
Top-k Query Processing with Conditional Skips

Edward Bortnikov
Yahoo Research, Israel

bortnik@yahoo-inc.com

David Carmel
Yahoo Research, Israel

dcarmel@yahoo-inc.com

Guy Golan-Gueta
∗

VMWare Research, Israel
ggolangueta@vmware.com

ABSTRACT
This work improves the efficiency of dynamic pruning algo-
rithms by introducing a new posting iterator that can skip
large parts of the matching documents during top-k query
processing. Namely, the conditional-skip iterator jumps to
a target document while skipping all matching documents
preceding the target that cannot belong to the final result
list. We experiment with two implementations of the new
iterator, and show that integrating it into representative dy-
namic pruning algorithms such as MaxScore, WAND, and
Block Max WAND (BMW) reduces the document scoring
overhead, and eventually the query latency.

Keywords
Top-k query Processing, Dynamic Pruning, Conditional-Skip
Iterator

1. INTRODUCTION
The search process applied by most modern search en-

gines is usually based on two phases [26]. In the first phase,
a large subset of documents that “match” the query is effi-
ciently scanned and scored by a simple and easy to compute
scoring function such as tf-idf or BM25. The top-k scored
documents are extracted by a top-k query processing algo-
rithm [27]. Typically, the extracted list contains a few hun-
dreds, or even thousands, of matching documents. In the
second “re-ranking” phase, this extracted list is re-ranked
using a complex scoring function that considers a rich set
of features of the documents, the query, the context of the
search process, and many other signals, in order to obtain a
small ranked list of high-quality search results.

In this work we focus on improving the efficiency of the
top-k query processing applied by the first phase of the
search process. Handling this task in efficient manner is a

∗This Research was performed while Guy Golan-Gueta was
in Yahoo.

©2017 International World Wide Web Conference Committee (IW3C2),
published under Creative Commons CC BY 4.0 License.
WWW 2017 Companion, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/33041021.3054191

.

must for search engines who are expected to serve their cus-
tomers in a sub-second response time. Efficiency is harder
to maintain as the size of the document collection becomes
larger. Furthermore, efficiency is badly affected by the query
length, yet current user queries, especially on the Web, be-
come much longer due the high usage of query suggestion
tools, query reformulation techniques, and the enlarging trend
of supporting voice-enabled search [10].

A long line of research has focused on improving the effi-
ciency of top-k query processing by applying dynamic prun-
ing techniques [3, 17, 25, 18, 14, 2, 1] which reduce the
number of evaluated documents while identifying the top
scored results. MaxScore [25, 23], WAND [2], and BMW [8],
are some representative dynamic-pruning algorithms for the
top-k processing task. In this work we introduce a novel
posting traversal method, called conditional-skip iterator,
that can jump to a target document while skipping all match-
ing documents preceding the target, conditionally that none
of them can belong to the final result list. We show how the
new iterator can improve dynamic pruning algorithms, and
in particular the algorithms mentioned above, by decreasing
the number of evaluated documents in significant way.

We demonstrate two implementations of the new itera-
tor. The first one is based on existing posting list traversal
APIs, whereas the second one is based on the treap data
structure [21] (a combination of a tree and a heap). Our
treap-based implementation is similar to the one described
by Konow et al. [12]. They described an implementation of
both OR and AND top-k processing algorithms based on a
treap-based index. In contrast, our iterator is independent
of a specific retrieval algorithm, and of a specific implemen-
tation, hence it can directly be applied by multiple search
paradigms for improved dynamic pruning.

We perform an extensive study of the contribution of the
new iterator, on two large document sets. Our experimental
results reveal significant performance improvement in terms
of reducing the number of document evaluations and even-
tual latency reduction for all algorithms we experimented
with. We examine the iterator’s impact on a large set of
queries of varying length (1 to 10 terms). The experiments
reveal, somewhat surprisingly, that the more sophisticated
treap-based iterator outperforms only for very short queries,
whereas the simpler implementation, which incurs much less
overhead, is more efficient for long queries

The rest of the paper is organized as follows: In Section 2
we describe the for top-k query processing algorithms used
in this work. We present them using a unified framework
that allows us to fairly compare them on the same evalu-

653

ation platform. Section 3 introduces the conditional-skip
iterator abstraction, and shows how it can be invoked by
dynamic pruning algorithms. In Section 4 we describe the
two alternative implementations of the iterator. Section 5
presents the experimental results. Section 6 summarizes re-
lated work, and Section 7 concludes and suggests directions
for future work.

2. BACKGROUND

2.1 Preliminaries
Top-k query processing is the task of identifying the top-

k scored documents, out of a collection of documents, for
a given query q and a given scoring function S(q, d) [14,
27]. Documents are usually scored based on an estimation of
their relevance to the query. We assume an additive scoring
function,

S(q, d) =
∑

t∈q∩d

w(t)× f(t, d), (1)

where w(t) is the weight of the query term t, representing
its relative importance in the query, and f(t, d) is the contri-
bution of term t to the score of document d. Such a scoring
model covers many popular scoring schemes in IR which are
additive in nature, e.g., tf-idf, BM25, and many others [2].

The evaluation process is typically based on inverted in-
dex of the collection, in which each term is associated with a
posting list of elements representing all documents contain-
ing the term. A posting element is usually a tuple containing
the doc-id (d), the term contribution to d’s score (f(t, d)),
and other information related to the term occurrence in the
document (e.g., a list of the term offsets within the doc-
ument, needed for term proximity evaluation). Scoring a
document d using such an index relates to identifying the
posting elements of all query terms matching d and sum-
ming their score contribution.

