
Caching with Dual Costs

Anirban Dasgupta

IIT Gandhinagar

anirbandg@iitgn.ac.in

Ravi Kumar

Google

ravi.k53@gmail.com

Tamás Sarlós

Google

stamas@gmail.com

ABSTRACT
Caching mechanisms in distributed and social settings face the is-
sue that the items can frequently change, requiring the cached ver-
sions to be updated to maintain coherence. There is thus a trade-off
between incurring cache misses on read requests and cache hits on
update requests. Motivated by this we consider the following dual
cost variant of the classical caching problem: each request for an
item can be either a read or a write. If the request is read and the
item is not in the cache, then a read-miss cost is incurred and if the
request is write and the item is in the cache, then a write-hit cost
is incurred. The goal is to design a caching algorithm that mini-
mizes the sum of read-miss and write-hit costs. We study online
and offline algorithms for this problem.

For the online version of the problem, we obtain an efficient al-
gorithm whose cost is provably close to near-optimal cost. This al-
gorithm builds on online algorithms for classical caching and met-
rical task systems, using them as black boxes. For the offline ver-
sion, we obtain an optimal deterministic algorithm that is based on
a minimum cost flow. Experiments on real and synthetic data show
that our online algorithm incurs much less cost compared to natural
baselines, while utilizing cache even better; furthermore, they also
show that the online algorithm is close to the offline optimum.

1. INTRODUCTION
The concept of caching is classical. A cache is a fixed and lim-

ited memory that can store items for rapid future accesses. In the
caching setting, requests for reading items arrive in an online man-
ner, and once the item is fetched (from a slow source, say, the disk
or the network) there is an option of storing this item in cache to
rapidly serve possible future requests. Caching has ever remained
a powerful paradigm in many areas of computing, ranging from
chips and mobile devices to Web servers and search engine results.
The success of caching largely depends on the temporal locality
properties of the requests. The main technical challenge in caching
involves deciding which items to keep in cache at any point in time
and this problem has been studied for more than half a century [7].
The notion of competitive analysis [9], despite its shortcomings,

c�2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3041021.3054187

.

has been the theoretical foundation upon which many caching al-
gorithms have been studied.

The traditional view of caching has largely focused on a single
computing device and a workload that is read-heavy. With the ad-
vent of large-scale distributed systems, and with factors such as the
main memory becoming cheaper, the network becoming faster, and
applications starting to run on multiple servers, the notion of dis-
tributed caching has become more attractive. In this setting, the
cache spans across a network of machines. Distributed caching is
highly scalable and popular, however, it works well if the workload
mostly consists of reads. This holds in applications such as Web
servers and Web results where the content does not change much
and most accesses to the content are read accesses. To handle the
occasional change, distributed cache systems have developed elab-
orate policies for evictions and expiration that decide how long an
item can stay in a cache before it is declared stale.

In this work we consider the increasingly common scenario of
workload in which there are a lots of writes interspersed with reads,
i.e., workloads that are not predominantly reads. To appreciate such
settings, consider the following three examples:

(i) In a large distributed database such as PNUTS [12], appli-
cations can query and update different records at different rates,
which are often skewed, and the system uses a notification mecha-
nism to signal the updates. Given the skew in access pattern, a care-
ful cache management becomes critical to systems performance.
To utilize the cache most efficiently, the system must take into ac-
count the relative frequencies of reads and writes. (Note that this
problem is also relevant to many pub-sub systems.)

(ii) Consider a social network such as Facebook or Twitter and
the status updates by individual users in the network. Depending on
how frequently a user accesses her network and the status update
rate of her friend, it makes sense to cache the friend’s status (or
not). This becomes particularly important if the friend happens to
be a popular individual (i.e., a node with a large indegree).

(iii) In a collaborative editing application such as Google Docs
or DropBox, consider a document that is shared among thousands
of users (e.g., a policy document in a company). Typically, these
documents are read by many users but updated by only a few users.
If the updates are very frequent, it may be better off not caching the
document on the client device.

In all these cases, it is not clear if frequently updated items are
worth caching, since invalidating them, especially if there are sev-
eral copies, increases the execution time. Moreover, caching such
items has the secondary effect of poor utilization of the cache since
they take up space that could have been used more judiciously. This
has performance implications especially for devices with limited
cache such as sensors or routers or mobile devices. Hence there
is a need to trade-off the benefits of caching an item arising from

643

reads against the frequency of its updates. The question then be-
comes how to quantify this precisely and in a formal manner.

Our contributions. In this paper we formulate the dual cost caching
problem, which we also call the read-write caching problem. In
this formulation, each request for an item can be either a read or a
write, along with a read-miss cost or a write-hit cost. If the request
is a read and the item is not in the cache, then a read-miss cost is
incurred and if the request is write and the item is in the cache, then
a write-hit cost is incurred. As in the classical read-only version of
caching, the goal is to design online and offline caching algorithm
that minimizes the sum of read-miss and write-hit costs.

For the online version of the read-write caching problem, we
obtain a simple algorithm with provable performance guarantees.
This algorithm carefully combines two black boxes, namely, a generic
algorithm for the classical (i.e., read-only) caching problem and
a generic algorithm for a two-state metrical task system (MTS).
Roughly speaking, it maintains a cache by utilizing the decisions
of the classical caching, combined with the decisions of the MTS
algorithm, which is run for each item in the cache. We show that the
competitive ratio of our online algorithm is the sum of that of these
two black boxes. While the form of this bound appears deceptively
simple, establishing it formally involves subtle arguments, owing to
the online nature of the problem. A key practical point is that since
our algorithm uses prevailing algorithms as black boxes, using our
algorithm in an existing caching system is easy.

