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ABSTRACT

Truth discovery is a fundamental research topic, which aims
at identifying the true value(s) of objects of interest given
the conflicting multi-sourced data. Although considerable
research efforts have been conducted on this topic, we can
still point out two significant issues unsolved: i) single-valued
assumption, i.e., current methods assume only one true value
for each object, while in reality objects with multiple true
values widely exist; ii) sparse ground truth, i.e., current
works evaluate and compare existing truth discovery meth-
ods based on datasets with limited ground truth. There-
fore, the empirical studies might be biased and cannot legit-
imately validate the existing methods. In this PhD project,
we propose a full-fledged graph-based model, SmartMTD
(Smart Multi-valued Truth Discovery), which incorporates
four important implications to conduct truth discovery for
multi-valued objects. Two graphs are constructed and fur-
ther used to derive two aspects of source reliability via ran-
dom walk computations. We also present a general ap-
proach, which utilizes Markov chain models with Bayesian
inference, for comparing the existing truth discovery meth-
ods and validate our approach without ground truth. Initial
empirical studies on two real-world datasets show the effec-
tiveness of SmartMTD.
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1. PROBLEM
In the Big Data era, it is easy to observe that multiple

sources provide conflicting descriptions on the same objects
of interest, due to typos, out-of-date data, missing records or
erroneous entries. To conduct truth discovery, considerable
research efforts have been proposed under the single-valued
assumption [4, 15, 9, 3]. However, in real world, multi-
valued objects—such as the children of a person, the authors
of a book—widely exist. One may argue that previous meth-
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ods can deal with multi-valued objects by simply regarding a
value set, which may contain several values, claimed by each
source as a joint single value, and determining the most con-
fident value set as the truth. However, the value sets pro-
vided by different sources are generally correlated. There
may be some overlap between two sources’ claimed value
sets, indicating that they are not totally voting against each
other. Neglecting this implication could degrade the accu-
racy of truth discovery. Another drawback of the previous
single-valued truth discovery methods is that they overlook
the important distinction between two aspects of quality,
namely, false negatives and false positives, by measuring
source quality using a single parameter, such as precision
or accuracy. For multi-valued objects, some sources may
provide erroneous values, making false positives, while some
other sources may provide partial true values without erro-
neous values, making false negatives. Regarding these two
types of errors as equivalent, the previous methods cannot
distinguish the quality of those two types of sources. How-
ever, measuring source reliability by considering these two
different types of errors is crucial to identify the complete
true values for multi-valued objects.

The first problem to be solved in this PhD project is
truth discovery for multi-valued objects, i.e., MTD. For-
mally, given a set of multi-valued objects (O), conflicting
values V can be collected from a set of sources (S). We
denote the set of all values of an object o provided by all
sources in S as Uo, the set of values provided by a source
s on o as Vso (i.e., positive claims). By incorporating the
mutual exclusion assumption, s is believed to implicitly in-
validate all the other values on o, the disclaimed values are
denoted as Ṽso (i.e., negative claims), which is calculated as
Uo − Vso . The first goal of this PhD project is to identify a
set of true values (Vo

∗) from V, for each object o, satisfying
that Vo

∗ is as close to the ground truth Vo
g as possible, while

estimating two aspects of source reliability, namely positive
precision (τ (s), the probability of the positive claims of a
source being true), and negative precision (τ̃(s), the prob-
ability of the negative claims of a source being false). The
perfect truth discovery result satisfies Vo

∗ = Vo
g.

For the purpose of performance evaluation of various truth
discovery methods, their effectiveness is measured in terms
of accuracy (or error rate), F1-measure, and recall for cat-
egorical data, Mean of Absolute Error (MAE) and Root of
Mean Square Error (RMSE) for continuous data. All these
metrics are measured based on the assumption that com-
plete ground truth is available. However, in reality, ground
truth is always limited or even out-of-reach, which is gen-
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erally less than 10% of the original dataset’s size [12]. The
sparsity of ground truth may bring bias to the performance
measurement of the methods. The incomplete ground truth
is not statistically significant to be legitimately used for eval-
uating and comparing existing methods in a systematic way.
The second problem to be solved in this PhD project is to
compare the existing truth discovery methods and validate
our approach without using ground truth.

