
Numerical Facet Range Partition: Evaluation Metric and
Methods

Xueqing Liu, Chengxiang Zhai
University of Illinois at Urbana-Champaign

Urbana, IL 61801
xliu93,czhai@illinois.edu

Wei Han, Onur Gungor
WalmartLabs

Sunnyvale, CA 94806
whan,ogungor@walmartlabs.com

ABSTRACT
Faceted navigation is a very useful component in today’s
search engines. It is especially useful when user has an ex-
ploratory information need or prefer certain attribute val-
ues than others. Existing work has tried to optimize faceted
systems in many aspects, but little work has been done on
optimizing numerical facet ranges (e.g., price ranges of prod-
uct). In this paper, we introduce for the first time the re-
search problem on numerical facet range partition and for-
mally frame it as an optimization problem. To enable quan-
titative evaluation of a partition algorithm, we propose an
evaluation metric to be applied to search engine logs. We
further propose two range partition algorithms that compu-
tationally optimize the defined metric. Experimental results
on a two-month search log from a major e-Commerce engine
show that our proposed method can significantly outperform
baseline.

Keywords
Faceted search; User search log; Information retrieval mod-
els; Non-smooth optimization

1. INTRODUCTION
Querying and browsing are two complementary ways of in-

formation access on internet. As one convenient tool to help
browsing, faceted search systems have become an indispensi-
ble part of today’s search engines. Figure 1 shows a standard
faceted system on eBay. Upon receiving user query, it dis-
plays a ranked list of facets: format, artists, sub-genre and
price, along with facet values under each facet. These facet
values are metadata of the search results. When user selects
one or more values, search results are refined by the selec-
tion, e.g., in Figure 1, the results (not displayed) only con-
tain box set albums whose genres are Jazz. Faceted brows-
ing is largely popular in search engines for structured enti-
ties of the same type1 (e.g., e-Commerce products, movies,

1In this paper, we frequently use the term ‘entity’ to refer
to any structured entity. We do not use the term ‘item’

c©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW’17 Companion, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4914-7/17/04.
http://dx.doi.org/10.1145/***Add your assigned DOI**

.

Figure 1: Snapshot of faceted search system on eBay, picture
borrowed from Hearst [11] (Figure 8.12, page 195)

restaurants). In these engines, user often lacks the ability to
specify facet values in detail [17]. Therefore, faceted system
such as Figure 1 can serve as a convenient tool to elicit user’s
needs so they can quickly click on the suggested facet values
to expand their queries. Faceted browsing is also exceed-
ingly helpful on touch screen devices, where typing query is
less convenient than clicking on a facet.

A faceted system consists of multiple components, which
would naturally decompose its optimization into multiple
sub-problems. Existing works have covered quite a few of
these sub-problems, e.g., ranking facets or values [28, 14,
15], facet selection [18, 24]. However, we identify one prob-
lem which, to the best of our knowledge, has never been
formally studied before. Basically, how to suggest values of
a numerical facet to help user browse the query results? An
example of numerical facet is price in Figure 1, where the
result albums are partitioned into 5 non-overlapping subsets
based on their prices: [0, 20), [20, 30), [30, 40), [40, 50) and
[50, ∞). This is equal to saying the results are separated
by 20, 30, 40 and 50. So the problem is rephrased as: given
user query and results, how to find the best separating val-
ues? This problem has a clearly different goal from existing
works in faceted system [24, 18, 15, 16, 10, 29]. It can be
further decomposed into two parts. First, how to evaluate
the quality of a set of separating values (e.g., how good is
20,30,40 and 50?)? Second, if we can find such a metric,
how to find separators that optimize it?

Before we delve into answering the two questions, one may
wonder why it is even important to study this problem. Ar-
guably, numerical facets are only a small portion of all facets,
and why are we unhappy with the current design? If we only
consider one search engine, indeed, it usually just contains
one or a few numerical facets (e.g., Figure 1). However,

because the search object we study is more general, e.g.,
people search. In the experiment part where our data is
from e-Commerce engine, we use the term ‘product’ instead.

662

website issue example query
amazon.com one range dom. refurbished laptop
ebay.com 3 ranges laptop; camera
walmart.com one range dom. socks
bestbuy.com one range dom. phone charger
etsy.com fixed ranges dress; hair pins
homedepot.com one range dom. french door fridge
target.com one range dom. card game
macys.com one range dom. soap
lowes.com one range dom. pillow
kohls.com one range dom. socks

Table 1: Issues of suggested price ranges among top-10 shop-
ping websites (as of 02/16/2017).

Figure 2: A specific example of the ‘one range dominates’
issue (Table 1). The snapshot was taken on 01/21/2016, on
Amazon under query ‘refurbished laptop’.

notice numerical facets span a wide range of applications.
Some of the examples are news search (timestamp), loca-
tion search (distance), e-Commerce search (price, mileage,
rating) and academic search (h-index). So focusing on nu-
merical facet does not make our study narrow. For the latter
question, we conduct a case study on the price ranges from
top-10 shopping websites that provide price suggestion2. We
find several issues which we demonstrate in Table 1 and Fig-
ure 2. The most common issue is that among multiple sug-
gested ranges, one range contains the majority of results,
e.g., Figure 2 shows that range [0, 500) contains 73.9% of
the products under query ‘refurbished laptop’. It can be
expected that the majority users would click on [0, 500),
but this only reduces the total number from 1,928 to 1,426,
which does not seem very helpful. Another issue we find on
one website (www.etsy.com) is it appears to suggest fixed
ranges (25, 50, 100) for all queries, so it is not adaptable
to different queries such as ‘dress’ and ‘hair pins’. Finally,
the price ranges from eBay appear to be the most adapt-
able among all 10 websites, but seems its number of ranges
is fixed to 3, making it unable to adapt to price-diversified
categories such as camera. Based on the study results, we
believe there is still plenty of room for improving range par-
tition techniques in current search engines.

For the first question, we evaluate our problem by collect-
ing past user search log and defining our evaluation metric
on top of it. It is a common practice in information sci-
ence to evaluate an information system using user’s gain
and cost [22, 3, 30], where the gain is often estimated as
the (discounted) number of relevant entities or clicks in the
log [19], and cost is often estimated as the total number of
viewed entities in the log [18]. Similarly, evaluation metric
for a set of numerical ranges can be defined as user’s cost
and gain when using the ranges to browse the results. Fol-
lowing existing works in faceted system [18], we fix the gain

2Ranking is based on the website traffic statistics from www.
alexa.com as of 02/16/2017.

to 1 and use the cost as our evaluation metric. Under a few
reasonable assumptions (Section 4.1), the cost is equal to
the rank of the first clicked entity (in the log) in the unique
range (among the set of ranges) that contains it.