There are two main paradigms for scanning the documents
matching the query. The term-at-a-time (TAAT) approach
[3, 27] sequentially traverses the posting lists of the query
terms, in a term-by-term manner, while documents scores
are sequentially accumulated. The final document score is
determined only after all query terms are processed. After
completing the traversal of all lists, the k documents with
highest accumulated score are extracted. Alternatively, in
document-at-a-time (DAAT) approach [25, 2, 23], we simul-
taneously scan all posting lists in parallel, and the score of a
document is fully evaluated before moving to the next doc-
ument. For DAAT based methods all posting lists must be
sorted by the same key, typically by increasing doc-id.

In practice, both approaches suffer from huge amount of
matching documents per query that are needed to be scored
in order to identify the top-k scored ones. Dynamic pruning
techniques [27] try to reduce the amount of documents to
be scored. Dynamic pruning methods are classified to “safe”
methods which guarantee that the top-k results are identi-
cal to the results of the corresponding non-pruned method,
and are sorted by the same order. “Non-safe” methods are
typically more efficient however do not guarantee identical
results nor the same order. In this work we only consider
safe DAAT methods.

We assume that the inverted index supports the following
posting traversal methods:

• t.doc(): returns the doc-id of the posting element that
the term’s cursor currently points to.

• t.next(): advances the cursor to the next element in
the list of term t.

• t.skip(d): advances the cursor to the first element in
the list with document d′ ≥ d.

In addition we assume that each query term holds a global
upper bound on its potential contribution to any document
in the index. Such an upper bound can be determined by (of-
fline) traversal over the term’s posting list to select the max-
imum entry, i.e., t.UB = w(t) ×maxdf(t, d) [25, 2]. Com-
plementary, if documents are split into n blocks, a term can
maintain an array of tighter block upper bounds, t.UB[1..n],
where each entry in the array bounds the term’s contribu-
tion to all documents in the block [8]. Term upper bounds
are essential for all dynamic pruning methods discussed in
this work.

2.2 Algorithms
We now describe four (safe) DAAT algorithms for top-k

query processing that we analyze in this work. We assume
that all postings in the index are sorted by increasing doc-
id. To ease the comparison and analysis, we generalize the
algorithms using a unified framework, while preserving their
correctness and their main principles.

2.2.1 Top-k OR

The top-k OR algorithm traverses all matching documents
to the query, i.e., all documents containing at least one query
term, without any pruning. Algorithm 1 presents its pseudo
code.

Algorithm 1 Top-k: OR

1: input:
2: termsArray - Array of query terms
3: k - Number of results to retrieve
4: Init:
5: for t ∈ termsArray do t.init()

6: heap.init(k)
7: θ ← 0
8: Sort(termsArray)
9: Loop:

10: while (termsArray[0].doc() <∞) do
11: d← termsArray[0].doc()
12: i← 1
13: while (i < numTerms ∩ termArray[i].doc() = d) do
14: i← i+ 1
15: score← Score(d, termsArray[0..i− 1]))
16: if (score ≥ θ) then θ ← heap.insert(d, score)

17: advanceTerms(termsArray[0..i− 1])
18: Sort(termsArray)

19: Output: return heap.toSortedArray()
20:
21: function advanceTerms(termsArray[0..pTerm])
22: for (t ∈ termsArray[0..pTerm]) do
23: if (t.doc() ≤ termsArray[pTerm].doc()) then
24: t.next()

The algorithm begins with initializing the query terms,
including initiating the terms’ posting iterators and setting
the terms’ global upper bounds. It then initializes a min-
heap of size k that accumulates the top-k scored results,
and sorts the terms in increasing order of their cursor which

654

points to their first matching document. The main loop
scans over all matching documents; for each matching docu-
ment it collects all matching terms (called “pivot terms”). It
then scores the document, following Equation 1, and pushes
the document and its calculated score into the heap, using
the heap.insert() method which returns the minimum value
in the heap, θ. After heap insertion all pivot terms are ad-
vanced to their next posting element, and the terms are then
re-sorted based on their updated cursor. Note that the al-
gorithm does not take any advantage of the skip() operator,
neither the term upper bounds and θ, the minimum value
in the heap.

2.2.2 Top-k MaxScore

The MaxScore algorithm [25, 23] is a safe algorithm with
respect to OR, i.e., it returns the same top-k results in
the same order, that dynamically prunes the scanned post-
ing lists. It splits the query terms to “required” and “non-
required”. The main observation is that a document con-
taining only non-required terms cannot belong to the final
result list and thus can be skipped. MaxScore maintains a
max score value for each term which is the sum of all term
upper bounds that are equal to or smaller than the term’s
upper bound. Thus, the max score value provides an up-
per bound on the score of a document containing this term
and maybe other terms with smaller upper bound. If the
max score of a term is smaller than θ, the minimum heap
value, the score of a document containing only this term,
and other lower valued terms, will not be inserted into the
heap. Therefore, such a term is marked as “non-required”.
During the main loop, the algorithm only analyzes docu-
ments that contain at least one required term. After any
heap update, it checks all terms if they are still required.

