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ABSTRACT

In recent years, different web knowledge graphs, both free
and commercial, have been created. Knowledge graphs use
relations between entities to describe facts in the world. We
engage in embedding a large scale knowledge graph into
a continuous vector space. TransE, TransH, TransR and
TransD are promising methods proposed in recent years and
achieved state-of-the-art predictive performance. In this pa-
per, we discuss that graph structures should be considered
in embedding and propose to embed substructures called
“one-relation-circle” (ORC) to further improve the perfor-
mance of the above methods as they are unable to encode
ORC substructures. Some complex models are capable of
handling ORC structures but sacrifice efficiency in the pro-
cess. To make a good trade-off between the model capacity
and efficiency, we propose a method to decompose ORC sub-
structures by using two vectors to represent the entity as a
head or tail entity with the same relation. In this way, we
can encode the ORC structure properly when apply it to
TransH, TransR and TransD with almost the same model
complexity of themselves. We conduct experiments on link
prediction with benchmark dataset WordNet. Our experi-
ments show that applying our method improves the results
compared with the corresponding original results of TransH,
TransR and TransD.
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1. PROBLEM
Knowledge Graphs (KGs) have become a crucial resource

for many tasks in machine learning, data mining and artifi-
cial intelligence applications. A knowledge graph is a multi-
relational graph composed of entities as nodes and relations
as edges with different types. An instance of one edge is a
triple (e1, r, e2) which describes the relation r between the
first head entity e1 and the second tail entity e2. In the
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past a few decades, there have been great achievements in
building large scale knowledge graphs, most notably Word-
Net1 [15], Freebase [11], YAGO [8]2and NELL [4]3. But
existing knowledge graphs are far from complete. It is neces-
sary to develop knowledge graph completion (KGC) methods
to find the missing triples in order to improve the general
quality of KGs.

In recent years, a series of approaches have been proposed
to embed a knowledge graph into a continuous vector space
while preserving the properties of the knowledge graph. For
example, each entity is represented as a vector in the space
and each relation is modeled as a translation from the first
head entity to the second tail entity. We call these embed-
ding methods as translate-based methods. The representa-
tions of entities and relations are obtained by minimizing
a margin-based global loss function involving all triples in
knowledge graphs. As a result, the single representation of
entities and relations will encode the global information and
can be used in other applications, including knowledge graph
completion.

Translate-based methods are based on the assumption:
e1 + r ≈ e2 for triple (e1, r, e2) in which e1, e2 and r are
vector representations for entity e1, e2 and relation r. We
find there are flaws under such assumption when dealing
with some special substructures of knowledge graphs such
as “one-relation-circle” (ORC) structures. Some ORC struc-
tures respectively correspond to special kinds of relations.
For example, C1, C2, C3 in Section 3 correspond to three
object properties as defined in OWL 2 (Web Ontology Lan-
guage)4: reflexive object properties, symmetric object prop-
erties and transitive object properties. To catch the seman-
tic information of these relations, the models must be able
to encode ORC structures. The ORC structure is defined as
follows:

Definition 1. (one-relation-circle) (ORC) Given a sub-
graph G′ = {E′,R′} of knowledge graph G = {E,R}, m is
the number of relation(edge) types in G′. d(e) is the de-
gree(in degree + out degree) of entity e. We call G′ is an
“one-relation-circle structure” if and only if m = 1, ∀e ∈
G′, d(e) = 2.

However, to encode the ORC structures, the corresponding
relation representations must approach to zero vector under

1https://wordnet.princeton.edu/
2http://www.mpi-inf.mpg.de/departments/databases-and-
information-systems/research/yago-naga/yago/
3http://rtw.ml.cmu.edu/rtw/
4https://www.w3.org/TR/owl2-syntax/
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the assumption of translate-based methods: e1 + r ≈ e2 for
triple (e1, r, e2). A few previous models such as Distant [5],
Single Layer [22] and NTN [22] are capable of preserving
such ORC structures but the model complexity and running
time also increased.

In this paper, our main contributions are: (i) we propose
a method applied to translate-based models to decompose
ORC structures while reserving the model complexity and
efficiency. (ii) We illustrate the importance for embedding
methods to handle the ORC structures in knowledge graphs.