Next, for the offline version of the read-write caching problem,
we obtain an optimal deterministic algorithm. Our algorithm can
be thought of as a true generalization of Belady’s famous “evict
furthest read item” algorithm [7] that works in the read-only case.
We illustrate that naive generalizations of Belady’s policy can be
sub-optimal for the read-write case. We then show that by using
appropriate transformations and graph gadgets, one can obtain a
minimum-cost flow instance for a workload, solving which would
optimally solve the offline version of the read-write caching prob-
lem. Developing the offline optimal algorithm becomes important
to gauge how well the online algorithm does on workloads.

Finally, we conduct several experiments on both real and syn-
thetic workloads to demonstrate the effectiveness of our algorithms.
Our experiments show the following. First, the online algorithm for
read-write caching incurs far less cost than natural baselines such
as read-only caching algorithms made to work with modified costs
to take both reads and writes into account; they also utilize the
cache far more effectively. Second, the performance of the online
algorithm is close to that of the offline algorithm, which is optimal.

2. RELATED WORK
Caching is a well-studied problem, from both theoretical and ap-

plied points of view. On the theoretical front, caching has been
studied mostly using the competitive analysis framework; see the
book by Borodin and El-Yaniv [9] for details on competitive analy-
sis. On the practical front, there have been several developments in
the systems community, on the conceptual and the implementation
aspects. In particular, for caching in the context of the World Wide
Web, see the book by Rabinovich and Spatscheck [29].

There have been several practical variants of the basic caching
paradigm that take oddities of specific settings into account. This
includes distributed caching in which the cache spans across mul-
tiple machines, which makes updates challenging [28]. As stated
earlier, updates are handled in distributed caches using expirations.
Snoopy cache [30], on the other hand, uses bus sniffing to main-
tain cache coherence in the presence of updates; this works only
if there is a shared bus. None of these variants adopts a princi-

pled approach to handling writes. They rely on mostly time-based
heuristics to decide when to evict an item from the cache. Similar
practical strategies for maintaining cache coherency in a distributed
setting are in wide use through file systems, e.g., Andrew’s file sys-
tem (AFS), Sprite and Sun’s Networked File System (NFS) [31].
Our work could be seen as a first attempt to cast this problem in the
formal setting of competitive analysis.

Caching has been extensively studied in the context of the World
Wide Web, in terms of content as well as search results. A typical
use of caching in search engines is to store the search results for
certain queries so that recomputing them, which can be expensive,
can be avoided. Lempel and Moran [21] studied the problem of
predictive caching and query result prefetching; see also the survey
by Lempel [22]. Frances et al. [15] proposed caching strategies for
search sites that are geographically distributed. Blanco et al. [8]
studied the caching problem over incremental indices; see also the
work of Zhang et al. [35] and Long and Suel [23] for caching in
the context of inverted lists. Pandey et al. [27] explored nearest-
neighbor caching for content-match applications. While all these
works stress the importance of caching in multiple web applica-
tions, they do not consider the read-write version of the problem.
Note that the ‘write’ issues arise when results go stale or are up-
dated. Several protocols have been proposed to handle this [2, 4,
11]. However, none of these approaches the problem from a com-
petitive analysis viewpoint, and instead approach cache invalida-
tion/expiration mostly as a timestamp-driven mechanism. Practical
caching architectures for social networks are indeed more complex
than the setting considered here [17]. They also often use other
approaches, e.g., utilizing weaker notions of consistency [24], to
handle the coherence issue. We leave it as interesting future work
to see whether such practical strategies can be analyzed under the
same framework as ours.

Two-state metrical task systems have been used in many applica-
tions including automated physical design of databases [10, 25, 26],
view materialization [16], index selection and tuning [32, 33], and
deciding which files to store on flash (solid state disk) [20]. None
of these works takes space constraints into account, i.e., the caching
aspect. For instance, they assume flash to be infinite. However, the
work of [10] is an exception since it provides some heuristics for
handling limited space. Our work, on the other hand, is very much
driven by the finiteness of the cache and we also seek non-heuristic
solutions with provable performance guarantees.

3. PRELIMINARIES
In this section we set up the read-write caching problem. We

also provide necessary background on metrical task systems, whose
formulation will be useful in our setting.

Let k be the size of the cache and let U be the universe. We
assume each item i 2 U occupies one cache location, i.e., each
item is of unit size. A sequence of requests for items arrive online
and each request to an item i 2 U is either a read or a write. If
the request is hi, readi and the item i is not present in the cache,
then we incur a read-miss cost. If the request is hi, writei and
the item i is present in the cache, then we incur a write-hit cost.
The goal is to design an online caching algorithm to minimize the
sum of read-miss costs and write-hits costs; we call this the rw-
caching problem. The performance of this online algorithm will be
evaluated against the best off-line algorithm that is cognizant of the
request sequence.

In the most general version of the rw-caching problem, the read-
miss costs and write-hits costs can be arbitrary. In particular, in
the (c

read

, c
write

)-rw-caching problem, for an item i, the read-miss
cost is c

read

(i) � 0 and the write-hit cost is c
write

(i) � 0. We will

644

first consider the (1,1)-rw-caching problem, where all the costs are
unit; we call this the unit-cost rw-caching problem. We will also
consider the (1, c

write

)-rw-caching problem. Note that in the ab-
sence of write requests, the (1,1)-rw-caching problem corresponds
to the classical unweighted caching problem and the (c

read

, c
write

)-
rw-caching problem corresponds to the classical weighted caching
problem.