2.2.3 Top-k WAND

WAND [2] is a safe algorithm with respect to OR1. Sim-
ilarly to MaxScore, it also analyzes the correspondence be-
tween term upper bounds and the heap minimum value θ.
At each stage the algorithm searches for the “pivot” docu-
ment defined as the first one with a potential score to be
included in the final result set. It first identifies pivotTerm,
the first term in the order that the sum of upper-bounds of
all preceding terms exceeds θ. If all terms behind pivotTerm
match its document, the pivot, it is scored and pushed into
the heap. Otherwise, one term behind is selected and ad-
vanced up to the pivot. Term selection is performed by
estimating the term with the farthest potential jump.

2.2.4 Top-k BMW

Block-Max Wand (BMW) [8], an extension of WAND,
keeps an additional array of block upper-bounds for each
term, each bounds the scores of all documents in a block of
posting elements.
BMW identifies the pivot document exactly as WAND

does. However, it additionally compares the sum of current
block upper bounds of the matching terms with the mini-
mum value in the heap, θ. The document will be evaluated
only when the sum is larger than θ, otherwise the algorithm
will search for the next pivot. Since block upper bounds are
naturally tighter than the global upper bound, much more
candidates will be skipped by BMW with respect to WAND.

1There is a very efficient unsafe version of WAND [2] which
we do not cover in this work.

This improvement comes with the cost of an extra memory
used by BMW. While WAND keeps only one upper bound
per term, BMW maintains two additional lists per term –
one for keeping the block boundaries and the other for block
upper bounds.

3. THE CONDITIONAL-SKIP ITERATOR
We now introduce our new posting iterator,

t.condSkip(d, τ), which skips the term’s posting-list
up to d, conditionally that all skipped entries have a
score lower than τ . First we describe how the iterator
can be used to improve DAAT algorithms, and then two
implementations of it, one is based on existing traversal
APIs and the second on organizing the posting list as a
treap [21, 12].

The conditional-skip iterator, t.condSkip(d, τ), skips the
cursor in t’s posting-list beyond the target doc-id d, con-
ditionally that all term scores of the skipped entries are
smaller than τ . More precisely, it returns the first entry
in the posting list with doc-id d′ ≥ t.doc(), such that ei-
ther d′ ≥ d or w(t) × f(t, d′) ≥ τ . It is easy to see that
the previously defined posting iterators can be instantiated
with the new iterator; t.skip(d) ≡ t.condSkip(d,∞) and
t.next() ≡ t.condSkip(t.doc() + 1, 0).

3.1 Usage
Consider a one-term query q =< t >. Extracting the

top-k scored documents can be done by scoring any docu-
ment in t’s posting-list and selecting the top-k scored ones.
However, using the new iterator, we can skip large parts
of the list by repeatedly calling t.condSkip(∞, θ), where θ,
the minimum value in the min-heap, is dynamically updated
during traversal. The conditional-skip iterator will only con-
sider documents with a score larger than θ, which becomes
larger as we proceed through the list. The larger θ is, the
larger the skip.

The iterator can also be used, in a similar manner, for
multi-term queries. Assume q =< t1, . . . , tn >, where t1
is the most backward term and the cursor of t2, the next
term in the order, is advanced farther. The current docu-
ment, t1.doc(), has already been handled and now we should
advance t1’s cursor. Since any document in the interval
[t1.doc() + 1, t2.doc()) can only match t1, we can safely call
t1.condSkip(t2.doc(), θ). The iterator will only stop on a
candidate preceding t2.doc() with a score larger or equal θ,
while skipping all entries with a lower score than θ which
cannot make it into the heap.

The conditional-skip iterator can be used for modifying
advanceTerms(), the method called by all algorithms for
advancing the the pivot terms. Figure 1 demonstrates the
conditional skips applied by the modified method. The pivot
is the current document after being handled; < t1, . . . , t3 >
are the pivot terms, each associated with its upper-bound,
nextDoc is the current document pointed by the cursor of
the first term in the order that does not match the pivot
(t4), and the current threshold θ = 9. For simplicity we
assume that w(t) = 1 for all terms.

Let t3 be the first term to advance. The sum of upper
bounds of all pivot terms excluding t3, t3.othersUB = 5. We
can safely advance t3 with the call t3.condSkip(nextDoc, 4)
since the score of any document d′ in the interval [pivot +
1, nextDoc), with f(t3, d

′) < 4, is guaranteed to be less
than θ = 9 even if it matches all pivot terms. If t3’s cur-

655

sor lands before nextDoc, this document is set to be the
new nextDoc. Similarly, for the next term to advance,
t2.othersUB = 3. Hence, it can be safely advanced by call-
ing t2.condSkip(nextDoc, 6). Since the scores of all docu-
ments preceding nextDoc in t2’s list are less than 6, it lands
on the current nextDoc. Finally, t1.othersUB = 0 hence it
can be advanced by calling t1.condSkip(nextDoc, 9), land-
ing on the first document beyond nextDoc.

Figure 1: Advancing pivot terms using the conditional-skip
iterator. The circles represent posting entries and the values
withing the circles represent f(t, d)). A posting entry in a
term’s list can be conditionally skipped, if its score, together
with the sum of other pivot terms’ upper-bounds, is smaller
than θ.

Algorithm 2 describes the code of the updated
advanceTerms() method. The method receives an addi-
tional input; θ, the minimum value in the heap, and the
sum of upper-bounds of the pivot terms sumUB. At first,
the function determines nextDoc, the limit on advancing
the pivot terms. If the sum of upper-bounds is less than
θ we advance all pivot terms beyond nextDoc. Otherwise,
it repeatedly selects a (non-selected yet) pivot term t, for
advancing its cursor using the conditional-skip iterator2.