After the first question is answered, we shift our focus
to the optimization problem. From examples in Figure 1
and Figure 2, we can observe that a good partition should
(at least) satisfy the following properties: first, it is good
for the suggested separators to be adaptable to each query;
second, instead of letting one range dominates, the number
of entities in each range should be more balanced; third, our
partition algorithm should be able to generate any number
of ranges, instead of only one specific number like 3. There
exists a simple solution that satisfies all three properties:
just partition the results into k ranges, so that each range
contains the same number of entities. We call this simple
method the quantile method. Indeed, the quantile method
reduces the maximum cost in Figure 2 from 1,426 to 321.
But can we further improve it?

In this paper, we propose two range partition algorithms.
The idea is to collect a second search log and use it for train-
ing, to help improve the performance on the search log for
evaluation. In the first proposed method, training data is
used for estimating the expected click probabilities in the
testing data, then the range is computed by optimizing the
expected cost using dynamic programming; in the second
method, we propose to parameterize the problem and opti-
mize the parameters on the training data. We conduct ex-
periments on a two-month search log collected from Walmart
search engine. Results show that our method can signifi-
cantly outperform the quantile method, which verifies that
learning is indeed helpful in the range partition problem.

2. RELATED WORK
During the past decades, researchers design different inter-

faces for faceted search and browsing. They include faceted
system that displays one facet [24] and k facets [18, 29],
where the facet selection is based on ranking. Due to the
heterogeneity of entity structures on the web, facets ranking
can be classified as ranking facet [4], ranking facet values [14]
and ranking (facet, value) pairs [15]. There are also faceted
systems which support image search [28] and personalized
search [16]. To the best of our knowledge, we have not found
any existing literature that explains how to suggest numer-
ical ranges that are adaptable to user queries.

It is a common practice to evaluate search engine using
user’s gains and costs [13, 19, 3, 30]. Existing approaches
would define a system’s utility as the difference between
user’s gain and cost [22, 19], or they would evaluate gain and
cost separately [3, 30]. Meanwhile, existing works in faceted
systems have also defined metrics for self evaluation [18, 15,
4]. [18] defines the metric as rank of the relevant document
after user selects some facets; [15] instead defines it as the
total number entities after user selects facets. Between the
two, we believe the former one better reflects the actual user
cost, so we choose to use it in our metric (Section 4.2), al-
though the latter one is easier to compute.

Since faceted system is an interactive environment, it is
usually impossible to collect the actual user behavior on the
system to test. As a result, almost all the evaluation in
faceted system have to rely on making assumptions to ap-
proximate user behavior [24, 18, 15]. For example, [18] tests
two assumptions: (1) user would (conjunctively) select all
facets that helps to reduce the rank of relevant document;
(2) user would only select the facet that reduces the most of

663

this value. [24] assumes the user would follow the behavior
they estimated from 20 users in a pilot study on a differ-
ent environment. [32] assumes the probability for user to
select each facet is proportional to the semantic similarity
between the facet and the relevant document. Unlike [32],
our assumption in Section 4.1 only relies on user’s discmi-
native knowledge on facet values, and unlike [18], we do not
make further assumptions on user’s knowledge about data
distribution. So our work relaxes the assumptions made by
previous works.

Our problem is remotely related to generating histograms
for database query optimization [12, 1, 20]. Different from
our query adaptive ranges, histograms are used for data com-
pression so they are fixed for all queries. Same as our first
method (Section 5.1), Jagadish et al. [12] also uses dynamic
programming, although for a different optimization goal.
Recently, [1] leverages an approximation technique and is
able to replace DP with a linear time algorithm. However,
this approximation technique is not applicable to our case,
simply because we have a different optimization goal. Our
first method would remain a super-cubic running time.

3. FORMAL DEFINITION
We formally define the numerical range partition problem

and introduce notations that we will use throughout the rest
of the paper. Suppose we have a working set of entities E =
{e1, · · · , e|E|} that user would like to query on. Each entity
e ∈ E is structured, meaning it contains one or multiple
facets. For example, facet values of one specific laptop entity
is: Brand=Lenovo, GPU=Nvidia Kepler, etc. Here ‘Brand’
and ‘GPU’ are facets; ‘500GB’ and ‘Nvidia Kepler’ are facet
values. Facets are often shared by entities in E, but some
facets are only shared by a subset of E. For example, some
laptops do not have a GPU.

At time i user enters a query qi, search engine retrieves
a ranked list of entities Ei ⊂ E. Our problem asks, for
one specific numerical facet (e.g., price), how to find a set
of separating values for that facet? In order for this prob-
lem to exist, at least a significant number of entities in Ei

should contain the specified numerical facet. From now on,
we will just assume this facet is already specified and all the
discussions are about this facet.

We further assume the number of output ranges is given as
an input parameter k. k is defined by either system or user.
We believe it is important to have control on the number of
output ranges. Indeed, it would be bad experience if the user
wants to see fewer ranges but receives an unexpectedly long
list. Also, it is unfair to compare two partition algorithms if
they generate different number of ranges, e.g., [0, 100), [100,
200), [200, 300), [300, 400) is almost certainly better than
[0, 200), [200, 400) because user can always use the former
one to zoom into a better refined results.

To summarize the input and output of a range parti-
tion algorithm: Input: (1) number of output ranges k;
(2) query qi; (3) ranking algorithm and ranked list Ei; nu-
merical facet value of each e ∈ Ei, denoted as v(e) (if
e does not have the facet, v(e) is empty); rank of each
e ∈ Ei, denoted as rank(e). Output: k − 1 separating
values Si = (s1, · · · , sk−1) ∈ Rk−1, where s1 < · · · < sk−1.

4. EVALUATION
In this section, we propose and formally define our evalu-

ation techique and metric for range partition algorithms.

4.1 User Behavior Assumptions

Evaluation in IR is mainly divided into two categories:
first, conduct user studies such as laboratory based exper-
iments or crowdsourcing; second, collect search log of real
user engagements in the past, define evaluation metrics on
top of the log and use them to compare different systems’
performances, also called Cranfield-style evaluation [25]. Since
the former approach is expensive and not easy to repro-
duce, we choose the latter one, which is also the more fre-
quently used approach of evaluating faceted systems in ex-
isting work [18, 29]. Collected log consists of queries, and we
only keep queries with at least one clicked entity. Also in this
paper, we assume user click is the only relevance judgement.
That is, relevant entity is equal to clicked entity.

But it is not straightforward how to obtain a reusable
search log for evaluating range partition algorithms. On the
one hand, it is impossible for the search log to have enu-
merated all possible range sets. On the other hand, unlike
reusable relevance judgements in Cranfield experiments, it
is difficult to infer which range user would select out of one
set based on her selection out of a different set in the log.
Fortunately, existing work in faceted search [18] provides a
hint to this challenge. It assumes user would be able to se-
lect the facet value that is most helpful in reducing the rank
of the relevant document, then sequentially browse the re-
fined document list until finding the relevant document. In
other words, it assumes user has some partial knowledge in
which facet value is more relevant before actually seeing the
relevant document. Similarly, we can assume:

• Assumption 1. User would select the range that con-
tains the relevant entity;

• Assumption 2. After selecting the relevant range,
user would sequentially browse the refined results until
reaching relevant entity;

Assumption 1 only requires user has a discriminative knowl-
edge on the numerical facet (e.g., knowing which price range
is more relevant); while Assumption 2 is among the basic as-
sumptions of information retrieval [7, 23].