A request sequence � = �
1

,�
2

, . . . , consists of read and write
requests for items. Let C represent the set of items currently held in
the cache, |C|  k. A caching algorithm A maintains the contents
of C, with the understanding that if �j = hi, readi and i /2 C, then
it incurs a cost of c

read

(i) and if �j = hi, writei and i 2 C, then
it incurs a cost of c

write

(i). Let costA(�) denote the cost of the al-
gorithm A on request sequence �, i.e., the sum of its read costs and
write costs for each request in �. A request sequence for an item
i 2 U , denoted �|i is the restriction of the entire request sequence
� only to item i. Let OPT denote the optimal offline algorithm that
knows �.

DEFINITION 1 (COMPETITIVE RATIO). A (possibly random-
ized) online algorithm A is said to be (c, b)-competitive against an
oblivious adversary if for all request sequences � it holds that

E[costA(�)]  c · costOPT(�) + b,

where c > 0, b � 0.

We call A to be c-competitive if b = 0.

3.1 Caching algorithms
We assume a generic online algorithm A for the (classical) caching

problem (for example, the algorithm can be LRU for the unit cost
case). This algorithm is stateful and supports the following primi-
tive:

• A.process(C, i): considers a (read) request to item i given
that the current cache is C. If |C| = k and i /2 C, then it
returns evict i0, with the semantics that i0 2 C is the item
to be evicted to make room for the item i.

3.2 Metrical task system (MTS)
In the d-state metrical task system (MTS) problem, we have d

states (in our setting, the state space will be {in, out}) and the cost
of switching from state i to state j is given by the d⇥ d switching
cost matrix D 2 Rd⇥d. It is assumed that Dii = 0 and that the
Dij values satisfy the triangle inequality, hence the name metrical.
At time t the algorithm is presented with a service cost vector ct 2
Rd representing the costs for each servicing the request from each
state. In response, the algorithm chooses state j and pays Dij to
switch its state to j from the current state i, and then also pays ct(j)
to service the request. The sequence of service requests is unknown
in advance. The goal of the algorithm is to minimize the total cost
by deciding a sequence of states to follow. This is a well-studied
problem in the online setting [9, 14, 5] and the competitive ratio
notion is exactly the same as in the caching case.

As we will later see d = 2 states are sufficient in our case. A de-
terministic 3-competitive algorithm (see, for example, [3]) and ran-
domized 2-competitive algorithms are known for the problem [6].

We assume a generic online algorithm B for the two-state metri-
cal task system problem (e.g., an algorithm for the ski-rental prob-
lem [18]). For notational clarity we will refer to the first state as
in and the second as out. This algorithm is stateful and admits the
following primitives:

• B.initialize(D): this initializes the algorithm with the switch-
ing cost matrix D 2 R2⇥2; without loss of generality, we can
assume that the initial state of the algorithm is in.

• B.serve(c
in

, c
out

): this serves the request whose costs are
c
in

and c
out

in states in and out respectively, and returns the
algorithm’s new state.

4. AN ONLINE ALGORITHM
In this section we present an online algorithm for the read-write

caching problem. We obtain an algorithm by combining appropri-
ate steps of a (generic) classical caching algorithm and a (generic)
algorithm for a metrical task system (MTS). The high-level intu-
ition for our combined algorithm presented below is that we can
recognize and “weed out” items with high write cost residing in
the cache of a classical caching algorithm by using an MTS al-
gorithm. Conceptually we run the classical caching algorithm first,
and censor its cache with the MTS algorithm in the second step. We
first present an algorithm in which the MTS maintains the state for
every item; the analysis for this case is considerably simpler. Next
we present the more efficient version in which the MTS maintains
the state only for the currently cached items.

Algorithm 1 contains the formal description. It uses a “ghost”
cache CA, which contains the state of the classical caching algo-
rithm A. The contents of the true cache, C, is determined both by
A and by the decisions of the MTS algorithm. We create an MTS
instance for each item in the universe, where the switching cost
matrix for an item is given by its respective read and write costs
(lines 1–3).

Algorithm 1 Algorithm D(�) for rw-caching

1: for i = 1, 2, . . . do

2: Bi.initialize

✓
0 c

write

(i)
c

read

(i) 0

◆

3: end for
4: C = ;
5: CA = ;
6: for j = 1, 2, . . . do
7: if �j = hi, readi then
8: if A.process(CA, i) = evict i0 then
9: C = C \ {i0}

10: CA = CA \ {i0}
11: end if
12: if i /2 C then
13: C = C [{i}
14: CA = CA [{i}
15: end if
16: if Bi.serve(0, c

read

(i)) = out then
17: {If we ever get here such that Bi’s previous state was

in, then Bi could be improved by staying in state in.}
18: C = C \ {i}
19: end if
20: else if �j = hi, writei and i 2 CA then
21: s = Bi.serve(c

write

(i), 0)
22: if s = out and i 2 C then
23: C = C \ {i}
24: else if s = in and i /2 C then
25: {If we ever get here it means that Bi could be improved

by staying in state out.}
26: C = C [{i}
27: end if
28: end if
29: end for

As requests arrive online (line 6), the read-write caching algo-
rithm D has two cases depending on whether it is a read or a write

645

request. If the request is a read request for item i, then the algo-
rithm D consults the classical algorithm A, using the ghost cache
CA. If A’s decision is to evict another item i0, then item i0 is re-
moved from both the ghost cache and the true cache (lines 8–11)
and the item i is added to both the caches (lines 12–15). Next, the
MTS instance corresponding to item i is invoked with cost vector
(0, c

read

(i)) to see if it is worth storing i in the true cache. If the
response of the MTS algorithm is out, meaning that MTS is not in
favor of storing i in the cache, then i evicted from the true cache C
(lines 16–19); note that i is still present in the ghost cache CA.