2. STATE OF THE ART
Significant research efforts have been conducted for truth

discovery in various application scenarios (see [7, 12, 8] for
surveys). The primitive methods are typically rule-based,
such as the methods that take the majority voting (for cat-
egorical data) or the mean (for continuous data) as the true
values. These methods do not distinguish the reliability of
sources and therefore have low accuracy when many sources
provide low quality data. Yin et al. [15] first formulated
the truth discovery problem in 2008. Since then, many ad-
vanced solutions have been proposed by additionally con-
sidering various implications of multi-source data. They
generally fall into five categories. Web-link based meth-
ods [9, 4, 9, 10, 16] conduct random walks on the bipartite
graph between sources and values of objects. They mea-
sure webpage authority based on their links to the claimed
values and estimate source reliability and value correctness
based on the bipartite graph. Iterative methods [15, 9,
3] iteratively calculate value veracity and source reliabil-
ity from each other until certain convergence condition is
met. Bayesian point estimation methods [1, 2, 14] adopt
Bayesian analysis to compute the maximum posteriori prob-
ability or MAP value for each object. Probabilistic graphical
model based methods [18, 11, 17] apply probabilistic graph-
ical models to jointly reason about source trustworthiness
and value correctness. Finally, optimization based meth-
ods [6, 13, 5] formulate the truth discovery problem as an
optimization problem.

Despite active research in the field, MTD is rarely studied
by the previous work. To the best of our knowledge, only
two related works exist. LTM (Latent Truth Model) [17], a
probabilistic graphical model based method, is the first solu-
tion. LTM makes strong assumptions about prior distribu-
tions for nine latent variables, rendering the model inhibitive
and intractable to incorporating various implications to im-
prove its performance. Moreover, Waguih et al. [12] con-
clude with extensive experiments that this type of methods
cannot scale well. To relax unnecessary assumptions, Wang
et al. [14] analyze the unique features of MTD and pro-
pose a MBM (Multi-truth Bayesian Model), which incor-
porates source confidence and finer-grained copy detection
techniques into a Bayesian framework. Compared to those
two methods, SmartMTD is a graph-based method, which
incorporates four important implications to pursue better
truth discovery.

To conduct performance evaluation and comparison with
the state-of-the-art truth discovery methods, previous com-
parative studies, such as [6] and [7], conduct experiments on
real-world datasets and sparse gold standards. Waguih et
al. [12] point out that the sparse ground truth is not sta-
tistically significant to be legitimately leveraged for method
accuracy evaluation and comparison. To the best of our
knowledge, they are the first to implement a dataset gener-
ator to generate synthetic datasets with the control of the

Figure 1: The framework of SmartMTD.

complete ground truth distribution, for the sake of compar-
ing twelve existing methods. Different from their work, our
idea is to propose an approach for comparing the existing
methods without ground truth.

3. PROPOSED APPROACH

3.1 The SmartMTD
Fig. 1 shows our SmartMTD framework. Our model incor-

porates four implications, including two types of source re-
lations, object popularity, loose mutual exclusion, and long-
tail phenomenon on source coverage by integrating four opti-
mization components into one graph-based core component.

The core component applies the following principle for
truth discovery [8]: sources providing more true values are
assigned with higher reliability; meanwhile, values provided
by higher-quality sources are more likely to be true. Value
confidence scores and source reliability are iteratively calcu-
lated from each other until convergence.