There are cases where our assumptions may not be true.
For example, if the numerical value of relevant entity is near
the borderline, it is difficult for the user to choose between
the two ranges. However, we find them reasonable to make
when our main purpose is to perform comparative studies
between different partitioning algorithms. This is because if
there is any bias introduced through these assumptions, the
bias is unlikely favoring any particular algorithm.

4.2 Evaluation Metric
It is a common practice in information science to evaluate

a system’s performance using user’s cost and gain. Previous
evaluation methods can be categorized into three groups.
First, evaluate cost and gain separately [30]. Since our
goal is comparative study, this approach is not informative
enough. Second, use the difference between gain and cost,
e.g., gain divided by cost [22]. Although thereby we only
have one score, this approach will likely introduce bias since
gain and cost may not be on the same scale. The third ap-
proach is to control one variable while examining the other.
In our problem, it is easier to control and measure gain, since
it can be simply defined as the number of entities user has
clicked so far. Meanwhile, reusing search log has added chal-
lenge to measuring cost of faceted system. Although cost in
a no-facet search engine can be simply estimated as number
of entities above relevant ones; in engines with faceted sys-
tem, however, if the number of relevant entities (i.e., user

664

clicks) is larger than 1, this definition is ambiguous, because
there are many possible cases of user activity, and cost in
each case is different 3.

On the other hand, if the number of clicked entities is fixed
to 1, i.e., we only consider the first clicked entity in the log,
it is easy to obtain an unabmiguous definition for cost: for
any suggested ranges, there will be one and only one range
that contains the relevant (clicked) entity. So if we apply the
two assumptions in Section 4.1, user would first select that
unique range, then sequentially browse entities in that range
until finding the first relevant entity. Therefore, the cost is
equal to the rank of the first clicked entity in its unique
range. We assume that after user selects any range, relative
ranks of entities inside that range do not change. Therefore
the cost is well defined by the initial search results list L,
the suggested range S ∈ Rk−1 and the first clicked entity e,
we denote this value as Refined-Rank(e, L, S).

Now we are ready to define the evaluation metric for a
range partition algorithm A. At time i in the log, user enters
query qi, search engine returns ranked list Ei and user first
clicked on entity ei. Suppose algorithm A suggests ranges
Si = (s1, · · · , sk−1) for each query qi in the log, we evaluate
algorithm A’s performance using the averaged refined rank
metric, or ARR for short:

RRi = Refined-Rank(ei, Ei, Si)

ARR =
1

n

n∑
i=1

RRi (1)

RRi and ARR will serve as the evaluation metric for all
range partition algorithms throughout this paper. Since
ARR only considers user’s engagement before the first entity
click, it remains a challenge how to measure the performance
of a range partition algorithm in the whole session. We leave
it for future work.

5. METHODS
In Section 1, we discuss the quantile method, which par-

titions Ei into k equal sized ranges. This approach is also
used in database system for observing underlying data dis-
tribution or data compression (where it is called equi-depth
binning [20]). Figure 2 shows that the quantile method per-
forms reasonably well. However, quantile method is a sim-
ple, rule-based method without leveraging extra informa-
tion. Suppose we are allowed to use any information we can
collect, can we do better than quantile method?

An idea is to collect another search log for training, since
it can help us make better estimation on the testing (eval-
uation) data. In this section, we propose two methods to
leverage the training data.

5.1 First Method: Dynamic Programming
Since we have defined ARR (Equation 1) as our evalua-

tion metric and the smaller the better, our range partition
algorithm should try to minimize ARR and RRi. Imagine
if the clicked entity ei was known, minimizing RRi means
we should make one range only contain ei itself. RRi in
this imaginary scenario is equal to 1. In reality, although
the clicked entity is not known, we can estimate the click

3For example, under one query, user clicked on entity ea and
eb, and they are in range a and b (different). Case 1: user
selects both a and b, browse until finding both ea and eb.
Case 2: user selects a, browse until finding ea, unselect a
and select b, browse until finding eb. Case 3: user selects a,
browse until finding ea, select b, browse until finding eb.

probability using the extra search log (i.e., training data).
Denote the estimated click probability on entity e as p(e)
(so that

∑
e∈Ei p(e) = 1). Then the expected RRi for

S = (s1, · · · , sk−1) is:

ES [RRi] =
∑
e∈Ei

p(e)×Refined-Rank(e, Ei, S) (2)

So our first method is: for each query qi, to suggest Si =
arg minS∈Rk−1 ES [RRi].

To minimize Equation 2, first notice that although Rk−1

is continuous, we actually only have to search for S in a
discrete subspace of Rk−1. The reason is explained in the
following example. Suppose Ei only contains three enti-
ties (ordered by rank) e1, e2 and e3. v(e1) = 100; v(e2) =
200, v(e3) = 300; estimated probabilities are p(e1) = 0.4,
p(e2) = 0.3, p(e3) = 0.3; finally, k = 2, so S = (s1). Orig-
inally, s1 can be any float ∈ (100, 300] (if s1 ≤ 100 or
s1 > 300, result only contains one range). However, no-
tice objective function (Equation 2) stays the same for all
s1 ∈ (200, 300], also for all s1 ∈ (100, 200]. So we only have
to pick a ∈ (100, 200], and b ∈ (200, 300] and compare the
objective function with S = (a) and S = (b). We pick the
mid point for convenience, i.e., a = 150 and b = 250.

From example above, we can see that in general, min-
imizing Equation 2 subject to S ∈ Rk−1 is equal to the
combinatorial optimization problem of selecting k− 1 num-
bers from |Ei| − 1 mid points so that their combined S
minimizes the objective function. We can, of course, use

brute-force search, but the time cost would be O(
(|Ei|−1

k−1

)
+ |Ei|3 log |Ei|), where the extra |Ei|3 log |Ei| is for sort-
ing and pre-computing Refined-Rank(e, Ei, S) for each e
in each possible range. When |Ei| is large, this time cost
is undesirable. However, this problem has a O(k|Ei|2 +
|Ei|3 log |Ei|) time solution using dynamic programming.
This is because objective function can be rewritten as the
sum of k parts, the k-th part is independent from previous
k − 1 parts (for proof of this, see Appendix A in the longer
version of this paper).

One may wonder why we do not use greedy algorithm
here. There are two reasons: first, greedy algorithm gener-
ally leads to sub-optimal solutions4; second, the computa-
tional cost of greedy algorithm is O(k|Ei| + |Ei|3 log |Ei|),
which remains large since it still has to compute ranks of
each entity in each possible range.

5.2 A Second Look: Parameterization
In Section 5.1, we propose to suggest Si that optimizes

the expected RRi for each time i. Yet with access to both
training and testing data, we have a second thought: can we
build a machine learning model to study this problem?

