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ABSTRACT
The topological structure of many real networks changes
with time. Thus, locating the sources of a temporal net-
work is a creative and challenging problem, as the enormous
size of many real networks makes it unfeasible to observe the
state of all nodes. In this paper, we propose an algorithm
to solve this problem, named the backward temporal diffu-
sion process. The proposed algorithm calculates the shortest
temporal distance to locate the transmission source. We as-
sume that the spreading process can be modeled as a simple
diffusion process and by consensus dynamics. To improve
the location accuracy, we also adopt four strategies to select
which nodes should be observed by ranking their importance
in the temporal network. Our paper proposes a highly ac-
curate method for locating the source in temporal networks
and is, to the best of our knowledge, a frontier work in this
field. Moreover, our framework has important significance
for controlling the transmission of diseases or rumors and
formulating immediate immunization strategies.
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1. PROBLEM
Epidemic dynamical behavior can be observed in many re-

al networks. Prototypical examples include epidemics trans-
mission through social networks, virus propagation in com-
munication networks, rumor transmission on the Internet,
the cascading failure of power networks, and crises contagion
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through financial networks. Throughout history, epidemic
outbreaks have brought about enormous losses for economies
and society, from SARS in 2003 to the recent H7N9 flu out-
break. Therefore, many significant studies have examined
the dynamics of epidemic outbreaks on networks [17, 16].
However, these studies have focused on the forward prob-
lem of the diffusion process and its dependence on the rate
of infection. Another challenging question regarding the dif-
fusion process is the inverse problem of inferring the original
source in a huge network relying on relatively limited ob-
served nodal states. This problem has received considerable
attention in recent years [10, 3].

2. STATE OF THE ART
The traditional analysis of source location is conducted on

static networks, where it is assumed that the speed of a net-
work’s evolution is slower than the information transmission
rate. In 2012, Pinto et al. established a likelihood function
connecting the real infected time lags with theoretical time
lags, enabling the source to be located from relatively few
observations [18]. To locate the source, Brockmann and Hel-
bing identified an effective transmission distance to calculate
the spreading time between nodes [4], whereas Fabrizio et
al. constructed a Bayesian conditional probability model of
all nodal states, and found the source using marginal prob-
abilities via belief propagation [1]. Actually, most real net-
works are dynamic and temporal. There are many methods
for modeling such temporal networks. In 2012, Holme and
Saramaki proposed the idea of using line graphs to describe
temporal networks, before Nakamura and Tanizawa intro-
duced a linear model of time-varying properties that could
be transformed into a network structure [6, 13]. Recent-
ly, the special characteristics of temporal networks have at-
tracted considerable attention. Some scholars have studied
the influence of ”burstiness” on the spreading process [11].
In 2011, Karsai et al. derived a Poisson distribution to de-
scribe a network, and proposed a transmission ratio between
this Poisson distribution and a power-law distribution based
on the SI (susceptible-infected) model [8]. Similarly, a num-
ber of researchers have investigated other characteristics of
temporal networks that have an impact on information prop-
agation [12]. However, research into locating the source of
the spreading process in temporal networks is inadequate.
To this end, Liu et al. recommended an algorithm for op-
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timizing particle swarms with scale-free interactions to find
the optimum or hub nodes in the evolution process [9]. And
Antulov-Fantulin et al. proposed a statistic method for find-
ing the spreading source based on the time information of
all nodes is known [2].

3. PROPOSED APPROACH
In this paper, we focus on depicting the spreading process

and locating the transmission source in a temporal network.
To the best of our knowledge, this is the first work in this
field. We propose a diffusion process and consensus dynam-
ics to model the spreading process based on the definition of
a temporal network. We then propose a backward temporal
diffusion process (BTDP) to effectively locate the spreading
source in the temporal network. We also improve the strate-
gy of selecting the observed nodes by expanding the indexes
that measure the nodes’ importance to the temporal net-
work, such as the degree, closeness centrality, and PageR-
ank. Our framework for locating the source in a temporal
network has showed a high accuracy and wide application-
s. We believe this work has considerable significance to the
problem of source location, and has the potential to drive
the study of temporal networks. However, there are also
some problem needed to be resolved, like effectively calcu-
lating the shortest temporal paths in temporal network and
applying our method of source locating into real networks.