Intuitively, if the positive (resp., negative) claims of a
source are agreed by the majority of other sources, this
source is likely to have high positive (resp., negative) preci-
sion. This means that the inter-source agreements (i.e., the
common values claimed or disclaimed by two sources) indi-
cate source reliability endorsement. This intuition motivates
us to measure the source positive (resp., negative) precision
by quantifying the +agreements (resp., –agreements) among
sources, i.e., the agreements among sources regarding their
positive (resp., negative) claims. In reality, sources might
not only support one another by providing the same true
claims, but also may maliciously copy from others to pro-
vide the same false claims, which sometimes mislead the au-
dience. Therefore, we identify two types of source relations.
Specifically, sharing the same true values means one source
supports/endorses the other source, indicating a supportive
relation between two sources. We define the common val-
ues between these two sources as supportive agreements. We
measure source reliability by quantifying source supportive
agreements in the core component. On the contrary, if two
sources share a significant amount of false values, they are
likely to copy from each other, indicating a copying relation
between them. We define these common false values as ma-
licious agreements. We measure source independence scores
by quantifying source malicious agreements in the Malicious
agreement detection component.

To derive source positive and negative precision, the core
component constructs ±supportive agreement graphs. In
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each graph, the vertices denote sources, each directed edge
represents that one source agrees with the other source, and
the weight on each edge depicts to what extent one source
endorses the other source. The constructions of ±supportive
agreement graphs incorporate the outputs of the four opti-
mization components. In particular, we calculate the en-
dorsement degree from s to s′ on positive claims by:

A(s, s′) = L(s, s′) +
∑

o∈Os∩O
s
′

|Ao(s, s
′)|

|Vs′o |

·(1−
∏

v∈Ao(s,s′)

Cṽ) · Po · I(s, o) · µ(s, o)
(1)

Ao(s, s
′) = Vso ∩ Vs′o (2)

whereAo(s, s
′) is the agreement between the positive claims

of s and s′ on o, Os is the set of objects covered by s, I(s, o)
is the independence score of s providing positive claims on
o, Po is the popularity degree of o, µ(s, o) is the confidence
score of s providing positive claims on o, and L(s, s′) is the
long-tail phenomenon compensation of edge from s to s′.

We calculate the weight on each edge of +supportive agree-
ment graph using:

ω(s → s
′) = β + (1− β) ·

A(s, s′)

|Os′ |
(3)

where β is a smoothing factor, which guarantees that the
graph is always connected and source reliability calculation
can converge.

We define the calculation of edge weights of –supportive
agreement graph in the similar way.

We apply the Fixed Point Computation Model (FPC) ran-
dom walk to those two graphs, after normalization steps, we
obtain τ (s) and τ̃ (s) as positive and negative precision for
each source.

To jointly determine value veracity from source reliability,
we compute the confidence scores of each value v being true
and false by:

Cv =

∑

s∈Sv

τ (s) +
∑

s∈S
ṽ

(1− τ̃(s))

|So|
(4)

Cṽ =

∑

s∈Sv

(1− τ (s)) +
∑

s∈S
ṽ

τ̃(s)

|So|
(5)

So is the set of sources provide values on o, and Sv (resp.,
Sṽ) is the set of sources claim (resp., disclaim) v on o.

The four optimization components compute the param-
eters regarding the four implications required by the core
component.

Malicious agreement detection component derives the in-
dependence score of each source providing claims on each ob-
ject by constructing±malicious agreement graphs for sources
in So, for each object o ∈ O. The edge weight of each graph
is calculated by:

ωco(s → s
′) = β+(1−β)·

|Ao(s, s
′)|

|Vs′o |
·(1−

∏

v∈Ao(s,s′)

Cv)·µ(s, o)

(6)

ω̃co(s → s
′) = β+(1−β)·

|Ão(s, s
′)|

|Ṽs′o |
·(1−

∏

v∈Ão(s,s′)

Cṽ)·µ̃(s, o)

(7)

After random walk computations and normalization, we ob-
tain the independence scores of each source on each object.