Take linear regression as an example. Given training data
{xi, yi}, i = 1, · · · , n, it defines parameter w and b, finds w
and b that minimize the square loss on training data, and
applies them on the testing data. In our problem, can we
define a set of parameters, model ARR as a function of the
parameters, find parameters that minimize ARR on training
data, which could then be applied on testing data?

At the first sight, there does not seem to exist a very
straightforward solution to the parameterization. One may

4An example: suppose Ei contains four entities (ordered by
rank) e1, e2, e3 and e4. v(e1) = 400, v(e2) = 100, v(e3) =
200, v(e4) = 300, p(e1) = p(e2) = 0.2, p(e3) = p(e4) =
0.3, k = 3. Optimal solution is 1.2 but greedy algorithm’s
solution is 1.3.

665

think S = (s1, · · · , sk−1) can be the parameters. However,
we have discussed in Section 1 that it is not a good strat-
egy to use fixed ranges for different queries. On the other
hand, we learned that the quantile method performs rea-
sonably well. This sheds light on how we can define the
parameters: using the relative ratio representation of S, i.e.,
R = (r1, · · · , rk−1) ∈ (0, 1)k−1 where r1 < · · · < rk−1, r0 =
0, rk = 1. Given the search results Ei, for any R, we can
find the partition S for Ei so the ratio of number of entities
in range [sj−1, sj) most closest approximates, if not exactly
equal to rj − rj−1:

∆rj := rj − rj−1 ≈
|{e ∈ Ei|v(e) ∈ [sj−1, sj)}|

|Ei|

The R for quantile method is (1/k, · · · , k−1/k). With this
representation, any R corresponds to one point (∆r1, · · · ,
∆rk) in the simplex ∆k.

So we want to ask: among all points in ∆k, does quantile
method generate the best ARR on testing data? If not, can
we achieve better ARR on testing data by finding parameter
R that minimizes the ARR in training data? In this section
we study how to optimize ARR with respect to R.

5.2.1 Optimizing ARR with Respect to R

It is difficult to directly optimize ARR, because same as
many evaluation metrics in IR (e.g., NDCG[27], MAP[31]),
ARR is a non-smooth objective function with respect to pa-
rameter R. Indeed, if the relevant entity is near the bound-
ary, and we change R with a small enough value ε → 0,
relevant entity would jump from one range to another, so
RRi would also jump and as a result, ARR cannot stay con-
tinuous. An example: suppose Ei only contains three enti-
ties (ordered by rank): e1, e2 and e3. v(e1) = 100, v(e2) =
200, v(e3) = 300; relevant entity is e2 and k = 2. If we
change R = [0.66] to R = [0.67], the partition would jump
from {{e1}, {e2,e3}} to {{e1,e2}, {e3}}, and RRi would
jump from 1 to 2.

Non-smooth optimization. In order to optimize the
non-smooth ARR, first notice that ARR can be non-smooth
everywhere, instead of only at a few points5. There ex-
ist a few derivative-free algorithms for solving optimization
problem in this case. Two of them are Powell’s conjugate
direction method [6] and Nelder-Mead simplex method [21],
we will discuss more about this topic in Section 6.

Time complexity to directly optimize ARR. Time
complexity of directly optimizing ARR with the above non-
smooth optimization algorithms is at least O(NevalT1), where
T1 is the average time cost to compute ARR on one specific
point, and Neval is the number of such points we have to
compute (number of function evaluations). In other words,
Neval depends on the efficiency of non-smooth optimization
algorithm, and T1 depends on the size of the data. We can
observe from Equation 1 that T1 = O(nm logm), where n
is the number of queries in the training data, and m is the
average number of retrieved entities |Ei| for each query qi.
This is because whenever the optimization algorithm goes
to a new point R, we have to recompute the ARR from
scratch. To explain in more detail: whenever we are at a
new point R, every RRi in Equation 1 may have changed
(as we discussed above, a small enough change in R can lead
to a significant change in RRi), so we have to recompute the
RRi in every single query; every such recomputation takes

5Therefore our optimization cannot be solved in the same
as Lasso [26] which uses sub-gradient descent.

O(m logm), which is for sorting entities in the range that
contains relevant entity to compute its refined rank.

In summary, the time complexity for any optimization al-
gorithm to directly optimize ARR is O(Nevalnm logm). In
real world search engines, both m and n can be very large.
On the other hand, we are not aware of theoretical esti-
mation on Neval, but previous work has provided empirical
results. Table 1 to 3 of [9] show examples of Neval in Nelder-
Mead, and Table 2 of [2] shows examples of Neval in Powell’s
method. Empirically, Neval for lower dimensional problems
(k ranges from 2 to 10, which is the case for numerical range
partition) usually ranges from 100 to 1,500.

5.2.2 Optimizing the Surrogate Objective Function
As discussed in Section 5.2.1, the algorithm for directly

optimizing ARR takes O(Nevalnm logm), which is time con-
suming when Neval, n,m are all very large. In this section,
we propose a three-step process that turns ARR into a sur-
rogate objective function. We propose to optimize the sur-
rogate function instead of directly optimizing ARR, so that
time cost is significantly reduced.

Step 1: Normalization. First, for each query qi, we
normalize RRi by the total number of retrieved entities Ei:

RRi =
RRi

|Ei| =
Refined-Rank(ei, Ei, R)

|Ei|

Refined-Rank(ei, Ei, R) is the same as Refined-Rank
(ei, Ei, S) where S are the separating values closest to R
(see beginning of Section 5.2).

Step 2: Upper bound. By definition (Section 4.2),
Refined-Rank(ei, Ei, R) is bounded by the total number of
entities in the unique range that contains relevant entity ei.
Denote this range as [sji , sji+1):

RRi ≤
|{e ∈ Ei|v(e) ∈ [sji , sji+1)}|

|Ei| (3)

Step 3: Limit approaching infinity. Notice as |Ei|
goes to infinity, the R.H.S. of Inequality 3 approaches ∆rj+1 =
rj+1−rj (see beginning of Section 5.2). If we denote zi as the
ratio of number of entities smaller than or equal to v(ei)6,
this limit is rewritten as:

Ci(R) := ∆rji+1 =

k∑
j=1

1[rj−1 ≤ zi ≤ rj]×∆rj

The averaged limit over i = 1 · · · , n is defined as Cn(R):

Cn(R) =
1

n

n∑
i=1

Ci(R)

=

k∑
j=1

∆rj × (Fn(rj)− Fn(rj−1)) (4)

Where Fn(r) = 1
n

∑n
i=1 1[zi < r] for r ∈ [0, 1] is ex-

actly equal to the empirical conditional distribution function
(CDF) of zi. Second equation in (4) follows from simple
math. So instead of directly optimizing ARR, we propose
to optimize Cn(R) instead.

Time complexity to optimize Cn(R). We can see the
time cost for optimizing Cn(R) is largely reduced compared
with ARR. This is because the empirical CDF Fn(r) can be

6For example: suppose Ei only contains four entities (or-
dered by rank): e1, e2, e3 and e4. v(e1) = 100, v(e2) =
300, v(e3) = 200, v(e4) = 400; relevant entity is e2. In this
example, zi = 3

4
.