In Section 2, we introduce related works. In Section 3, we
analyze the problem of translate-based models to deal with
ORC structures and proposed our method. In section 4,
we introduce how to apply our method to TransH, TransR
and TransD. In section 5, we conduct experiment on link
prediction and analyze the results. In section 6, we draw
conclusions and discuss future works.

2. STATE OF THE ART

2.1 Translate-based models
For a triple (e1, r, e2), translate-based models regard re-

lation r as a translation from the first head entity to the
second tail entity and they all under the assumption that
e1 + r ≈ e2. The bold letters e1, e2, r are representations of
e1, e2 and r in vector spaces. One of the most notable model
is TransE [6] which represents both entities and relations as
vectors. As pointed out in TransH [29], TransE has difficulty
in dealing with more complex relations such as 1-N, N-1 and
N-N. To address this problem, TransH projects entities to a
relation specific hyperplane before computing the distance
between entities because the projecting operation allows dif-
ferent entities to have the same vector presentation on one
relation hyperplane. Different from TransE and TransH to
represent all elements in the same space, TransR [26] repre-
sents entities in entity space and relations in relation space
which makes the model more flexible. Considering the diver-
sity of entities and relations simultaneously, TransD [9] con-
structs a dynamic mapping matrix for each entity-relation
pair. These models minimize a margin-based pairwise rank-
ing loss function over the training data. TransA [25] intro-
duces an adaptive local margin approach that determines
margin by a closed set of entity candidates.

2.2 Models encoding more information besides
facts

As most models only use the information of facts(triples)
in knowledge graphs, there are many models considering to
utilize more semantic information such as path, type con-
strains of entities and entity descriptions. PTransE [27] uses
both facts and multiple-step relation paths between entities
and PRA [16] is a model mainly considering the informa-
tion of paths. KR-EAR [28] treats attributes of entities
and relations between entities as different properties. REA-
CAL [13], [7] and TKRL [19] also utilize the type information
of entities. DKRL [24] and SSP [10] combine entity descrip-
tions to represent learning of knowledge graphs. All these
models argue that there are a lot of semantic information in
knowledge graphs besides facts.

2.3 Other models
There are many other approaches. HolE [12] learns more

expressive combination operators in order to predict the ex-

Figure 1: examples for three basic ORC structures

istence of triples in the KGs. KG2E [21] and TransG [23]
are probability-based models. RESCAL [13] adopts the idea
of tensor factorization. TATEC [3] combines two and three-
ways together. SE [2], SME [1], NTN [22] and ProjE [20]
are neural-based models which also attract much attention.

As translate-based methods achieve a good trade-off be-
tween predictive accuracy and computational efficiency, we
mainly pay attention to translate-based methods like TransE
and its extension models.

3. PROPOSED APPROACH
Firstly, we describe some common notations in this sec-

tion. e1 denotes the first head entity, e2 is the second tail
entity, r denotes the relation. The bold letters e1, e2, r de-
note the corresponding representations of e1, e2, r. △ is a
set of true triples in knowledge graphs and (e1, r, e2) ∈ △
means that triple (e1, r, e2) is true.

In this section we introduce some basic structures of ORC
and analyze the difficulty for translate-based models to en-
code these structures. Then we illustrate our method which
could be applied to translate-based models and makes them
encode ORC structures successfully.

We divide ORC structures into different types according
to the number of entities(nodes). There are three main types
of ORC structures: C1, C2 and C3.

3.1 C1:ORC structure with one entity

Definition 2. C1 is an ORC structure containing one
entity and ∀(e1, r, e2) ∈ C1, e1 = e2.

For example, we have the following triple: (Peter, knows,
Peter) ∈ △. It means the node Peter connects to itself by
an edge labeled with knows as shown in Fig.1(a) and this
triple constructs a C1.

Under the assumption of translate-based methods, for C1:
e1 + r ≈ e2, e1 = e2 which means r ≈ 0.