4. METHODOLOGY
Generally, a network can be expressed by a binary group

G = (V,E), where V is the set of all nodes and E is the set
of all links. Thus, we can also use G = (V,E) to represent
temporal networks, where V is still the set of nodes, but E
is the set of events euv = (u, v, tuv,∆tuv), which means that
nodes u and v interact at time tuv for a period of ∆tuv.

4.1 Depicting the Spreading Process in Tem-
poral Networks

Any spreading process, like epidemic spreading in a popu-
lation, virus propagation on the Internet, rumor propagation
in social networks and risk contagion in financial network-
s, can be regarded as a diffusion process. To be as general
as possible, we consider a simple diffusion model associat-
ed with diffusion delay. In temporal networks, we assume
that the diffusion process begins from a source node, and
the information takes some time to reach its neighbor nodes
because of the propagation delay along the links. As the
network structure is not constant, each node that receives
the information forwards it to its neighbors at that moment.
The information transmits through effective temporal paths
composed of several events ev0v1 , ev1v2 , · · · , evn−2vn−1 , evn−1vn ,
satisfying the condition tevi−1vi

≥ tevi−2vi−1
+∆tevi−2vi−1

,

∀1 ≤ i ≤ n. The transmission continues until all nodes in
the network have received the information.
Another method of modeling the dynamical spreading pro-

cess is consensus dynamics, in which the aim is to reach
an agreement regarding a certain quantity of interest that
depends on the state of all agents. And consensus dynam-
ics on complex networks have been investigated since the
development of complex network science a decade ago. In
most real systems, agreement and synchronization phenom-
ena are similar to the consensus of linear systems to some
extent, and we know the nodes state in spreading process-

es will reach to a steady state, so we can use the consen-
sus dynamics to model the spreading process [14]. In a
static network, we can use the consensus algorithm under
communication time delays to model the spreading process,
ẋi =

∑N
j=1 aij [xj(t− τij)− xi(t)]. But in temporal network

the network’s structure changes with time, the adjacency
matrix can be defined as A(t) = (aij(t))N×N , and the con-
sensus dynamics are given by:

ẋi =

N∑
j=1

aij(t)[xj(t− τij)− xi(t)] (1)

4.2 The BTDP Model for Source Locating
In this paper, we put forward a backward diffusion method

by calculating the shortest temporal distance between n-
odes to locate the propagation source in temporal networks,
which is inspired from the work of Shen, who proposed an
efficient method called time reversal virtual diffusion to lo-
cate the source with high accuracy in static network [19].
Because, in temporal networks, the structure is not con-
stant and the shortest paths between nodes are limited with
respect to time, so the source can be located by analyzing
the structural characteristics of the temporal network. We
assume that the temporal network structure and the time in-
formation of some observed nodes are known in advance. In
a real network, the propagation delay along a link between
nodes is ambiguous because of the perturbations caused by
various random factors. However, we can assume that the
time delay follows a certain distribution, namely a Gaussian
or uniform distribution. The mean value and variance of
these two distributions are finite, and are easily observed.
Thus, we propose the backward temporal diffusion process
model to locate the source in a temporal network. The BT-
DP algorithm contains two steps:

1. Backward the diffusion process from observed nodes
{o1, o2, · · · , om}. Because the propagation times
{to1 , to2 , · · · , tom} of the observed nodes are known, we
can calculate the shortest time from any node i to the
observed nodes ok, denoted as t(i, ok). Thus, we obtain
a vector Ti = [to1 − t(i, o1), to2 − t(i, o2), · · · , tom −
t(i, om)]T for every node. The problem is to determine
the shortest path between two nodes in the temporal
network.

2. Calculating the variance of the vectors {T1,T2, · · · ,TN}.
The node with the minimum variance is the source.

The key and difficult part of this method lies in calcu-
lating the shortest temporal distance between every pair of
nodes.We now put forward a sample method based on defin-
ing the temporal path to calculate the shortest temporal
distance. As the temporal path can be expressed as a series
of events ev0v1 , ev1v2 , · · · , evn−2vn−1 , evn−1vn . If there is a
temporal path from v0 to vn, marked as P , consisted with
ev0v1 = (v0, v1, t1,∆t1), ev1v2
= (v1, v2, t2,∆t2), · · · , evn−1vn = (vn−1, vn, tn,∆tn), we can
define the temporal distance as dist(v0, vn) = tn + ∆tn −
t0, and the shortest temporal distance is the shortest a-
mong all the temporal paths from v0 to vn we can fine,
mindist(v0, vn). Here we proposed a sample algorithm to
find the shortest temporal distance between a pair of nodes
with describing the temporal network as edge sequence, sort-
ing as the time order.
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Algorithm 1: Computing the shortest temporal distance
Input: A temporal graphG = (V,E) in its edges sequence
presentation, source vertex s
Step1: Initialize ts = t0 and tv =∞ for all v ∈ V \ n
Step2: for each incoming edge e = (u, v, tuv,∆tuv) form
the edge sequence

if tuv ≥ tu
if tuv +∆tuv − t0 < tv then

tv ← tuv +∆tuv − t0
else

break the for-loop.
Output: The shortest temporal distance from s to every
vertex v ∈ V \ n.