666

first computed and cached using Algorithm 1. After Fn(r)
is cached, at any new point R where the non-smooth opti-
mization algorithm needs to re-compute Cn(R), it only have
to obtain the cached Fn(r) from Xsorted and Y (output from
Algorithm 1) for r = r1, · · · , rk−1 then apply Equation 4. To
obtain cached Fn(r), we first use binary search on Xsorted to
find the index i of r, then return Y [i] as Fn(r). Therefore,
time complexity for each of the Neval function evaluation is
reduced to O(k logn0).

Time costs for caching Fn(r) are listed in Algorithm 1.
In summary, the total time complexity for caching + op-
timizing Cn(R) is O(nm + n0 logn0 + n logn + n0 logn +
Nevalk logn0). n0 is the number of unique r′js in the log, so
n0 < |Xct|m < nm.

Algorithm 1: Caching Empirical CDF Fn(r)

1 Xct ← ∅; // Set of unique |Ei|
2 X ← ∅; // Set of unique rj’s
3 Y ← []; // Fn(rj) values of all unique rj’s

4 Z ← []; // All zi’s
5 for i = 1, · · · , n do
6 if |Ei| 6∈ Xct then
7 Xct ← Xct ∪ {|Ei|};
8 for j = 1, · · · , |Ei| − 1 do
9 X ← X ∪ { j

|Ei|};
10 end
11 end
12 count← 0;

13 for e ∈ Ei do
14 if v(e) ≤ v(ei) then
15 count← count+ 1; // O(nm)
16 end
17 end

18 zi ← count/|Ei|;
19 Append zi to the end of Z;
20 end
21 n0 ← |X|;
22 Xsorted ← sort(X); // O(n0 log (n0))
23 Zsorted ← sort(Z); // O(n logn)
24 for i = 1, · · · , |Xsorted| do
25 x← Xsorted[i];
26 Pos← BinarySearch(Zsorted, x); // O(n0 logn)
27 y ← Pos/n;
28 Append y to the end of Y ;
29 end
30 return Xsorted and Y ;

5.2.3 Bounds on Cn(R)

The Dvoretzky-Kiefer-Wolfowitz inequality [8] bounds the
probability that the empirical CDF Fn differs from the true
distribution F . Following the DKW inequality, we are able
to prove a few bounds on Cn(R). These bounds provide use-
ful insights on the convergence rate and sample complexity
of Cn(R) on large scale datasets. We show them in Appendix
B in the longer version of this paper.

5.3 Learning to Partition with Regression Tree
In Section 5.2 we propose to optimize Cn(R) subject to

the ratio parameter R, and apply it to the testing data. This
means all queries in testing data shares the same R. If they
can have different R’s, can we further improve the results?

To differentiate each query, we define a feature vector
xi ∈ Rd for query qi. For example, xi can be qi’s low di-

mensional representation using the latent semantic analysis
(LSA). A heuristic solution, for example, is to replace R with
Ri = βTxi in each query, and optimize Cn subject to βT .
However, Cn defined this way is much harder to optimize,
because ∆rj is now different for each query, so Fn(r) can no
longer be pre-computed and cached.

This observation implies that we should try to make each
Ri shared by at least a significant number of queries. The
best machine learning method under this setting (that we
are aware of) is the regression tree (CART [5]). In a regres-
sion tree, all queries inside each leaf node t share the same
parameter Rt.

Training of a regression tree would recursively split ex-
amples in the current node. In each node, it chooses the
dimension j ∈ [d] and the threshold θ so that splitting by
whether xi

j > θ minimizes the sum of mean square error
(MSE) on each side. The overall goal of regression tree is
to minimize the square error on training data. On the other
hand, our goal is to minimize the ARR on training data,
and because ARR is hard to compute, we minimize Cn(R)
instead (Section 5.2.2). Therefore, we can build a regres-
sion tree for our problem where the splitting criterion at
each node is to select j ∈ [d] and θ to minimize the sum of
minimum Cn(R) on each side.

• Splitting criterion 1. Select dimension and separat-
ing value that minimizes Cn (Equation (4));

However, it is interesting to observe how minimizing MSE
resembles minimizing Cn. Imagine two different splits on the
same data. Suppose that with one split, data is perfectly
separated into two clusters; with the other split, however,
data is still well mixed. The former one would have smaller
MSE. It would also have smaller Cn, since R in each cluster
is highly fitted in a small region. Therefore, we propose to
use MSE as an alternative splitting criterion:

• Splitting criterion 2. Select dimension and separat-
ing value that minimizes the mean square error;

Criterion 2 does not compute the parameter R, so after
the tree is constructed, we need extra time to compute Rt for
each node t. But even so, Criterion 2 is orders of magnitude
faster than Criterion 1. This is because, on the one hand,
while Criterion 1 needs to reconstruct a new tree for every k,
criterion 2 only needs to build one tree the whole time. On
the other hand, time cost of criterion 2 in constructing each
tree is significantly less than criterion 1, because computing
MSE is much faster than minimizing Cn.

An important step in regression tree [5] is the minimal
cost-complexity pruning. First, a full (overfitting) tree is
grown, then the algorithm goes through 5 fold cross valida-
tion to select the optimal pruning for the fully grown tree.
We apply the same pruning strategy for Criterion 1 and 2,
where we use the 0.5 SE rule to select the optimal tree.

5.4 Testing Time and Rounding
Testing complexty. For each qi, testing time for our

first method (Section 5.1) is O(k|Ei|2 + |Ei|3 log |Ei|) Our
second method (both Section 5.2.1 and Section 5.3) takes
constant time to generate Ri, but the Ri still needs to be
converted back to Si. There are two ways to do this: first,
sort Ei by v(e), which takes O(|Ei| log |Ei|); second, apply
the k-th smallest element algorithm7, which takes O(k|Ei|).
When |Ei| is large, this step can also be time consuming.

7e.g., quickselect https://en.wikipedia.org/wiki/
Quickselect

667

However, we have to scan Ei for at least one time anyway.
This is because after Si is generated, for all e ∈ Ei we need
to find the range that contains it. So second method does
not increase time complexity with respect to |Ei|.

Rounding. To better user experience, we need to gen-
erate easy-to-read ranges, therefore we may need to round
the floating numbers in Si. Rounding precision depends on
the application scenario. For price of products, users may
be expecting more friendly designs, thus they may prefer
‘Below 150’ to ‘Below 149.7’. In other applications such as
distance, users may accept higher precision such as ‘Below
11.7 miles’. The rounding precision can also be tuned as a
parameter.

6. EXPERIMENTS
In this section, we conduct comparative experiments on

the quantile method and our two methods to answer the
question in Section 1 and Section 5, i.e., can we leverage
previous search logs to improve the results on test collection?