We first set othersUB to be the sum of term upper-bounds
excluding t.UB. Then t can be safely advanced with the call
t.condSkip(nextDoc, θ− othersUB). After term’s advance-
ment, if t’s cursor is before nextDoc, we update it to become
the new nextDoc. Finally, we decrease sumUB with t.UB
as t cannot match any document preceding nextDoc. The
process ends after advancing all pivot terms.

For BMW, the advanceTerms() method can be mod-
ified to take further advantage of the tighter block up-
per bounds. The modified version receives two addi-
tional parameters, the minimum block boundary of all
pivot terms, minBlockBoundary, and the sum of their cur-
rent block upper bounds, sumBlockUB. If nextDoc ≤
minBlockBoundary, i.e. the interval for potential skips
of the pivot terms is covered by all current blocks, we re-
place the global upper bounds with the block upper bounds
(line 14 is replaced with othersUB ← (sumBlockUB −
t.UB[t.currentBlock]). Otherwise, we cannot use the blocks
since they do not cover the whole interval, hence, the
conditional-skip iterator with the global upper bounds must
be applied.

While the original dynamic pruning algorithms advance
each of the pivot terms independently to its next entry, the
modified advanceTerms() method promotes the term’s cur-
sor while considering the status of all other pivot terms.
This enables bigger skips, as more matching documents can

2In our implementation, the order of term selection is deter-
mined according to their idf value.

Algorithm 2 Improving advanceTerms() using the
conditional-skip iterator

1: function advanceTerms(termsArray[0..pTerm], θ, sumUB)
2: if (pTerm+ 1 < |termsArray|) then
3: nextDoc← termsArray[pTerm+ 1].doc()
4: else
5: nextDoc←∞
6: if (sumUB < θ) then
7: for all (t ∈ termsArray[0..pTerm]) do
8: t.skip(nextDoc)

9: else
10: nonSelected← {t|t ∈ termsArray[0..pTerm]}
11: repeat
12: t← pickTerm(nonSelected)
13: nonSelected← nonSelected− {t}
14: othersUB ← (sumUB − t.UB)
15: newDoc← t.condSkip(nextDoc, θ − othersUB)
16: if (newDoc < nextDoc) then
17: nextDoc← newDoc
18: sumUB ← othersUB
19: until nonSelected = ∅

be safely surpassed when the sum of upper bounds of po-
tential matching terms is lower than the current threshold.

4. ITERATOR IMPLEMENTATION
In this section we describe two implementations of

t.condSkip(d, τ) that we experimented with in this work.

nextCondSkip. This implementation repeatedly calls
t.next() until the stopping condition is met, i.e., it stops
on the first document with doc-id d′ which satisfies
(d′ ≥ d)

⋃
(w(t)× f(t, d′) ≥ τ).

Note that while using the conditional-skip iterator saves
many redundant document evaluations, this simple imple-
mentation comes with the cost of calculating the stopping
condition for many pruned documents. On the other hand,
it does not require any additional data structures, hence
there is no extra memory overhead.

treapCondSkip. This implementation closely follows the
ideas behind treap [21] – a randomized binary search tree.
In a treap, the data is organized as a search tree by key, and
as a heap by priority. For a root u, the keys of all nodes
in its left subtree are less or equal to u.key, the keys of all
nodes in its right subtree are greater than u.key, and the
priorities of all nodes in its whole subtrees are less or equal
to u.priority.

Our index follows a similar data layout, resembling [12],
with doc-ids serving as keys and scores serving as priorities.
The posting element with maximal score is selected as a
root; all elements with smaller doc-ids form the left subtree,
and all elements with larger doc-ids form the right subtree,
recursively. The construction strives to create a balanced
partition by selecting the root as median, by doc-id, among
multiple elements with the same score. In addition, each
node maintains the maximal doc-id in its rooted sub-tree,
together with its doc-id and score.

The iterator is initialized by pointing to the leftmost leaf
node in the tree. Upon calling to t.condSkip(d, τ), as long as
the stopping conditions is not met, we traverse the tree in-
order by doc-id, while pruning the whole subtrees in which
both the maximal score is smaller than τ , and the maximal

656

Figure 2: Treap-based index for a term’s posting list. Each
tree node maintains the doc-id as a key, and the score as
priority. The iterator performs a t.condSkip(d = 15, τ = 35)
starting from the leftmost node. It returns, in turn, the
nodes B, C, and E. Note that the entire subtree rooted by
F is skipped because both the maximal score of the subtree
is 30 (≤ τ), and the maximal doc-id is 13 (≤ 15). Pre-
iteration, node C’s score is the dynamic upper bound on
suffix of the list; post-iteration, it is surpassed, hence node
D score is the new upper bound.

doc-id is smaller than d. As an optimization, we maintain
in-order shortcut links that allow hopping to the next node
in constant time while backtracking uptree.

In addition to the basic iteration, the treap provides a dy-
namic upper bound (t.dUB()) on the scores of non-traversed
yet nodes, to support further optimization. Formally, we de-
fine the dynamic upper bound of a term t, on the suffix of its

posting list, to be t.dUB()
def
= w(t) × maxd′≥t.doc() f(t, d′).

Initially, dUB() points to the root node returning its score
as the dynamic upper bound. Once the iteration surpasses
the node that holds the upper bound, t.dUB() updates the
pointed node to be its right son. Figure 2 illustrates a tree
traversal, including subtree pruning and dUB update.