3.2 C2: ORC structure with two entities

Definition 3. C2 is an ORC structure containing two
entities e1, e2. And (e1, r, e2) ∈ C2, (e2, r, e1) ∈ C2.

For example, if x is a friend of y then y is likely to be a friend
of x, so there may be exist the following triples: (Peter,
isFriendOf , Pbrain)∈ △, (Pbrain, isFriendOf , Peter) ∈
△. These two triples construct a C2 as shown in Fig.1(b).
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Figure 2: Exapmles to decompose the ORC

Under the assumption of translate-based methods, for C2:
e1 + r ≈ e2, e2 + r ≈ e1 which means r ≈ 0.

3.3 C3: ORC structure with three entities

Definition 4. C3 is an ORC structure containing three
entities e1, e2, e3. And (e1, r, e2) ∈ C3, (e2, r, e3) ∈ C3 and
(e1, r, e3) ∈ C3 or (e3, r, e1) ∈ C3.

For example, there may exist both the following triples:
(Lois, ancestorOf , Meg) ∈ △, (Carter, ancestorOf , Lois)
∈ △, (Meg, ancestorOf , Carter) ∈ △ as shown in Fig.1(c).
These three triples construct a C3.

C3 has two possible structures. Under the assumption
of translate-based methods, for C3: e1 + r ≈ e2, e2 + r ≈
e3, e1 + r ≈ e3 or e3 + r ≈ e1 which means r ≈ 0.

There are also many other ORC structures besides the
basic form C1, C2, C3 and we will not list them one-by-one.
As the analysis before, translate-based methods are unable
to encode such ORC structures in knowledge graphs un-
less make the corresponding relations approach to zero vec-
tor. TransE [6] represents every entity as a vector. TransH
[29] projects entities on a relation specific hyperplane be-
fore computing the distance and TransR [26] project entities
from entity space to relation space by a projection matrix
while TransD [9] use a dynamic projection matrix. In these
models, the representation of an entity as a head entity or
tail entity under one relation is the same and this is the main
reason why they can’t encode ORC structures. To address
this problem, we propose to separate the representation of
every entity as a head or tail entity to decompose the circles.
Fig.2 shows the structures with no circles corresponding to
the examples in Fig.1 by representing entities differently.
Next we will illustrate how to apply our method to TransH,
TransR and TransD.

4. METHODOLOGY

4.1 Our method
In order to decompose the ORC circles and adapt to the

diversity of structures, we propose to make every entity e has
one vector representation e for itself and two different vector
representations, head representation eh and tail representa-
tion et, with relation r . And eh and et can be defined as
computation results of other vectors or matrices according
to the original definition in different translate-based models.
The basic idea is illustrated in Fig. 3.

More specifically, for triple (e1, r, e2) ∈ △, we make the
head representation of e1 and the tail representation of e2
satisfy: e1h + r ≈ e2t . ∀(e1, r, e2) ∈ △, the score function
is defined as follows:

fr(e1, e2) = ||e1h + r− e2t||L1/L2

e ∈ R
d, r ∈ R

d, d is the dimension of entity vectors and
relation vectors. L1 is L1 regularization and L2 is L2 regu-
larization. For a true triple, we make the score of score func-
tion small and for a false triple, make the score large. This
definition can be used for all TransH, TransR and TransD.

4.1.1 applied to TransH

As TransH does, we project both the head entity and tail
entity to the relation hyperplane before compute the dis-
tance between them. We separate the relation hyperplane
into head relation hyperplane represented by wrh and tail
relation hyperplane represented by wrt. And e1h , e2t are
defined as:

e1h = e1 −w
⊤
rhe1 ·wrh, e2t = e2 −w

⊤
rte2 ·wrt

w ∈ R
d. During training process, the following constraints

are considered: ∀(e1, r, e2) , ||e1|| ≤ 1, ||e2|| ≤ 1, ||r|| ≤ 1,
||e1|| ≤ 1, ||w⊤

rhe1 ·wrh|| ≤ 1, ||w⊤
rte2 ·wrt|| ≤ 1.