On the other hand, if the request is a write request for item i
and i is present in the ghost cache, then the algorithm D immedi-
ately invokes the MTS instance corresponding to i with cost vector
(c

write

(i), 0) (line 21). If the response is out, meaning MTS thinks
it is not worth keeping i in the cache, then i is evicted from the true
cache (line 23). Note that as before, i could still be present in the
ghost cache. On the other hand, if the response from MTS is in,
meaning that MTS feels it is worth keeping i in the cache, then i is
placed in cache C (lines 24–27).

We next show that Algorithm 1 has a performance guarantee that
can be bounded by the guarantees of the classical caching algorithm
and MTS algorithm it uses to makes the decisions. As we will see,
the online nature of the problem makes it trickier to argue we can
get the “best” of both the classical caching and the MTS algorithms.

THEOREM 2. If A is an ↵-competitive caching algorithm and
B is a �-competitive MTS algorithm, then Algorithm 1 is an (↵ +

�)-competitive algorithm for the rw-caching problem.

PROOF. Observe that Algorithm 1 maintains the invariant that
i 2 C if and only if the state of Bi is in and i 2 CA. Thus it
produces a feasible solution for the rw-caching problem as at most
k items are contained in its cache C at any moment. This follows
from the facts C ✓ CA and |CA|  k.

Let �
read

denote the subsequence of read requests in �. Similarly
let �|i contain the subsequence of read and write requests for item
i in �. Additionally let �A

|i contain the sequence of all reads from
�|i and those writes from �|i when i 2 CA. Let cost⇤RO(�read

)

denote the cost of the optimal offline (read only) caching algorithm
when run on the request sequence �

read

and cost

⇤
MTS(�|i) be the

cost of the optimal offline MTS algorithm when run on �|i, the re-
quests for item i. Also let cost⇤RW(�) denote the cost of the optimal
offline rw-caching algorithm when run on the request sequence �.
It clearly holds that

cost

⇤
RO(�read

)  cost

⇤
RW(�). (1)

Now consider any MTS algorithm B0 processing the sequence
�|i. If the jth request is read and B0’s state is out prior to serving
the request, then B0 pays exactly c

read

(i) in transition and service
costs for serving this read independent of the state it chooses to
transition to. Similarly, if the jth request is write and B0’s state
is in, then B0 pays precisely c

write

(i) in transition and service cost
for serving this write independent of its next state. If B0 is an opti-
mal MTS algorithm, then without loss of generality we can assume
that if B0 receives a read or write request in states in and out re-
spectively then it stays in the same state and pays 0 in total to serve
the request. Thus an optimal MTS algorithm processing �|i faces
the same cost structure as an rw-caching algorithm with respect to
item i. Therefore we also have that

X

i

cost

⇤
MTS(�|i)  cost

⇤
RW(�).

From cost

⇤
MTS(�

A
|i)  cost

⇤
MTS(�|i) it follows that

X

i

cost

⇤
MTS(�

A
|i)  cost

⇤
RW(�). (2)

Finally we show that

costD(�)  costA(�
read

) +

X

i

costB(�
A
|i). (3)

Consider the case �j = hi, readi. If i 2 C, then this read costs
0 for D. If i /2 CA (and hence i /2 C), then this read is a cache
miss for A, and both A and D pay c

read

(i). If i 2 CA and i /2 C,
then it must have been the MTS algorithm Bi that removed item i
from C. Hence Bi is in state out when �j arrives and thus Bi pays
c

read

(i) in transition and serving cost independent of its next state.
Also note that �j 2 �A

|i .
Consider the case �j = hi, writei. If i /2 C, then this write

has cost 0 for D. If i 2 C, then Bi is in state in when �j arrives and
thus Bi pays c

write

(i) in transition and serving cost independent of
its next state. Note that i 2 CA holds as well, and thus �j belongs
to �A

|i .
The claim follows from combining inequalities (1), (2), and (3)

with the ↵ and �-competitiveness of Algorithms A and B.

Note that Theorem 2 holds both for unit and general read costs,
with a weighted caching algorithm A in the latter case. Also note
that since the competitive ratio bound is additive, if A and B are
both optimal, then D is within factor two of the optimal.

Arbitrary item sizes. While we have assumed unit-sized items, in
the generalized caching problem [1] items also have size si � 1,
and the caching constraint is

P
i2C si  k. We consider a simple

modification to Algorithm 1, namely, by inserting the following
snippet between line 8 and line 9:

if 9i00 2 CA \ C : c

read

(i0) � c

read

(i00) and si0  si00 then
i0 = i00

end if
Theorem 2 continues to hold unchanged in this case by a minor

modification of the analysis, charging for the page outs instead of
page ins, establishes a bound similar to Theorem 2 for this varia-
tion. We omit the details in this version.