4.3 Observer Selection Strategies
In the above source location method, we have the hy-

pothesis that the nodes with known propagation times are
observed at random. As the network structure is known, we
can select the observers by measuring the importance of n-
odes. The analysis of a node’s importance is also a hot issue
in the field of complex networks, and can be used to find the
key nodes in the spreading process [7]. In a static network,
common indexes of nodes’ importance include the degree,
closeness centrality [20], k-shell [5], and PageRank [15]. In a
temporal network, we can redefine these indexes to measure
the nodes’ importance. And we replace the random selec-
tion strategy of obtaining the observed nodes in the first
step of backward temporal diffusion process method with
the different kinds of selection strategies based on the nodes’
importance measurements.
Degree: As the structure of a temporal network changes

with time, the node degrees also change. Thus, we obtain a
series of degrees for every node, that is, {Dei1, Dei2, · · · , DeiT }.
To determine a node’s degree, we can sum the series of de-
grees, Dei =

∑T
t=1 Deit or choose the maximum, Dei =

max|Deit|. In the proposed BTDP model, we use the latter
method.
Closeness centrality: This index measures the distance of

a node with respect to the other nodes. In a static net-
work, it is defined as: Ci =

N−1∑
j dij

where dij is the shortest

distance between the node i and the node j. In the previ-
ous section, we defined the shortest temporal distance in a
temporal network. Similarly, the closeness centrality can be
defined as: Ci =

N−1∑
j τij

PageRank number:The idea is that the importance of one
node depends on the neighbor nodes directed towards it
and the value of these nodes. First, we set an initial PRi

for every node, and then the PageRank number of every
node at step k − 1 is evenly distributed to all neighbor
nodes. The iteration stops when the PageRank number
of every node is stable. Thus, the iteration equation is:

PRi(k) =
∑N

j=1 aji
PRj(k−1)

dout
j

. In a temporal network, we

obtain PageRank numbers for every node at different times
and we also choose the maximum PageRank number among
the time series, PRi = max|PRit|.

5. RESULTS
In order to analyze the precision of the model for locat-

ing the source, we simulate three classic types of networks,
including random network(ER), small-world network(WS)
and scale-free network(BA), N = 100 and ⟨k⟩ = 8, T = 10.

The time delays of the links were assumed to follow a Gaus-
sian distribution with mean 1.0 and standard variance 0.25
or a uniform distribution in the range (0.5, 1.5).

5.1 The Precision of Location
From Fig. 1, we can see that the method of backward

diffusion with temporal shortest path performs best in ran-
dom networks and worst in scale-free networks, regardless
of spreading model and time delay distribution. Under the
simple diffusion model, if we require 90% precision for lo-
cating the source (i.e., in 100 independent experiments, we
can find the source 90 times), we need to observe 23%, 23%,
and 34% of nodes when the time delays obey a Gaussian dis-
tribution and 24%, 24%, and 35% of nodes when the time
delays obey a uniform distribution in the ER, WS, and BA
networks. Thus, the distribution type has little effect on the
precision of source location. For the consensus dynamics
spreading process, the proportion of nodes that must be ob-
served for 90% precision is 24%/23%, 23%/21%, 29%/30%
for the Gaussian and uniform distributions, show in Table. 1.
Clearly, the performance of source locating method shows
similar to each other in Random networks and in small-world
networks, and more observed nodes needed in scale-free net-
works if we want to get the same locating precision.