Note that the treap nodes hold fixed-sized values (integers
and references). Hence, the entire structure can be easily
embedded in linear (array) storage, similarly to standard
posting list implementations. It is amenable to state-of-
the-art gap encoding algorithms that optimize storage space
(e.g. [16]). Specifically for treaps, Konow et. al. [12] show
how the treap representation can be stripped of any extra
pointers, through a recursive (or alternatively, stack-based)
traversal. In this work, we forgo further discussion of space
compression as it is tangential to our contribution.

Iterator Performance.
The efficiency of the two implementations depends on the

traversal scenario. nextCondSkip is faster when the skips
are small because it only performs a few consecutive calls
to t.next(), and therefore achieves a better memory access
locality. treapCondSkip, on the contrary, is more efficient
when the skips are big, and hence better covered by binary
search. Our experiments (Section 5) demonstrate that the
latter scenario is prevalent only for very short queries (1-2
terms), hence (somewhat surprisingly) the simpler imple-
mentation is best in most cases.

5. EXPERIMENTS
This section presents experimental results that compare

the performance of the top-K retrieval algorithms (Section 2)
with their versions enhanced with the conditional-skip iter-
ator (Section 3).

5.1 Setup
We experimented with the dynamic pruning algo-

rithms over two datasets: a dump of the the En-
glish Wikipedia collection from 12/01/2015 which contains
about 4.3M documents (https: // dumps. wikimedia. org/
enwiki/), and the ClueWeb09 dataset, Category B (http:
// lemurproject. org/ clueweb09) which contains about
50M English Web documents. We constructed the search
indices using the Lucene open-source search engine, ver-
sion 4.10.4 (https: // lucene. apache. org/). The data
was tokenized using the Lucene’s English tokenizer, includ-
ing lower-casing, stop-word removal (using Lucene’s default
stop-list) and Porter stemming.

In order to simulate in-memory search, the common prac-
tice typically applied by modern search engines, we uploaded
all query term posting lists into memory before query exe-
cution. The posting-lists were stored in in-memory arrays,
sorted by increasing doc-id. For supporting treapCondSkip
we added a treap-based index on top of the posting array
(a more sophisticated implementation [12] could avoid this
overhead). The term global upper bounds were calculated
during upload, while dynamic upper bounds were dynami-
cally updated by the treap API during iteration. For BMW,
we experimented with a few block sizes and fixed the size to
1024 posting entries for all terms based on its good perfor-
mance on both datasets.

For document evaluation we applied a simple tf-idf scoring
function with document length normalization. Equation 1
was implemented by setting f(t, d) to be the frequency of

term t in document d, multiplied by 1/
√
|d|, where |d| is the

number of tokens in d, and w(t) is the term’s idf.
Our query test-set contains 1000 queries randomly sam-

pled from a large query-log of a commercial Web search en-
gine. The set was constructed by sampling 100 queries for
each query length 1 ≤ l ≤ 10. The query length was deter-
mined after tokenization, using the same tokenizer used for
indexing. We filtered out all queries with terms that do not
appear in the data in order to avoid misspelled or malformed
terms to be included. Hence, for each query length l, our
test-set contains exactly 100 queries, each includes l terms,
where all terms appear in at least one of the search indices3.

We note that the distribution of the query length in our
test-set is very different from the typical length distribution
of queries usually served by search engines. The average
query length in our test-set is 5.5 while on the Web, for
example, the average query length is 3.08 [24]. Furthermore,
a typical query length distribution is long-tailed while our
distribution is uniform. As we will show in the following,
the query length is one of the major factors affecting the
search performance. Moreover, the longer the query, the
more challenging the pruning of the search process. Hence,
our query set provides an extremely challenging test-bed for

3This query set has been intentionally selected to provide
longer queries than those in existing publicly available query
sets. It will be made available to the public.

657

Wikipedia ClueWeb
Query Mode #DocEvals Latency #DocEvals Latency

1-term
OR 187,437 26.56 1,600,569 229.4
OR-next 3,667.5 2.15 6,237.4 2.84
OR-treap 3,667.5 2.01 6,237.4 2.1

2-terms
OR 241,910.3 35.17 5,641,462.7 742.22
OR-next 34,680.4 6.78 760,975.3 85.68
OR-treap 34,680.4 6.05 760,975.3 56.75

3-terms
OR 492.150.4 72.6 10,332,329.8 992.56
OR-next 193,510.2 39.6 3,050,727.5 463.9
OR-treap 193,510.2 41.6 3,050,727.5 494.2

Table 1: Average performance (in doc-evaluations and query
latency, measured in ms) for one-, two-, and three-terms
OR queries, in original mode and with the two different im-
plementations of condSkip, over the two datasets and with
K = 1000.

the search algorithms and the dynamic pruning methods we
experimented with.

We ran each query in the test-set using OR, MaxScore,
WAND, and BMW, in their original mode as described in
Section 2, and with the new advanceTerms() method which
exploits the conditional-skip iterator (Algorithm 2) in the
two implementation modes. Each query was processed by
all algorithms with three different heap sizes (10,100,1000).
Performance was evaluated by two measures:

• #DocEvals – the average number of doc-evaluation calls
per query. This is our major measurement as the main
goal of all dynamic pruning algorithms is to cut the num-
ber of evaluated documents while extracting top scored
results. This measure has the advantage of being inde-
pendent of both the software and the hardware environ-
ment, as well as the specific implementation.