4.1 A stateless version
Note that the MTS in Algorithm 1 is stateful, i.e., it maintains the

state for every item including the ones not currently in cache. In a
stateless variant, the MTS in Algorithm 1 would maintain the state
for only the items in the cache. If an item is evicted, the MTS for it
is deleted and is recreated (with the default in state) the next time
it is cached. This is clearly more space-efficient than the stateful
version.

For the stateless version, it is not difficult to see that it is unlikely
that we can obtain the same result as Theorem 2. We outline an
informal example. Consider a sequence � where the subsequence
�|i for an item i has few read requests separated by large number
of write requests. The optimal MTS stays in state out and pays
c

read

+ c

write

for handling the write costs at most once. An algo-
rithm that is not maintaining state for an item has to revert back to
some default state of the MTS every time the item i is read back
into the cache. If we are using the work-function MTS ([3]; see
Section 6.1) and the reset-state is, say, (0, 0), then every time there
is a new read request, the stateless algorithm is paying an additional
c

read

+c

write

cost for handling the write requests following the read.
This happens for each read. Hence, in the case c

write

> c

read

, it is
clear the competitive ratio can be unbounded.

646

The above example suggests that to obtain a bounded compet-
itive ratio, it may be useful to assume c

write

 c

read

. We make
this assumption and show an algorithm that uses a particular MTS,
namely the ski-rental algorithm [9]. This algorithm maintains the
MTS state only for items in the cache CA and can be obtained by
making the following two simple changes to Algorithm 1: (i) after
line 10, we delete Bi0 , and (ii) we create a instance of Bi imme-
diately after line 12. We show that this stateless algorithm is still
competitive.

THEOREM 3. If c
write

 c

read

and A is an ↵-competitive al-
gorithm, and B is the ski-rental algorithm, Algorithm 1 after the
above modification is (↵+ 5)-competitive.

PROOF. Let us denote the stateless algorithm as L. When we are
using the ski-rental algorithm as B, then effectively, an item present
in the cache C (recall C ✓ CA) is removed by B after receiving
dc

read

/c
write

e write requests to it (but its slot is maintained in CA).
Without loss of generality, we assume that items are read only on
actual read requests, and all algorithms start with an empty cache.

Let �
read

denote the subsequence of the input sequence � con-
sisting of only the read requests. As before, we consider the re-
quest sequence �|i for a particular item i. If it was all write re-
quests, then both optimal and L pay zero. Else, we partition �|i

into �|i = �1

|i . . .�
k
|i, where for each j 6= k, �j

|i, consists of a
number (possibly zero) of writes and a single read at the end, and
�k
|i consists of the last (possibly zero) writes succeeding any read

request. There is a natural injective mapping ⌧(i, j) from the read
requests in �j

|i to the requests in �
read

— denote the request in �
read

corresponding to �j
|i as (�

read

)⌧(i,j). Let costA((�
read

)j) denote
the cost that A paid on the specific request (�

read

)j while process-
ing �

read

.
Recall from the proof of Theorem 2 that for an optimal MTS, for

item i, we have
X

i

cost

⇤
MTS(�|i)  cost

⇤
RW(�). (4)

Also, cost⇤MTS(�|i) =
Pk

j=1

cost

⇤
MTS(�

j
|i).

Note without loss of generality that the optimal MTS does state
transitions from in to out for an item only immediately after a read
request, and only in the following two cases: (i) this read is the last
read request for the item, or (ii) if `, the number of write requests to
this item preceding the next read for it, satisfies ` > c

read

/c
write

.
Now, for any j < k, if A did not have i in CA at the beginning

of �j
|i, then the read request at the end of �j

|i causes a cache miss.
The corresponding request (�

read

)⌧(i,j) must cause a cache miss
for A as well. Hence,

costL(�
j
|i)  costA((�

read

)⌧(i,j)). (5)

Else, the algorithm had item i in CA at the beginning of �j
|i and

the MTS Bi (either newly created at end of �j�1

|i or existing) is
in state in at the beginning of �j

|i. This Bi instance sees only a
prefix of writes in the sequence �j

|i. This is because item i, once
removed from C, is never read back until there is a hi, readi re-
quest. Suppose �j

|i contains ` writes. Note that cost⇤MTS(�
j
|i) �

min(` · c
write

, c
read

).
If the item is not evicted from CA during �j

|i, we charge the write
costs and the final read cost to the MTS. If ` > d c

read

c

write

e, then

costL(�
j
|i) = costB(�

j
|i) 

⇠
c

read

c

write

⇡
c

write

+ c

read

 3c

read

,

while cost

⇤
MTS(�

j
|i) � c

read

. If `  d c

read

c

write

e, then

costL(�
j
|i) = ` · c

write

 cost

⇤
MTS(�

j
|i).