Intuitively, sources tend to publish more popular informa-
tion to gain more attentions from the public, and the objects
with more occurrences in the sources’ claims indicate that
they are more popular. Since the number of potential audi-
ences of popular objects is usually bigger than that of less
popular objects, if a source provides false values on a popu-
lar object, it will mislead more people than on a less popular
object. For example, the phone number of a restaurant is
more popular and has bigger impact than the year when
it is opened because customers need to contact the restau-
rant. We therefore propose to distinguish source reliability
by differentiating the popularities of objects, to minimize
the number of people misguided by false values. Object pop-
ularity quantification component calculates the popularity of
each object by applying the following equation, which com-
prehensively incorporates the occurrence of the object and
the coverage of each source that covers the object:

Pu
o =

∑

s∈So

1

Cov(s)
(8)

Pu
o is then normalized to obtain Po.
For multi-valued object, since sources may cautiously pro-

vide partial true values and omit the values they are not
sure about, or audaciously provide all potential values, even
if the veracity of the claimed values is uncertain, the mu-
tual exclusion among values is not as strict as that of the
single-valued object, i.e., the loose mutual exclusion. For
this reason, SmartMTD uses source confidence measurement
component to calculate the source confidence scores of pro-
viding positive (resp., negative) claims on each object, and
reconcile sources’ belief in their positive and negative claims.
In particular, µ(s, o) and µ̃(s, o) are calculated as:

µ(s, o) =
1

|Vso |
· (1−

1

|Uo|
) (9)

µ̃(s, o) =
1

|Ṽso |
·

1

|Uo|
(10)

Finally, in reality, various datasets show the long-tail phe-
nomenon on source coverage, which refers to the fact that
very few sources provide extensive coverage for the objects
of interest and most of the source only provide values for
very few objects. The balancing long-tail phenomenon com-
ponent calculates the compensation of long-tail phenomenon
on source coverage for each link in the ±supportive agree-
ment graphs to avoid small sources with very few claims
from being assigned with extreme reliability.

L(s, s′) = βL

∑

o∈O
s
′−(Os∩O

s
′ )

1

8
· Io ·

1

|Uo|
(1−

1

|Uo|
) (11)

L̃(s, s′) = βL

∑

o∈O
s
′−(Os∩O

s
′ )

1

8
· Io ·

1

|Uo|

2

(12)

where βL is an uncertainty factor of the compensation.

3.2 The Comparison Approach - Ongoing Work
To evaluate the existing truth discovery methods without

ground truth, we propose an approach that utilizes Markov
chain models with Bayesian inference. In particular, given
a dataset for truth discovery, we first utilize a Markov chain
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model for modeling the statistical relations among sources
as an adjacency matrix (we name it as raw matrix), with
each element as the transition probability between the cor-
responding two sources. We then consider the output of
each truth discovery method as the hypothesis about the
raw matrix. To mathematically express the hypothesis, we
also construct an adjacency matrix by leveraging the source
reliability and value confidence scores output by the truth
discovery methods, as those evaluations are the key elements
for identifying the truth of each object. The hypothesis ma-
trices are then used for eliciting informative Dirichlet priors
using an adapted version of the (trial) roulette method. Fi-
nally, we leverage the sensitivity of Bayes factors on the
priors for comparing hypotheses with each other.

4. METHODOLOGY
The methodology used in the development of this work

comprises five tasks:
i) Extensive literature review: this includes the study of

the literature about existing truth discovery methods, how
current works compare their works with others, and the
datasets and ground truth current works utilize for their
empirical studies.

ii) Formalization of the MTD problem.
iii) Development of a graph-based approach as overall so-

lution incorporating four important implications. We need
to quantify the implications, and then implement SmartMTD.

iv) Evaluation and validation of SmartMTD to measure its
performance with respect to the other state-of-the-art truth
discovery methods. The experiments need to be conducted
as follows:

(1) we first collect known datasets to run our experiments,
and choose several typical and competitive existing methods
for comparison, and exclude the methods that are inapplica-
ble to the MTD scenario. To ensure the fair comparison, we
need to run a series of experiments to determine the optimal
parameter settings for each baseline method.