• Query latency – the average execution time of the
search process per query measured in milliseconds.This
metric is the one directly experienced by the end user. It
strongly correlates with #DocEvals as the computation
overhead is dominated by document evaluation time. The
more expensive the document evaluation function, the
higher the impact of dynamic pruning on the latency.

Finally, statistical significance tests were performed using a
two-tailed paired t-test with p ≤ 0.05.

5.2 Conditional Skips

Short Queries
At first we report the results for one-term queries separately,
as all algorithms perform exactly the same for such queries.
The first rows of Table 1 show the average results of the
OR search algorithm for 100 one-term queries over the two
datasets, with K = 1000, in original mode (first row) and
with the two different implementations of the conditional-
skip iterator.

As can be seen, the new iterator cuts the number of doc-
ument evaluations in about 98%. The full scan evaluates
all documents in the term’s posting-list (187.4K and 1.6M
evaluations on average for Wikipedia and ClueWeb, respec-
tively) while the new iterator evaluates much less (3.6K and
6.2K respectively), in order to extract the top-1000 scored
documents. This huge cutoff is reflected by statistically sig-
nificant cut of the run-time latency per query.

While #DocEval is indifferent to the specific im-
plementation of condSkip, treapCondSkip outperforms
nextCondSkip, in terms of run-time latency for one
and two terms queries. Interestingly, for longer queries,
nextCondSkip outperforms the treap-based implementa-
tion, as shown in Table 1 for three terms OR. This can be
explained by the fact that large skips are better handled by
the treap-based implementation while nextCondSkip is su-
perior for small skips. The average skip size in the ClueWeb
index is 36.65, 12.42, 1.92, 1.60, and 1.42, for 1-to-5-term
queries, respectively. We can see that the average skip size
drops significantly with the query length. The relatively
large skips for one and two term queries account for the bet-
ter performance of the treap based implementation while
the smaller skips for longer queries are better handled by
nextCondSkip.

Document Evaluations
Figure 3 presents the #DocEvals of all algorithms on ClueWeb
across different query lengths, in their original mode and
with the nextCondSkip implementation of conditional-skip4.

The first clear observation is that for all algorithms, as
could be expected, the number of evaluated docs monoton-
ically increases with query length. Second, BMW outper-
forms all other algorithms significantly (please note that the
BMW performance is two orders of magnitude better than
the other algorithms hence it is represented on a different
scale). We observe some difference in performance between
the other algorithms; WAND outperforms MaxScore while
both outperform OR. For larger heap sizes, the difference
between these two algorithms drops, and in fact almost dis-
appears for K = 1000. Additionally, the gap between BMW
to the other algorithms is decreased.

Third, and most important, for all algorithms we observe
a significant improvement in performance when the new it-
erator is used. For each query length, the new iterator
brings statistically significant gain as validated by paired
two-tailed t-test (p < 0.05). The second row in Figure 3
presents the cutoff percent of #DocEvals across the differ-
ent query lengths and for the different heap sizes. In general,
the cutoff percent decays with query length. However, even
under extreme cases of 10 terms queries and a large heap
size, the new iterator cuts the number of evaluated docs
by more than 20% for WAND, and by more than 10% for
MaxScore and OR. The cutoff percent for BMW, the most
efficient algorithm, is reduced to 8%.

Query Latency
As mentioned above, for multi-term queries, nextCondSkip,
outperforms treapCondSkip, in terms of query evaluation
time, since the average skip size significantly decreases with
the query length. As most of the queries in our test-set
are long, we compare the latency induced by all algorithms
using the nextCondSkip implementation.

Figure 4 depicts the average query run-time latency of all
algorithms on Wikipedia and on ClueWeb, with and with-
out nextCondSkip, across different query lengths and for a
large heap size (K = 1000). Obviously, the latency mono-
tonically increases with query length. The difference in per-
formance between OR, MaxScore, and WAND diminishes

4The results obtained for the Wikipedia dataset are omitted
since they reveal exactly the same pattern.

658

Figure 3: Top row presents the average #DocEvals per query on ClueWeb, across different query lengths and different heap
sizes, performed by the algorithms in their original mode (rectangle marks) and when the conditional-skip iterator is used
(triangle marks). Due to different scales in performance, BMW results are presented by the right vertical axis. Bottom row
presents the cutoff percent of #DocEvals when the conditional-skip iterator is used.

for this heap size; BMW outperforms the other algorithms.
Applying the conditional skip iterator reduces the latency of
all algorithms, while the amount of cutoff is decreased with
the query length. These results reflect the same dependency
pattern of #DocEval on the query length (Figure 3).

5.3 Dynamic Upper Bounds
The treap-based index, in addition to supporting the

conditional-skip iterator, dynamically updates the upper
bound over the tail of the term’s posting list, from its cur-
rent cursor until the end of the list (See Section 4). These
dynamic upper bounds (dUB) contribute to all pruning al-
gorithms by improving the conditional-skip iterator, as they
are tighter than the global upper bounds over the whole
posting lists.

In order to examine the contribution of dUB to the search
algorithms, independently of the condSkip iterator, we up-
dated the original mode of WAND and BMW, the two al-
gorithms that can potentially benefit from dynamic upper
bounds, to use dUB rather than global upper bounds. Fig-
ure 5 shows the effect of using dynamic upper bounds rather
than global upper bounds by the two algorithms, evaluated
over ClueWeb with heap size K = 1000.