4.1.2 applied to TransR

We define two mapping matrix for every relation as Mrh

which projects head entity to head relation space and Mrt

which projects tail entity to tail relation space. And e1h and
e2t are defined as:

e1h = Mrhe1, e2t = Mrte2

M ∈ R
d×d. In practice, we also enforce constrains on the

norm of the embedding e1, e2, r and the mapping matri-
ces: ∀(e1, r, e2), we make ||e1|| ≤ 1, ||e2|| ≤ 1, ||r|| ≤ 1,
||Mrhe1|| ≤ 1, ||Mrte2|| ≤ 1.

4.1.3 applied to TransD

We define two project vectors for every relation r: (i) rh to
compute the mapping matrix for head entities and (ii) rt to
compute the mapping matrix for tail entities. Every entity e

corresponds to two vectors: e represents itself meaning and
ep is used compute the mapping matrix. e1h and e2t are
defined as:

e1h = Mrhe1, e2t = Mrte2

in which:

Mrh = rhe
⊤
1p + I

d×d
, Mrt = rte

⊤
2p + I

d×d

rh ∈ R
d, rt ∈ R

d, ep ∈ R
d. In experiments, we enforce

constrains: ∀(e1, r, e2) ,||e1|| ≤ 1, ||e2|| ≤ 1, ||r|| ≤ 1,
||(rhe

⊤
1p + Id×d)e1|| ≤ 1, ||(rte

⊤
2p + Id×d)e2|| ≤ 1.

4.2 Training
To encourage discrimination between golden triples and

incorrect triples, we use the margin-based ranking loss as
used in existing translate-based methods:

L =
∑

(e1,r,e2)∈△

∑

(e′
1
,r′,e′

2
)∈△′

[fr(e1, e2) + γ − fr′(e
′
1, e

′
2)]+

where [x]+ = max(0, x), △ is the set of correct triples,
△′ is the set of corrupted triples constructed by replacing
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Figure 3: Basic idea of our method

the head or tail entity in correct triples. When corrupting
the triple, we also follow [29] and assign different probabili-
ties for head/tail entity replacement to make sure the false-
negative instances more likely to be wrong. So we make
those 1-to-N relations more chance to replace head entity
and N-to-1 relations more chance to replace tail entity. In
experiments, we denote the traditional sampling method re-
placing head/tail entity with same probability as “unif” and
the new method in [29] as “bern”.

The learning process is carried out using stochastic gradi-
ent descent (SGD) [18]. We initialize the entity vectors and
relation vectors with the result of TransE when applying our
method to TransR and TransD to avoid overfitting.

5. RESULTS

5.1 Dataset and experiment setting
WordNet [14] is a large lexical database of English. Free-

base is a large knowledge graph containing facts in the world.
We show some details of WN18 and FB15k both released
in [6] with “one-relation-circle”matters in Table 1. WN18 is
a subdataset of WordNet which containing 18 relations and
151442 triples. FB15k is a subdataset of Freebase which
containing 1345 relations and 592213 triples. We list the
numbers and percent of the triples consisting at least one
of C1, C2 and C3 in the datasets. As we can see, there are
about 21% such triples in WN18 and 19% in FB15k. We also
notice that there are more C2 structures in WN18 and more
C3 structures in FB15k which means the inner graph struc-
tures of these two datasets are different. Table 1 supports
that ORC structures are common in KGs and it is neces-
sary to enable models to encode these structures. We test
our method for link prediction with the benchmark dataset
WN18. The details of WN18 are in Table 2.

Table 1: Triple numbers and percents of ORC struc-

tures in WN18 and FB15k

C1 C2 C3

WN18 9(0.00%) 30048(19.84%) 2237(1.48%)

FB15k 2250(0.38%) 52376(8.84%) 59620(10.07%)

5.2 Link prediction
Link Prediction aims to predict the missing entities e1 or

e2 for a triple (e1, r, e2). Namely to predict e1 when given

Table 2: Details of WN18 in expriment

Dataset #Rel #Ent #Train #Valid #Test

WN18 18 40943 141442 5000 5000

Table 3: Results on WN18 for Link Prediction

Method
Mean Rank Hit@10(%)
Raw Filter Raw Filter

Unstructured [1] 315 304 35.3 38.2
RESCAL [13] 1180 1163 37.2 52.8

SE [2] 1011 985 68.5 80.5
SME(linear) [1] 545 533 65.1 74.1
SME(Bilinear) [1] 526 509 54.7 61.3