(2) execution of experiments and statistical studies of the
obtained results to deduce conclusions about the proposed
solution. All methods should be evaluated in terms of preci-
sion (P), recall (R), F1 score (F1), and execution time (T).
Since we introduce a new concept of object popularity, we
use object popularity weighted precision (WP), recall (WR)
and F1 score (WF1) as additional accuracy metrics.

(3) To evaluate the impact of different implications, we
should implement several variants of SmartMTD, and ana-
lyze the experimental results.

v) We first model the truth discovery datasets as source
transition matrices and the existing truth discovery methods
as hypothesis matrices. Then we implement our approach
for comparing those matrices.

vi) Evaluation and validation of our comparison approach.
We utilize both real-world datasets with limited ground truth
and the synthetic datasets with complete ground truth gen-
erated by the dataset generator proposed byWaguih et al. [12].
The performance evaluation output by our comparison ap-
proach need to be compared with the P, R, F1 of each
method. The experimental results are then finally analyzed
and concluded.

5. RESULTS
This PhD project is at the beginning of the third year, we

have done an extensive literature review, and implemented

SmartMTD. We have also done some preliminary experi-
ments on the approach for comparing truth discovery meth-
ods without using ground truth. The initial results show the
potential of our approach. In this section, due to the limited
space, we briefly report our progress of the implementation
of SmartMTD, and omit the empirical studies of our second
research problem.

We compared SmartMTD with three types of baseline
methods: i) methods under single-valued assumption (i.e.,
STD methods), including Voting, Sums [4], Average-Log [9],
TruthFinder [15], and 2-Estimates [3]; ii) existing MTD
methods, LTM [17] and MBM [14]; iii) modified STD meth-
ods, we modified the above five STD methods by incorporat-
ing truth number prediction. In particular, for each method,
we treated the values in each claimed value set of each source
individually, and ran the original method to output source
reliability and value confidence scores. Then, we computed
|Vso | for each source on each object, based on which we pre-
dicted the number of true values for each object by:

Po(n) = |So|

√

∏

|Vso
|=n,s∈So

A(s) ·
∏

|Vso
|6=n,s∈So

(1− A(s))

(13)
where Po(n) is the unnormalized probability1 of the number
of values of an object o to be n, and A(s) is the reliability
of s calculated by each method.

For each object, we chose the number with the highest
probability (denoted as N) as the number of true values
and output the top-N values instead of choosing the value
set with the biggest confidence score as the outputs. Finally,
we obtained five new methods, namely Voting∗2, Sums∗,
Average-Log∗ , TruthFinder∗, and 2-Estimates∗. We ran the
above methods on two real-world datasets, including book-
author dataset [15] and Parent-Children dataset (extracted
from Biography dataset [9]).

Table 1 shows the comparison results. For all the accu-
racy evaluation metrics except precision, SmartMTD con-
sistently achieved the highest value. Even in terms of preci-
sion, SmartMTD still achieved the second best performance
on Parent-Children dataset. Though SmartMTD sacrificed
precision for recall due to the limited size of the Book-Author
dataset, SmartMTD achieved the best F1 score as the overall
performance. Among the three methods specially designed
for the MTD problem, our approach is the most efficient
one with the lowest execution time. This is due to the rea-
sons that LTM includes complicated Bayesian inference over
the complex probabilistic graphical model, and MBM con-
ducts time-consuming copy detection, while our approach
is based on a relatively simple graph model. The modified
STD methods performed even worse than their original ver-
sions. This depicts that in reality the majority of the sources
tend to be cautious and only provide values they are sure to
be true, thus the predicted numbers of true values were gen-
erally smaller than the real ones, leading to lower precision
and recall of the modified STD methods.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we present two significant problems we aim

to solve in this PhD project. Firstly, we have solved the
problem of discovering true values for multi-valued objects

1Such values are then normalized to represent probabilities.
2For Voting∗, we predict the number of true values as the
number with the highest vote counts.
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Table 1: Comparison of different methods: the best and second best performance values are in bold.