Hence in both cases,

costL(�
j
|i)  3cost

⇤
MTS(�

j
|i). (6)

Next consider the case that the item is actually evicted from
CA before the last read of �j

|i. Suppose the item gets evicted
from CA after `0th write, where `0  `, then the final read re-
quest of �j

|i is handled by A reading item i into CA. Hence A,
on input �

read

, suffers a cache miss for the request (�
read

)⌧(i,j)

and pays costA((�
read

)⌧(i,j)). We charge the read due to the fi-
nal request of �j

|i to costA((�
read

)⌧(i,j)) and the write costs to the
MTS. Thus costL(�j

|i) = costB(�
j
|i) + costA((�

read

)⌧(i,j)). Ar-
guing similarly as above, when `0 > d c

read

c

write

e, cost⇤MTS(�
j
|i) � c

read

while costB(�
j
|i) = d c

read

c

write

ec
write

 2c

read

. When `0  d c

read

c

write

e,
costB(�

j
|i) = cost

⇤
MTS(�

j
|i) = `0 · c

write

. Hence,

costL(�
j
|i)  2cost

⇤
MTS(�

j
|i) + costA((�

read

)⌧(i,j)). (7)

Finally, for �k
|i, Bi moves to state out after at most d c

read

c

write

e
writes. Hence

costL(�
k
|i) = costB(�

k
|i) 

⇠
c

read

c

write

⇡
c

write

 2c

read

 2cost

⇤
MTS(�|i), (8)

where the last inequality holds since by previous assumption, �|i
contains at least one read request.

Note that each segment j 2 {1, . . . , k} lies in exactly one of the
above cases of (5)–(8). Hence summing over all j and using the
bounds in (5)–(8), we have

X

i

costL(�|i) 
X

i

X

j<k

3cost

⇤
MTS(�

j
|i)

+

X

i

X

j<k

costA((�
read

)⌧(i,j)) + 2cost

⇤
MTS(�|i)

 5

X

i

cost

⇤
MTS(�|i) + costA(�

read

),

where the last inequality holds since ⌧(i, j) is injective. Using (4)
and since costA(�

read

)  ↵cost⇤RO(�read

), we have the claim that
the stateless algorithm is (↵+ 5)-competitive.

5. AN OPTIMAL OFFLINE ALGORITHM
In this section we show the optimal offline algorithm for the rw-

caching problem. An offline optimal algorithm is important to un-
derstand how well the online algorithm works, especially in prac-
tice. In the read-only case, the optimal offline policy is the well-
known Belady’s algorithm [7]: when an item is requested but is not
present in the cache, evict the cache item that will next be used far-
thest into the future. The proof of optimality of Belady’s algorithm
is through an exchange argument (see [19]).

At first glance, an analogous algorithm that uses the request pat-
terns to decide whom to evict seems plausible for the rw-caching
problem. To explore this thought further, we let k = 2 (i.e., cache
of size 2) and assume w = c

write

(i) < c

read

(i) = 1 for every item
i. For each item i, let w(i) � 0 be the number of write requests for
i before the next immediate read request for it. For instance, for the
sequence h1, readi, h2, readi, h3, readi, h1, writei, h1, readi,
h2, readi, at the third request, w(1) = 1 and w(i) = 0 for every

647

i 6= 1. The following are two natural offline policies that are in-
spired by Belady’s algorithm and can be thought of its two possible
generalizations to the read-write case.

(P1) Evict any item i such that w(i) · c
write

(i) > c

read

(i); if no
such item exists, evict the item that will next be read farthest into
the future (as in Belady’s algorithm).

(P2) Evict item i achieving argmax{w(i) ·c
write

(i)+c

read

(i)}.
However, it turns out neither of these policies dominates the

other. Indeed, consider the sequence h1, readi, h2, readi, h3, readi,
h1, writei, h1, readi, h2, readi. Focusing on the cost after the
third request, it is easy to see that (P1) would evict item 2 and incur
a total cost of w + 1, whereas (P2) would evict item 1 and incur a
total cost of 1. Hence, for this sequence, (P1) is better than (P2).
On the other hand, consider the sequence h1, readi, h2, readi,
h3, readi, h1, writei, h1, readi, h3, writei, h3, readi, h2, readi.
Again, focusing on the costs after the third request, the policy (P1)
would still evict item 2 at the third and fifth requests and would
incur a total cost of 2w + 1, whereas (P2) would evict item 1 at
the third request and item 3 at the fifth request and would incur a
total cost of 2. Hence, for this sequence, (P2) is better than (P1).
This gives some evidence that apparent generalizations of Belady’s
optimal algorithm to the read-write case may not work.

We now present an optimal offline exact algorithm for rw-caching,
which is not based on a Belady-style policy. This algorithm is more
holistic and takes a global view of reads and writes. It is based on
min-cost flow. (Constructions based on min-cost flow have been
used for the offline optimum for approximating join sizes in the
sliding window stream setting [13, 34]; to the best of our knowl-
edge, our use in a generalization of Belady’s algorithm is new.)

Let S = {�
1

, . . . ,�n} be the request sequence, where each
�j 2 [i{hi, readi, hi, writei}, and let C denote the current cache.
Then any offline algorithm can be specified in the following man-
ner: on each request �j , the algorithm first serves the request and
then decides to evict a set Ej of items, hence updating the cache as
C C \ Ej .

THEOREM 4. The offline rw-caching problem is solvable in time
O(poly(k, n)), for a cache of size k and a request sequence of
length n.

PROOF. Let S = {�
1

, . . . ,�n} be the request sequence for
the rw-caching. Let T = {⌧

1

, . . . , ⌧m} be the subsequence of
S containing all the reads. For two indices i and j > i in T , let
wij denote the number of write requests in S that arrive between
{⌧i, . . . , ⌧j} (or if i = n, then the write requests in S that arrive
after ⌧n).