6.1 Dataset
Since no existing work has studied our problem setting

(Section 3), we have to construct our own dataset. We col-
lect a two-month search log from www.walmart.com between
2015/10/22 and 2015/12/22. Since the size of the entire log
is intractable on a single machine, we only keep the data
from two categories: ‘Laptop’ and ‘TV’, because they are
among the categories with the most traffic. Our data con-
tains multiple numerical facets, e.g., screen size and memory
capacity. We select the price facet for experiment, because
most product (larger than 90%) contains this facet. Al-
though price can vary from time to time, we assume it is
fixed within a short period of time, so each product in our
data can only contain one price.

For each category, we separate the earlier 70% as training
data and latter 30% as testing data (according to times-
tamps). After the separation, Laptop contains 2,279 train-
ing queries and 491 testing queries, TV contains 4,026 train-
ing queries and 856 testing queries. Data structure under
each query is the same as the input described in Section 3,
plus the ground truth of which entity is clicked (relevant).

6.2 Experimental Results
We compare ARR generated by four methods on testing

data: quantile: for each query, quantile method generates k
ranges so each range contains the same number of products;
dp: for each query, our first method (Section 5.1) generates
k ranges which optimize expected RRi (Equation 2) using
DP; powell: (Section 5.2) first use Powell’s method to find
R by optimizing Cn(R) (Equation 4) on training data, then
apply the same R to all queries on testing data; tree: find
different R’s using regression tree (Section 5.3) and apply
the tree to all queries on testing data.

Of the four methods, quantile does not leverage training
data; we use all training data to estimate p(e) for dp (which
we discuss in details in Section 6.2.5), so dp, powell and
tree use the same amount of training data.

6.2.1 Overall Comparative Study
Table 2 shows the ARR of the four methods. For every

method we report the best tuned ARR by varying its pa-
rameters. We can see that the overall performance of tree
is the best among all; powell and dp are next, with pow-
ell slightly better in Laptop and dp slightly better in TV;
quantile has the worst performance in Laptop, and similar

performance as powell in TV. On the other hand, if we ver-
tically compare Laptop vs. TV in each method, we can see
that quantile and dp are slightly better in TV than Laptop,
while powell and tree are the opposite.

We run T-test between each pair of methods in quantile,
dp and tree. We skip T-test on powell because tree gener-
alizes powell, and Table 2 shows tree always outperforms
powell. From Table 2 we can see that T-test results are
different in Laptop and TV. For Laptop, tree significantly
ourperforms quantile and dp (except for tree vs. dp when
k = 2, which may be because performance of parameterized
method is hurted when degree of freedom = 1); for TV, how-
ever, T-test results are not significant; also, dp vs. quantile
are not significant.

These analyses indicate tree and powell perform espe-
cially well on Laptop data. So what causes the difference
between TV and Laptop?

0 0.5 1
0

0.5

1

r1
F
n

Fn = r1
Laptop

TV

0 0.5 1
0

0.5

1

r1

C
n

Laptop

TV

Figure 3: Fn and Cn for Laptop and TV when k = 2

To answer this question, we need to find out how powell
and tree really works. Recall that powell optimizes Cn(R),
which is computed from Fn(r) (Equation 4). When k = 2,
that is, R = (r1), we are able to plot Cn(R) and Fn(r) as
a function of r1. We show the two plots in Figure 3. From
Figure 3 we can see: Fn of TV is very close to linear, and
(consequently) Cn of TV is very close to a quadratic func-
tion whose minimum point is r1 = 0.5 (Indeed, by plugging
Fn(r1) = r1 into Equation 4 we get Cn(r1) = 2r21−2r1 + 1).
For general k, the minimum point R found by these algo-
rithms is almost equal to quantile method. In other words,
quantile almost reaches the optimal R on training data in
terms of Cn(R).

But our final goal is to optimize ARR on testing data. Has
quantile method also reached the optimal R on testing data
in terms of ARR? To find out the true optimal R on testing
data, we perform grid search. We exhaustively enumerate
rj(j = 1, · · · , k−1) over all candidate values (i.e., Xsorted in
Algorithm 1); at each point, we evaluate the true ARR on
testing data, and return the minimum value we find. Time
complexity of this exhaustive search is O(

(
n0
k−1

)
). When

k > 4, it becomes intractable. We thus only compute the
results for k ≤ 48 and show them in Table 3 (exhaustive),
compared with ARR of quantile method. From Table 3
we can see that quantile method indeed almost achieves
optimal. So it is difficult for tree and powell to outperform
quantile.

6.2.2 Comparative Study on Non-smooth Optimiza-
tion Methods

In this section we conduct comparative study on the per-
formance of different non-smooth optimization methods. We

8Although it seems we can replace exhaustive search with
Powell’s method, which is efficient thus can be applied to
k > 4; notice Powell’s method can not guarantee finding
global optimal like exhaustive search.

668

quant. dp powell tree
tree vs. dp tree vs. quant. dp vs. quant.
p t p t p t

Laptop

k = 2 33.27 30.15 31.63 28.00 0.32 -0.98 9e-3 -1.45 0.15 -1.45
k = 3 22.07 21.22 19.95 17.62 0.03 -2.18 5e-4 -3.50 0.61 -0.50
k = 4 16.76 16.47 15.28 13.29 0.02 -2.23 3e-4 -3.63 0.83 -0.20
k = 5 13.55 13.43 11.94 10.72 0.04 -2.05 3e-4 -3.65 0.92 -0.09
k = 6 11.33 11.03 10.15 9.03 0.04 -2.02 2e-4 -3.69 0.76 -0.29

TV

k = 2 31.85 30.99 31.73 30.78 0.89 -0.12 0.49 -0.68 0.60 -0.52
k = 3 21.30 20.88 21.43 20.75 0.89 -0.12 0.60 -0.51 0.69 -0.38
k = 4 16.19 15.95 16.30 15.57 0.63 -0.47 0.43 -0.78 0.76 -0.29
k = 5 13.08 12.83 13.18 12.62 0.75 -0.31 0.47 -0.72 0.70 -0.37
k = 6 10.95 10.64 10.98 10.48 0.76 -0.30 0.37 -0.89 0.57 -0.55

Table 2: Comparative study on the ARR of four methods. The ARR metric can be interpreted in this way: when the number
of partitioned ranges is 6, users needs to read 11.33 products in average with quantile method; while she only needs to read
9.03 products in average with tree method. dp, powell and tree uses the same amount of training data for fair comparison.

k = 2 k = 3 k = 4
exhaustive 31.72 21.27 16.14
quantile 31.85 21.30 16.19

Table 3: Optimal ARR vs. quantile’s ARR for ‘TV’

2 3 4 5 6
0

10

20

30

2 3 4 5 6
0

10

20

30

LDA LDA+num

LDA+num+q LDA+num+q+LSA

Figure 4: Compare importance of different feature groups:
ARR for k = 2, · · · , 6. Above: Laptop; below: TV

study five non-smooth algorithms. Besides the aforemen-
tioned 1) powell and 2) nelder-mead, we also study: 3) cg:
conjugate gradient method in non-smooth case; 4) bfgs: sec-
ond order optimization method in non-smooth case; and 5)
slsqp: sequential least square programming. For all the five
methods we use the implementation in Python library9. For
each algorithm, we run 5 fold cross validation to tune the
error tolerance as well as to find a good starting point. We
report the performance of each algorithm in Table 4. Due to
space limit and since our goal is comparative study, results
in Table 4 is the average over k = 2, · · · , 6. To ensure the
statistical significance, we randomly restart each algorithm

9https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.minimize.html

powell bfgs nelder cg slsqp

avg
ARR

L 17.77 17.58 17.78 17.60 17.50
T 18.70 18.76 18.74 19.06 18.76

time
L 0.024 0.007 0.028 0.012 0.027
T 0.022 0.008 0.026 0.009 0.009

Table 4: Compare different non-smooth optimization meth-
ods: averaged ARR and running time over k = 2, · · · , 6.