LFM [17] 469 456 71.4 81.6
TransE [6] 263 251 75.4 89.2

TransH(unif) [29] 318 303 75.4 86.7
TransH(bern) [29] 401 388 73.0 82.3
TransR(bern) [26] 238 225 79.8 92.0
TransR(unif) [26] 232 219 78.3 91.7
CTransR(unif) [26] 243 230 78.9 92.3
CTransR(bern) [26] 231 218 79.4 92.3
TransD(unif) [9] 242 229 79.2 92.5
TransD(bern) [9] 224 212 79.6 92.2

TransH(dORC)(unif) 298 286 79.4 93.3

TransH(dORC)(bern) 278 271 80.2 93.0
TransR(dORC)(unif) 224 212 79.3 92.1
TransR(dORC)(bern) 231 219 80.9 92.5
TransD(dORC)(bern) 205 192 79.7 92.4

(?, r, e2) and predict e2 when given (e1, r, ?). Similar to the
settings in [6], the task returns a list of candidate entities
from the knowledge graph rather than one best answer. In
this task, we remove the head or tail entity and replace it
with all the entities in the dataset for each triple in test set.
Then we compute the score of those corrupted triples and
rank them by descending order. The rank of the current test
triple is stored finally. Following the previous works we also
adopt the evaluation measure mean rank (i.e., mean rank of
the test triples) and hit@10 (the proportion of test triples
ranked in top-10). It is clear that a good predictor should
has lower mean rank and higher hit@10.

Because triples in knowledge graph also will exist in cor-
rupted ones, so we should remove the corrupted triples in-
cluded in train, valid and test sets before ranking. Follow the
existing methods we call this evaluation setting as “Filter”
and the original setting as “Raw”.

We mark the model using our method with “(dORC)”
with the meaning “decompose the ORC structures”. We
select margin γ among {0.5, 0.75, 1, 2, 3, 4, 5} , the dimen-
sion of entities and relations d among {50, 100}, the learning
rate r among {0.001, 0.005, 0.01} and the mini-batch size B

among {100, 200, 1000, 1400} .The best configurations are:
d = 50, γ = 3, r = 0.005, B = 200 for TransH(dORC)(unif);
d = 50, γ = 3, r = 0.005, B = 200 for TransH(dORC)(bern);
d = 50, γ = 5, r = 0.001, B = 1400 for TransR(dORC)(unif);
d = 50, γ = 5, r = 0.001, B = 1400 for TransR(dORC)(bern);
d = 50, γ = 0.75, r = 0.005, B = 200 for TransD(dORC)(bern).
We take L1 in experiment. The results are shown in Table 3.
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5.3 Analysis of results
In Table 3, the bold numbers are the best results of all

methods and the numbers with underlines are the better
results between the original models and corresponding mod-
els using our method. For example, mean rank result of
TransD(dORC)(bern) is 205 with“Raw”setting, the number
is underlined because it is better than TransD(unif) result
224 with “Raw” setting. As we can see, both mean rank and
hit@10 results are improved compared to original models in
five experiments we do.

6. CONCLUSIONS AND FUTURE WORK
Allowing for potentially interrelating arbitrary entities with

each other is an important property of knowledge graphs.
This requires embedding models flexible enough to fit the
complicated structures caused by the connection between a
large amount of entities and relations. In this paper, we fo-
cus on a special kind of substructures “one-relation-circle”
and propose to separate the representation of entities as
head entity and as tail entity to decompose the circles. There
are also many more complicated substructures in knowledge
graphs we haven’t considered. It will be part of our future
works to propose models more flexible to encode the diverse
structures of knowledge graphs.

The purpose of constructing knowledge graphs is to make
machine understand the world more properly. Facts in KGs
are a part of human knowledge and other knowledge like
rules and commonsense are also important and interesting.
In the future, we will pay attention to more kinds of knowl-
edge and try to propose embedding methods for them.
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