The main idea is to construct a min-cost flow1 instance corre-
sponding to the sequence S . Let K be an integer such that K >
n ·max`(cread(`) + c

write

(`)). The set V of nodes in the min-cost
flow instance comprises of

• a source s and a sink t;

• nodes c
1

, . . . , ck, one for each cache location;

• nodes ⌧
1

, . . . , ⌧m, ⌧ 0
1

, . . . , ⌧ 0
m, where the pair ⌧i, ⌧

0
i corre-

sponds to the ith read request in T ;

• nodes b
1

, . . . , bm.
1In the min-cost flow problem, we are given a directed graph with
non-negative capacity and cost per unit flow on each edge, a source
node, a sink node, and a required amount of flow from the source
to the sink. The goal is to route this flow such that the edge ca-
pacity constraints are respected, and the total cost of the flow is
minimized.

Thus, |V | = 2+ k + 3m. The set E contains the following edges,
where each edge has unit capacity:

• (s, c
1

), . . . , (s, ck), (c1, t), . . . , (ck, t), each of cost 0;

• (⌧ 0
1

, t), . . . , (⌧ 0
m, t), (b

1

, t), . . . , (bm, t), each of cost 0;

• for each i 2 [k] and for each j 2 [m], the edge (ci, ⌧j) if
⌧j = h`, readi, of cost c

read

(`);

• (⌧
1

, ⌧ 0
1

), . . . , (⌧m, ⌧ 0
m), each of cost �K;

• (⌧ 0
1

, b
1

), . . . , (⌧ 0
m, bm) each of cost 0;

• for each i < j, let ⌧i = h`, readi and ⌧j = h`0, readi

– if ` = `0, then the edge (⌧ 0
i , ⌧j) of cost wij · cwrite(`)

and the edge (bi, ⌧
0
i) of cost c

read

(`);
– if ` 6= `0, then the edge (⌧ 0

i , ⌧j) of cost wij · cwrite(`)+
c

read

(`0) and the edge (bi, ⌧j) of cost c
read

(`0).

Note that |E| = O(m2

+ km). An example of the construction

s c
1

⌧
2

⌧
1

⌧
3

⌧ 0
1

⌧ 0
2

⌧ 0
3

b
1

b
2

b
3

t

r
1

r
2

r
1

�K

�K

�K

r
2

r
2

w
2

r
2

r
2

r
2

Figure 1: Construction for the request sequence
h1, readi, h2, readi, h2, writei, h2, readi and cache size k = 1.
For i = 1, 2, let ri = read(i) and wi = write(i). From
construction, ⌧

1

= h1, readi, ⌧
2

= ⌧
3

= h2, readi, and let
K > 4max{r

1

+ w
1

, r
2

+ w
2

}. The capacities are all unit and the
non-zero costs are shown on the edges; edges with no labels have zero cost.

is shown in Figure 1. We first provide an informal intuition behind
the construction. A flow from ⌧i to ⌧ 0

i means that the ith request
is served. If the flow goes to bi, then it means the item is evicted
after serving. If the flow goes from ⌧ 0

i to ⌧j , j > i, it means that
the item read in the ith request is replaced (or reused) for the jth
request. Finally, a flow from bi to ⌧j means that the cache location
was empty for the duration between the ith and the jth requests.
Thus, each flow path corresponds to the decisions made by one
cache location.

We now proceed formally. Note that the maximum flow in this
construction has value k. Furthermore, we can assume the flow is
integral as all capacities are integers. Since all capacities are unit,
the flow consists of k edge disjoint paths, each carrying unit flow.
Each disjoint path is through one of the ci’s and corresponds to the
decision taken on each request by the ith cache location.

Let F be the set of maximum flows such that each of the nodes
⌧i is present in one the k flow paths. Let C be the set of caching

648

policies where eviction is done only on receiving read requests.
(Note that we perform a set of actions per request. On receiving a
read request for an item not in cache, one of these actions must be
a read for this item.)

We first claim that there is a one-one relation between flows in
F and caching policies in C. Indeed, for every flow of value k,
the unique flow through node ci can be interpreted as the caching
decisions taken by the ith cache location. Suppose this flow goes
through the ⌧ -nodes ⌧i1 , . . . , ⌧it , in this order (there are other types
of nodes as well in this path). Then, the item in the request ⌧i1 is
the first item read into this cache location. Consider a generic ⌧i in
this path, and let ⌧i = h`, readi. If the flow goes from ⌧i through
bi (or to t), we evict item ` right after the request ⌧i. If the flow
goes from ⌧i next to ⌧j = h`0, readi for j > i, there are two cases.
If ` = `0, then we maintain the item ` in the cache location for all
the requests between ⌧i and ⌧j . If `0 6= `, then ` is evicted when
item `0 is loaded on request ⌧j .

The cost of the flow, other than the �K edges, captures the cost
of the caching policy. The read costs for each ⌧i are present only
once in the graph, and hence charged at most once by the flow.
Each write is present multiple times—a write request for item `
that arrives after ⌧i is present on all outgoing edges (⌧ 0

i , ⌧j), 8j > i.
However, since the incoming flow to ⌧ 0

i is at most one, at most one
of these edges carries a unit flow.

Conversely, given a caching policy, a flow can be constructed
using the same correspondence.

Finally, to ensure optimality, note that without loss of general-
ity, the optimal offline policy might as well belong to C, since any
eviction of an item ` done on a write request could be done earlier,
when processing the last read request for `. Also, for the chosen
value of K, the min-cost flow will go through all the edges (⌧i, ⌧ 0

i)

and hence will go through every ⌧ node, and hence will belong to
F . The policy corresponding to this flow will thus be the optimal.