50 times and report the average (i.e., each number in Table 4
is averaged over 50× 5 values).

From Table 4 we can see that the five algorithms have
slightly different performances: slsqp has the best perfor-
mance in Laptop and powell has the best performance in
TV. powell and nelder-mead has the largest time cost,
while bfgs is the fasted algorithm among all. This can be
explained by the fact that bfgs is a second order method,
while Powell and nelder-mead does not leverage the gradi-
ent information compared with the other three.

6.2.3 Comparative Study on Regression Tree Features
Since regression tree method (Section 5.3) uses feature xi

for each query qi, in this section, we study the influence from
different features. We use three groups of features:

Semantic representation for qi: we use both latent se-
mantic analysis (LSA) and latent Dirichlet allocation (LDA).
For each method the dimension is set to 20.

Number of explicitly mentioned facets in qi: we
use Stanford Named Entity Recognizer (NER) to label the
explicitly mentioned facets in each query. For example, for
query ‘17 in refurbished laptop’, explicitly mentioned facets
are screen size=17 and condition=refurbished, so this fea-
ture = 2. We manually label 40% of the queries for training,
the rest are computed by the recognizer. Intuition behind
this feature is when user mentions more facets, it is more
likely she is looking for a higher profiled product;

Quartile absolute values of numerical facets in Ei:
we use quartile facets, which are absolute values of the 25%,
50% and 75%th smallest facets in Ei. Intuition behind this
feature is when retrieved products are all very expensive,
user may prefer relatively less expensive products in the list;

We study four combinations of these features10: (1) LDA
(dimension=20): using only 20 features from LDA; (2) LDA

10In this experiment the splitting criterion of regression tree
is fixed to criterion 2 and non-smooth optimization method
is fixed to Powell’s method.

669

+ num (dimension=21): adding the number of explicitly
mentioned facets; (3) LDA + num + q (dimension=24):
adding the quartile absolute value features; (4) LDA + num
+ q + LSA (dimension=44): adding 20 features from LSA.
The comparative results of the four groups is shown in Fig-
ure 4. Figure 4 shows that quartile absolute value features
is most helpful in reducing ARR; number of explicitly men-
tioned facets does not help a lot; LSA features also do not
help ARR, actually hurts ARR in many cases, which can be
explained by the fact that we already have LDA features.

6.2.4 Comparative Study on Regression Tree Split-
ting Criterion

In Section 5.3, we discuss the usage of two splitting crite-
ria for building the regression tree. Recall the first criterion
is to minimize Cn(R) (Equation 4), while the second cri-
terion is to minimize MSE. Therefore, we denote the first
criterion as nonsquare and the second criterion as square.
In this section, we study the influence of splitting criterion
on the performance of regression tree. In order to make a
comprehensive comparison, we look into three trees under
each criterion: first, fully grown tree without pruning, de-
noted as full; second, the smallest tree after pruning, which
only contains the root node and two leaf nodes, denoted as
min; third, the best ARR among all the pruned trees and the
fully grown tree, denoted as best 11. In Figure 5 we show p
values in the T-test results between the two criteria. When
criterion 2 is better, we plot the p value in positive (square);
otherwise, we plot the p value in negative (nonsquare).

From Figure 5 we can see that the difference between the
two criteria are basically consistent over k = 2, · · · , 6. Al-
though none of the p values is small enough to show statisti-
cal significance, we can still observe a few phenomena: first,
best of nonsquare is slightly better than square; second,
min of nonsquare is more significantly better than square;
third, full of square is instead better. These observations
can be naturally explained: since the splitting criterion of
nonsquare is to optimize Cn which approximates ARR, it is
expected to achieve better ARR than square, for the same
reason its min should also have better performance. Mean-
while, due to the scarcity of data samples in leaf nodes, full of
nonsquare should be more overfitted than square, because
it tries to fit ARR in every possible step.

6.2.5 Comparative Study on p(e)

k = 2 k = 3 k = 4 k = 5 k = 6
L 63.44 59.65 55.98 54.78 51.75
T 61.78 60.42 59.39 58.29 57.16

Table 5: ARR using p(e) ∝ 1/rank(e)

In this section we study the performance of the DP al-
gorithm using different p(e)’s. First, p(e) used in Table 2
is a combination of the query relevance and the category
relevance models:

p(e) = λpq(e) + (1− λ)pcate(e)

pcate(e) ∝ #click(e, cate)

pq(e) ∝ #click(e, q)

where #click(e, cate) is the number of clicks on product e
under category cate; #click(e, q) is the number of clicks on

11In this experiment xi is fixed to LDA + num + q and non-
smooth optimization method is fixed to Powell’s method.

2 3 4 5 6
-100%

-50%

0%

50%

100%

n
o
n
s
q
u
a
r
e

s
q
u
a
r
e

best

min

full

2 3 4 5 6
-100%

-50%

0%

50%

100%

n
o
n
s
q
u
a
r
e

s
q
u
a
r
e

best

min

full

Figure 5: Compare different splitting criteria for regression
tree method: p-value in T-test between minimizing mean
square error (square) and minimizing Cn (nonsquare).
Above: Laptop; below: TV

e under query q. These number of clicks are counted from
the entire training data (Section 6.1). As a result, DP in
Table 2 uses the same amount of training data as tree and
powell. The best tuned parameter λ = 0.5, which we use in
Table 2.

Alternatively, p(e) can be estimated from e’s rank on
www.walmart.com, i.e., p(e) ∝ 1/rank(e). To compare the
performance of two methods for estimating p(e), we display
the ARR of the second method in Table 5. From Table 5 and
Table 2 we can see the first method significantly outperforms
the second one, which explains that leveraging training data
can help improve the performance of our first method.

7. CONCLUSION
In this paper, we introduce a new problem of numerical

facet range partition. We propose evaluation metric ARR
based on the browsing cost for user to navigate into relevant
entities. We propose two methods that leverages training
data, and compare them with the quantile method which
does not use training data. Experimental results show that
for the TV category, quantile method already achives near-
optimal performance; while for Laptop, our second method
significantly outperforms quantile method, it even signifi-
cantly outperforms our first method, which leverages the
same amount of training data. Our second method is ro-
bust and efficient, so it can be directly applied to any search
engine that supports numerical facets.