Table 1: The percentage of observed nodes needed
when the locating precision reach to 90%
Network ER WS BA
Distribution Gau Uni Gau Uni Gau Uni
Spreading 23% 24% 23% 24% 34% 35%
Consensus 24% 23% 23% 21% 29% 30%
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(a) Diffusion Process
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(b) Consensus Dynamics

Figure 1: Comparison of location precision in ran-
dom, small-world, and scale-free networks when the
time delay obeys a Gaussian or uniform distribution

5.2 Influence of Selection Strategies
If we selected the observed nodes according to the rank of

the nodes’ importance, rather than randomly. The influence
of these three strategies on the location precision can be seen
in Fig. 2 and Fig. 3.We can see that the strategies of selecting
which nodes to observe can affect the locating precision in
some extent, in the scale-free networks. It is known that the
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majority of real-world networks, such as social and biologi-
cal networks, are scale-free. Tab. 2shows the percentage of
observed nodes needed when the locating precision reach to
90% in the case that the time delay obeys a Gaussian distri-
bution and the spreading is modeled as a diffusion process.
The results show that source location is most effective if we
choose the observed nodes based on their closeness centrality
in any types of networks. And we can see that in scale-free
network, if we want to obtain 90% precision of source locat-
ing, the observed nodes needed decreased from 34% to 24%
for the diffusion process and form 29% to 18% for consensus
dynamics respectively with applying the closeness centrality
selection strategy when the time delay obey the Gaussian
distribution, which is a great obvious improvement in the
large scale networks.

Table 2: The percentage of observed nodes needed
when the locating precision reach to 90% in the case
that the time delay obeys a Gaussian distribution
and the spreading is modeled as a diffusion process.
Strategies Random Degree Closeness PageRank
ER 23% 21% 18% 20%
WS 23% 26% 21% 27%
ER 34% 24% 24% 26%
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Figure 2: Location precision with different selection
strategies when the time delay obeys a Gaussian or
uniform distribution and the spreading is modeled
as a diffusion process.

5.3 The Influence of Parameters
In the BTDP source location method, two parameters

should be considered: the average degree, which measures
the sparseness of the network, and the length of the time
series describing the network’s structural evolution. Thus,
we simulated three network types with average degrees of 6,
8, and 10. From Fig. 4, we can see that a higher average
degree increases the precision of source location for the same
proportion of observed nodes. A higher degree implies that
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Figure 3: Location precision with different selection
strategies when the time delay obeys a Gaussian or
uniform distribution and the spreading is modeled
by consensus dynamics.

the network is denser, meaning that the temporal distance
between nodes is shorter. This reduces the estimated devi-
ation in time delay in the location process. To analyze the
impact of the time series length, we simulated temporal net-
works with lengths of 10, 15, and 20. From Fig. 5, we can see
that the precision changes very little for different lengths of
temporal network. We believe this is because the temporal
shortest distance is always less than the time series length,
so the length has little influence on our source location mod-
el. Through the above analysis, we can conclude that our
location model is stable and practical in real networks.
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Figure 4: Influence of the network’s average degree
on the location precision of three types networks
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Figure 5: Influence of the time series length on the
location precision of three types networks
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6. CONCLUSIONS AND FUTURE WORK
As the concept of temporal networks has become more

widespread, researchers have begun to study their topolog-
ical characteristics and complex dynamical processes, such
as link prediction, community discovery, and transmission
dynamics. In this paper, we have focused on the inverse
problem of source location in a temporal network. We first
introduced the concept of temporal networks and defined
some of their structural properties concerning events and
effective paths. We then proposed a simple diffusion mod-
el and consensus dynamics to depict the spreading process
within a temporal network. For source location, we pro-
posed the BTDP method based on the calculation of tem-
poral shortest paths. The strategy of observing a random
set of nodes was found to be an inefficient means of locating
the source. Thus, we extended several indexes of node im-
portance in static networks to temporal networks, and chose
which nodes to observe according to the rank of these index-
es. To some extent, these strategies improved the location
precision. Finally, we examined the average degree and time
series length, which verified the stability and practicality of
the proposed location model.
Some aspects of source location modeling require further

discussion. First, in our source location method, the com-
putation of shortest temporal distance need to traverse all
the nodes in different time period which is much complex
to the large scale networks. Thus, it is important to devel-
op new methods to calculate the temporal shortest paths
or use other measurements of temporal distance. Second,
in this paper, we used both a simple diffusion process and
consensus dynamics to simulate the information spreading
process. However, classical methods such as SI, SIS, and
SIR use ordinary differential equations. Combining tempo-
ral information with these models to describe the spread-
ing process and locate the source is an important area of
future study. Finally, real-world temporal networks often
have multiple sources. In practice, disease diffusion and ru-
mor transmission does not always start from a single source.
Whether the proposed location method remains useful in
this multi-source scenario requires further investigation.
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