) and DiTeKiPol.

This work confirms recent findings that vaccination uptake
can be automatically estimated only from web data, and further
extends this area by accounting for irregular uptake patterns.
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