Future directions include: First, how to generate ranges
for interactive search? How to improve partition based on
previous user feedback? Second, is there an easily inter-
pretable way of partitioning categorical facets, e.g., brand?
Third, how to tune parameter k and rounding precision?

Acknowledgement
This work is supported in part by NSF under Grant Num-
bers CNS-1513939 and CNS-1408944.

670

8. REFERENCES
[1] J. Acharya, I. Diakonikolas, C. Hegde, J. Z. Li, and

L. Schmidt. Fast and near-optimal algorithms for
approximating distributions by histograms. In T. Milo
and D. Calvanese, editors, PODS, pages 249–263.
ACM, 2015.

[2] M. B. Arouxet, N. Echebest, and E. A. Pilotta.
Active-set strategy in Powell’s method for
optimization without derivatives. Computational &
Applied Mathematics, 30:171 – 196, 00 2011.

[3] L. Azzopardi. Modelling interaction with economic
models of search. In S. Geva, A. Trotman, P. Bruza,
C. L. A. Clarke, and K. JÃd’rvelin, editors, SIGIR,
pages 3–12. ACM, 2014.

[4] S. Basu Roy, H. Wang, G. Das, U. Nambiar, and
M. Mohania. Minimum-effort driven dynamic faceted
search in structured databases. In Proceedings of the
17th ACM Conference on Information and Knowledge
Management, CIKM ’08, pages 13–22, New York, NY,
USA, 2008. ACM.

[5] L. Breiman, J. Friedman, R. Olshen, and C. Stone.
Classification and Regression Trees. Pacific Grove,
1984.

[6] R. Brent. Algorithms for minimization without
derivatives. Prentice-Hall, 1973.

[7] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An
experimental comparison of click position-bias models.
In Proceedings of the 2008 International Conference
on Web Search and Data Mining, WSDM ’08, pages
87–94, New York, NY, USA, 2008. ACM.

[8] A. Dvoretzky, J. Kiefer, and J. Wolfowitz. Asymptotic
minimax character of the sample distribution function
and of the classical multinomial estimator. The Annals
of Mathematical Statistics, pages 1397–1400. ACM,
1956.

[9] F. Gao and L. Han. Implementing the nelder-mead
simplex algorithm with adaptive parameters. Comp.
Opt. and Appl., 51(1):259–277, 2012.

[10] M. A. Hearst. Uis for faceted navigation: Recent
advances and remaining open problems. 2008.

[11] M. A. Hearst. Search User Interfaces. Cambridge
University Press, 1 edition, 2009.

[12] H. V. Jagadish, N. Koudas, S. Muthukrishnan,
V. Poosala, K. C. Sevcik, and T. Suel. Optimal
histograms with quality guarantees. In A. Gupta,
O. Shmueli, and J. Widom, editors, VLDB, pages
275–286. Morgan Kaufmann, 1998.

[13] K. JÃd’rvelin. Cumulated gain-based evaluation of ir
techniques. volume 20, page 2002, 2002.

[14] C. Kang, D. Yin, R. Zhang, N. Torzec, J. He, and
Y. Chang. Learning to rank related entities in web
search. Neurocomputing, 166:309–318, 2015.

[15] A. Kashyap, V. Hristidis, and M. Petropoulos.
Facetor: cost-driven exploration of faceted query
results. In J. Huang, N. Koudas, G. J. F. Jones,
X. Wu, K. Collins-Thompson, and A. An, editors,
CIKM, pages 719–728. ACM, 2010.

[16] J. Koren, Y. Zhang, and X. Liu. Personalized
interactive faceted search. In Proceedings of the 17th
International Conference on World Wide Web, WWW
’08, pages 477–486, New York, NY, USA, 2008. ACM.

[17] B. Kules, R. Capra, M. Banta, and T. Sierra. What do
exploratory searchers look at in a faceted search
interface? In JCDL ’09: Proceedings of the 9th

ACM/IEEE-CS joint conference on Digital libraries,
pages 313–322, New York, NY, USA, 2009. ACM.

[18] S. Liberman and R. Lempel. Approximately optimal
facet selection. In Proceedings of the 27th Annual
ACM Symposium on Applied Computing, SAC ’12,
pages 702–708, New York, NY, USA, 2012. ACM.

[19] A. Moffat and J. Zobel. Rank-biased precision for
measurement of retrieval effectiveness. ACM Trans.
Inf. Syst., 27(1), 2008.

[20] M. Muralikrishna and D. J. DeWitt. Equi-depth
histograms for estimating selectivity factors for
multi-dimensional queries. In H. Boral and P.-Ã.
Larson, editors, SIGMOD Conference, pages 28–36.
ACM Press, 1988.

[21] J. A. Nelder and R. Mead. A simplex method for
function minimization. Computer Journal, 7:308–313,
1965.

[22] P. Pirolli and S. Card. Information foraging.
Psychological Review, 106. 4:634–675, 1999.

[23] S. E. Robertson. The probability ranking principle in
ir. Journal of Documentation 33, pages 294–304, 1997.

[24] S. B. Roy, H. Wang, G. Das, U. Nambiar, and M. K.
Mohania. Minimum-effort driven dynamic faceted
search in structured databases. In CIKM, pages 13–22.
ACM, 2008.

[25] K. Sparck Jones and P. Willett, editors. Readings in
Information Retrieval. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1997.

[26] R. Tibshirani. Regression shrinkage and selection via
the Lasso. Journal of the Royal Statistical Society.
Series B (Methodological), pages 267–288, 1996.

[27] H. Valizadegan, R. Jin, R. Zhang, and J. Mao.
Learning to rank by optimizing ndcg measure. In
NIPS, pages 1883–1891, 2009.

[28] R. van Zwol, B. SigurbjÃűrnsson, R. Adapala, L. G.
Pueyo, A. Katiyar, K. Kurapati, M. Muralidharan,
S. Muthu, V. Murdock, P. Ng, A. Ramani, A. Sahai,
S. T. Sathish, H. Vasudev, and U. Vuyyuru. Faceted
exploration of image search results. In WWW, pages
961–970. ACM, 2010.

[29] D. Vandic, F. Frasincar, and U. Kaymak. Facet
selection algorithms for web product search. In
Proceedings of the 22Nd ACM International
Conference on Conference on Information &
Knowledge Management, CIKM ’13, pages 2327–2332,
New York, NY, USA, 2013. ACM.

[30] E. Yilmaz, M. Verma, N. Craswell, F. Radlinski, and
P. Bailey. Relevance and effort: An analysis of
document utility. In CIKM, pages 91–100. ACM, 2014.

[31] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A
support vector method for optimizing average
precision. In SIGIR, pages 271–278. ACM, 2007.

[32] Y. Zhang and C. Zhai. Information retrieval as card
playing: A formal model for optimizing interactive
retrieval interface. In SIGIR, pages 685–694. ACM,
2015.

671