Method
Book-Author Dataset Parent-Children Dataset

P R F1 WP WR WF1 T(s) P R F1 WP WR WF1 T(s)

Voting 0.84 0.63 0.72 0.83 0.64 0.72 0.07 0.88 0.85 0.87 0.69 0.68 0.69 0.56

Sums 0.84 0.64 0.73 0.83 0.64 0.72 0.85 0.90 0.89 0.90 0.88 0.86 0.87 1.13
Avg-Log 0.83 0.60 0.70 0.83 0.64 0.72 0.61 0.90 0.89 0.89 0.88 0.86 0.87 0.75

TruthFinder 0.84 0.60 0.70 0.83 0.60 0.70 0.74 0.90 0.89 0.90 0.88 0.85 0.86 1.24
2-Estimates 0.81 0.70 0.75 0.80 0.68 0.74 0.38 0.91 0.89 0.90 0.88 0.86 0.87 1.34

Voting* 0.77 0.42 0.54 0.80 0.39 0.53 0.13 0.87 0.85 0.86 0.71 0.68 0.69 0.89
Sums* 0.83 0.24 0.38 0.85 0.21 0.34 0.99 0.86 0.88 0.87 0.67 0.84 0.75 1.45

Avg-Log* 0.74 0.49 0.59 0.80 0.53 0.64 0.08 0.89 0.87 0.88 0.77 0.82 0.79 0.92
TruthFinder* 0.70 0.71 0.70 0.75 0.72 0.73 0.99 0.85 0.91 0.88 0.69 0.88 0.77 1.16
2-Estimates* 0.83 0.24 0.38 0.81 0.21 0.34 0.79 0.86 0.89 0.87 0.66 0.83 0.74 1.47

LTM 0.82 0.65 0.73 0.82 0.62 0.71 0.98 0.87 0.90 0.88 0.86 0.89 0.87 0.99
MBM 0.83 0.74 0.78 0.82 0.71 0.76 0.67 0.90 0.92 0.91 0.87 0.90 0.88 2.17

SmartMTD 0.81 0.79 0.80 0.83 0.81 0.82 0.45 0.90 0.94 0.92 0.92 0.95 0.93 0.92

(or MTD), which has rarely been studied in the truth dis-
covery community. We propose a full-fledged graph-based
model, SmartMTD, by incorporating four implications in-
cluding two types of source relations (i.e., supportive rela-
tions and copying relations), object popularity, loose mutual
exclusion, and long-tail phenomenon on source coverage. In
particular, we construct ±supportive agreement graphs to
model the endorsement among sources on their positive and
negative claims, from which two-sided source reliability is
derived. Copying relations among sources are captured by
constructing the ±malicious agreement graphs based on the
consideration that sources sharing the same false values are
more likely to be dependent. We consider the popularities of
objects and develop techniques to quantify object popularity
based on object occurrences and source coverage. We apply
source confidence scores to differentiate the extent to what a
source believes its positive claims and negative claims. For
the ubiquitous long-tail phenomenon on source coverage, we
also add smoothing weights to the ±supportive agreement
graphs to avoid the reliability of small sources from being
over- or under-estimated. Empirical studies on two real-
world datasets show the effectiveness of SmartMTD. Sec-
ondly, we propose an initial idea of comparing the truth dis-
covery methods without ground truth. In the rest of this
PhD project, we will further complete the design of our
approach, including modeling the raw datasets as empiri-
cal source transition matrices, and modeling the methods
as hypothesis matrices. Finally, validate the effectiveness
of SmartMTD by applying our novel comparison approach.
Our future work will focus on improving SmartMTD by ex-
ploring and incorporating more implications.
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