The results reveal the benefit of WAND from using dy-
namic upper bounds rather than global upper bounds, espe-
cially for long queries, however, with significant inferior per-
formance with respect to the full application of the conditional-
skip iterator. BMW, on the other hand, does not benefit at
all from dUB while used by its original mode, probably due
to the tighter block upper bounds it already uses. Therefore,
the whole benefit in performance of BMW inferred directly
from conditional skips.

6. RELATED WORK
Dynamic pruning methods for top-k query processing have

been studied for decades [3, 18, 14, 25, 2, 1, 27]. Many prun-

ing strategies have been developed for TAAT strategies (e.g.,
[3, 18, 14, 1]). These methods are typically unsafe as not all
documents are fully evaluated due to early termination. A
comprehensive overview on retrieval techniques in general,
and dynamic pruning for TAAT strategies in particular, can
be found in [27].

One of the advantages of DAAT strategies is that pruning
can be done in a safe mode, by fully evaluating the candi-
date documents while skipping documents that cannot be
part of the final result list [25, 2, 23, 8, 4, 20]. Turtle and
Flood [25] introduced the MaxScore algorithm, which has a
TAAT version, and a DAAT version. Strohman et al. [23]
extended MaxScore to pre-compute “topdoc” list for each
term, ordered by the term frequency. The algorithm starts
with a union of the topdoc lists of the query terms to de-
termine an initial candidates set to be scored. Our iterator
can be efficiently applied for the task of identifying topdoc
lists (See Table 1). Broder et al. [2] described WAND which
can be applied in safe and in unsafe mode. These algo-
rithms have been extended in several directions. Macdonald
et al. [13] learned a better and tighter approximation of
term upper bounds, which can improve the dynamic prun-
ing algorithms. Fontoura et al. [9] suggested an efficient
in-memory version for WAND. Shan et al [22] show that the
performance of WAND and MaxScore is degraded when a
document static score is added to the ranking function, and
proposes how to efficiently handle such a case.

The Block-Max WAND (BMW) algorithm has been firstly
described in [8], and independently by Chakrabarti et al. [4]..
Dimopoulos et al. [7] experimented with WAND and MaxS-
core, with and without Block-Max Indexes, and suggested a
new recursive query processing algorithm that uses a hierar-
chical partitioning of the posting lists into blocks. Petri et
al. [19] analyzed WAND and BMW in the context of Lan-
guage Model (LM) scoring function and showed that when
the distribution of term scores is non-skewed, as in the LM

659

Figure 4: Average query run-time latency of all algorithms
(in ms) over (top) Wikipedia, and (bottom) ClueWeb, across
query length, with and without the nextCondSkip() itera-
tor.

case, then the efficiency of WAND is degraded with respect
to BMW. Rossi et al. [20] and recently Daud et al. [6] took
advantage of a two-tiered index, in which the first tier is a
small index, containing only higher impact entries of each
inverted list. The small index is used to pre-process the
query before accessing the full index, resulting in consider-
able speeding up the whole process.

The line of works that are mostly related to ours is of us-
ing effective data structures for supporting larger skips in the
posting list. Culpepper et al. [5] and Konow et al. [11] used
a Wavelet tree data structure [15] to represent a posting-list
using the Dual-Sorted inverted list. Postings are sorted by
decreasing term weights, while the wavelet tree can simulate
ordering by increasing doc-ids. In recent work, Konow et al
[12] introduced a new implementation for posting lists that is
based on the treap data structure [21]. They described how
a treap-based index can be encoded and how it can be used
for implementing OR and AND top-k algorithms. Our work
follows the usage of a treap-based index for implementing
the conditional-skip iterator. We enhanced the treap tree
by keeping the maximum doc-id in the sub-tree root-node,
and by adding shortcut links from a node to its successor
in the doc-id order, for further improvement during posting
traversal. In addition, we showed how the treap tree can
provide a dynamic upper bound on the suffix of the post-
ing list that can effectively replaces the global term upper

Figure 5: #DocEvals of WAND and BMW on ClueWeb,
across different query lengths, in three different modes: 1)
with global upper bounds; 2) with dUB; 3) with condSkip.

bound. In contrast to [12], our conditional-skip iterator is
independent of specific retrieval algorithms, hence it can di-
rectly be applied by multiple search paradigms for dynamic
pruning. Furthermore, our implementation of the baseline
OR with the skip iterator, can be seen as a generalized way
to realize the treap-based OR described in [12].

7. SUMMARY
In this work we introduced a new posting iterator,

condSkip(d, τ), that can skip large parts of the term posting
lists during top-k query processing. We demonstrated how
the iterator can be applied by DAAT-based algorithms to
significantly cut the number of evaluated documents. While
the original dynamic pruning algorithms advance each of the
matching terms independently, the new iterator enables the
modified algorithms to advance the term’s cursor while con-
sidering the status of all other matching terms. This consid-
eration enables the detection of many documents that can be
safely skipped when the sum of upper bounds of all poten-
tial matching terms is lower than the current heap thresh-
old. We described two implementations of the new iterator,
one based on existing APIs and the second on a treap-based
organization of the posting lists. While the treap-based it-
erator is superior for short queries, the first one is favored
for long queries where skips are expected to be very short.

Using two datasets and a large sample of queries with
varying length, we demonstrated the contribution of the new
iterator to some representative DAAT-based algorithms,
OR, MaxScore, WAND, and BMW. Our experimental re-
sults demonstrate that the amount of contribution of the
new iterator to dynamic pruning depends heavily on the
query length. We showed a huge cutoff in the number of
evaluated documents for short queries; the amount of cutoff
is decreased for longer ones. Nevertheless, even for 10-term
queries, and for a large heap size, we could still observe sig-
nificant improvement in performance of all algorithms.

The new posting iterator opens many questions that were
not covered in this work. One of the open issues when in-
creasing K, the number of documents to extract, is how to
initially set a decent cutoff threshold θ for heap insertion.
Another open issue is the behavior of the new iterator with
more complicated scoring functions, e.g. when the term

660

scores are non-skewed [19]. We would also like to explore
whether the new iterator can be used in unsafe processing
mode, and by TAAT-based algorithms. We leave all these
interesting and open questions for future work.

8. REFERENCES
[1] V. N. Anh and A. Moffat. Pruned query evaluation

using pre-computed impacts. In Proceedings of SIGIR,
pages 372–379. ACM, 2006.

[2] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and
J. Zien. Efficient query evaluation using a two-level
retrieval process. In Proceedings of CIKM, pages
426–434. ACM, 2003.

[3] C. Buckley and A. F. Lewit. Optimization of inverted
vector searches. In Proceedings of SIGIR, pages
97–110. ACM, 1985.

[4] K. Chakrabarti, S. Chaudhuri, and V. Ganti.
Interval-based pruning for top-k processing over
compressed lists. In Proceedings of ICDE, pages
709–720, 2011.

[5] J. S. Culpepper, M. Petri, and F. Scholer. Efficient
in-memory top-k document retrieval. In Proceedings of
SIGIR, pages 225–234. ACM, 2012.

[6] C. M. Daoud, E. S. de Moura, A. Carvalho, A. S.
da Silva, D. Fernandes, and C. Rossi. Fast top-k
preserving query processing using two-tier indexes.
Information Processing & Management, 2016.

[7] C. Dimopoulos, S. Nepomnyachiy, and T. Suel.
Optimizing top-k document retrieval strategies for
block-max indexes. In Proceedings of WSDM, pages
113–122. ACM, 2013.

[8] S. Ding and T. Suel. Faster top-k document retrieval
using block-max indexes. In Proceedings of SIGIR,
pages 993–1002. ACM, 2011.

[9] M. Fontoura, V. Josifovski, J. Liu, S. Venkatesan,
X. Zhu, and J. Zien. Evaluation strategies for top-k
queries over memory-resident inverted indexes.
Proceedings of the VLDB Endowment,
4(12):1213–1224, 2011.

[10] I. Guy. Searching by talking: Analysis of voice queries
on mobile web search. In Proceedings of SIGIR, pages
35–44. ACM, 2016.

[11] R. Konow and G. Navarro. Dual-sorted inverted lists
in practice. In Proceedings of SPIRE, pages 295–306.
Springer-Verlag, 2012.

[12] R. Konow, G. Navarro, C. L. Clarke, and
A. López-Ort́ız. Faster and smaller inverted indices

with treaps. In Proceedings of SIGIR, pages 193–202.
ACM, 2013.

[13] C. Macdonald, I. Ounis, and N. Tonellotto.
Upper-bound approximations for dynamic pruning.
ACM Trans. Inf. Syst., 29(4):17:1–17:28, Dec. 2011.

[14] A. Moffat and J. Zobel. Self-indexing inverted files for
fast text retrieval. ACM Trans. Inf. Syst.,
14(4):349–379, Oct. 1996.

[15] G. Navarro. Wavelet trees for all. Journal of Discrete
Algorithms, 25:2–20, 2014.

[16] G. Ottaviano and R. Venturini. Partitioned elias-fano
indexes. In Proceedings of SIGIR, pages 273–282.
ACM, 2014.

[17] M. Persin. Document filtering for fast ranking. In
Proceedings SIGIR, pages 339–348. ACM, 1994.

[18] M. Persin, J. Zobel, and R. Sacks-Davis. Filtered
document retrieval with frequency-sorted indexes.
Journal of the American Society for Information
Science, 47(10):749–764, 1996.

[19] M. Petri, J. S. Culpepper, and A. Moffat. Exploring
the magic of WAND. In Proceedings of ADCS, pages
58–65. ACM, 2013.

[20] C. Rossi, E. S. de Moura, A. L. Carvalho, and A. S.
da Silva. Fast document-at-a-time query processing
using two-tier indexes. In Proceedings of SIGIR, pages
183–192. ACM, 2013.

[21] R. Seidel and C. R. Aragon. Randomized search trees.
Algorithmica, 16(4-5):464–497, 1996.

[22] D. Shan, S. Ding, J. He, H. Yan, and X. Li. Optimized
top-k processing with global page scores on block-max
indexes. In Proceedings of WSDM, pages 423–432.
ACM, 2012.

[23] T. Strohman, H. Turtle, and W. B. Croft.
Optimization strategies for complex queries. In
Proceedings of SIGIR, pages 219–225. ACM, 2005.

[24] J. Teevan, D. Ramage, and M. R. Morris.
#twittersearch: A comparison of microblog search and
web search. In Proceedings of WSDM, pages 35–44.
ACM, 2011.

[25] H. Turtle and J. Flood. Query evaluation: Strategies
and optimizations. Inf. Process. Manage.,
31(6):831–850, Nov. 1995.

[26] L. Wang, J. Lin, and D. Metzler. A cascade ranking
model for efficient ranked retrieval. In Proceedings of
SIGIR, pages 105–114. ACM, 2011.

[27] J. Zobel and A. Moffat. Inverted files for text search
engines. ACM Comput. Surv., 38(2), July 2006.

661