Thus, the optimal policy can be computed by solving the min-
cost flow on the graph, which can be done in time O(poly(k, n)).

It can be shown (omitted in this version) that in the absence of write
requests, solving the min-cost flow on the construction is equivalent
to Belady’s algorithm for the classical case.

Figure 2: Comparison of total cost ratio (including mincost) for
FINANCIAL-SMALL in both the unweighted and weighted case
(lower is better).

6. EXPERIMENTS

6.1 Setup
Data. We conduct experiments using two publicly available datasets
as well as a synthetic dataset. The FINANCIAL dataset, obtained
from the Trace Repository at traces.cs.umass.edu/, comes
from storage accesses of OLTP applications in financial institu-
tions. The ALEGRA dataset, obtained from www.cs.sandia.

gov/Scalable_IO/SNL_Trace_Data/, contains I/O kernel
trace data. Both FINANCIAL and ALEGRA mention the item sizes
(in bytes) along with the read and write requests. We use these sizes
as the costs in the weighted version. Since the offline optimal min-
cost algorithm could not be made to run on the large datasets, we
took a prefix of the first 30k requests from the FINANCIAL dataset
to compare the performance of the online algorithms with the of-
fline optimal.

The SYNTHETIC dataset was generated in the following manner.
There are three parameters: a power law parameter ↵, the insertion
probability �, and a parameter r

max

that specifies the maximum
fraction of reads that are allowed. For each item, we first select a
fraction in [0, r

max

] that decides what fraction of the requests for
this item are read requests. At every time step i, we either decide
to create a new item with probability �, or choose the jth past item
with probability pj according to the power law distribution with
parameter ↵. These three parameters allow us to trade off locality,
the appearance of new items, and the read/write ratio. Intuitively ↵
controls the locality in time, � is the “distance” from stationarity,
and r

max

controls the fraction of read and writes in the data.

Dataset # reads # writes
FINANCIAL 1235k 4099k

FINANCIAL-SMALL 15k 14k
ALEGRA 141k 243k

SYNTHETIC ⇠ 50k ⇠ 50k

Algorithms and baselines. In the unweighted case, the caching
algorithm is always LRU (since it is the most basic algorithm and
since it is well known that LRU performs much better in practice
than most theoretical caching algorithms). In the weighted case
however, obtaining a bounded approximation caching algorithm is
a harder problem. We use a deterministic primal-dual algorithm
(PrimalDual) based on [5]. Note that this is not the algorithm
that gives the best approximation for the weighted classical caching
problem. However, we chose this because it is simple, determinis-
tic, and is a generalization of LRU to the weighted case.

We consider the following variants of algorithms for MTS.
(i) AlwaysIn: the MTS is a single-state one that always return

in to any query. This is our main baseline, since here the algorithm
is only running LRU for maintaining a read cache.

(ii) Ski: When the number of states of the MTS is two, it is
also known the rent-or-buy problem. The well-known deterministic
ski-rental algorithm [3]2 gives a 2-approximation to the rent-or-buy
MTS problem [9].

(iii) Work: the MTS is based on a work-function, which gives a
3-approximation to the 2-state MTS problem. In this, the MTS at
step i goes to a state X that minimizes the sum of the optimal at
i� 1 steps, and the distance from this (i� 1)st optimal to X .

In the figures we use the notation A-B to denote that the caching
algorithm is A and the MTS algorithm is B.

In addition we also implement the following two offline algo-
rithms. The Mincost algorithm, which computes the offline min-
cost based solution (Theorem 4), is implemented using a integer
linear programming package or-tools (github.com/google/
or-tools). Since Mincost is computationally infeasible for large
datasets, we also use a heuristic approximation based on a Knap-

sack problem. The knapsack instance is created by defining the
weight of any element as the total read cost minus the write cost
over the entire stream. The caching algorithm simply stores the top
items with respect to this cost.

2See en.wikipedia.org/wiki/Ski_rental_problem
for a simple description.

649

Figure 3: Read-, write-, and total-cost ratios for the FINANCIAL and ALEGRA datasets (lower is better).

Cache size. In all the real data experiments, the size of the cache
was fixed at 10% of the number of distinct items. For SYNTHETIC,
the size of the cache was fixed at 1000, while the number of dis-
tinct items in the generated data was always more than 15k. In all
the plots, we start the plot from the first request, since the warm-
up phase is anyway insignificant compared to the entire sequence
length.

Measures. We study the following measures: the total read cost,
total write cost, as well the total cost (read + write). We measure
each of these costs per 1000 requests. These costs are then nor-
malized by the cost incurred by the baseline algorithm AlwaysIn

at the same request count. We refer to these normalized statistics
as the read-cost ratio, write-cost ratio, and total-cost ratio. Simi-
larly, we will also look at the number of cached-items ratio which
is defined similarly by normalizing the number of cached items at
every timestep by the corresponding quantity for LRU-AlwaysIn.
We study these costs in both the unweighted and weighted cases.
In the unweighted case, the read cost of each item is the same and
so is the write cost. For the unweighted case we further study the
cases where the write cost is the same as read cost, as well as twice
the read cost; we call this multiplier c

write

. In the weighted case
the size of the items as obtained from the data is used as the cost of
an individual read.

6.2 Results

Comparison to offline. In Figure 2 we compare the total-cost ratio
of the various online algorithms, as well as the two offline variants
of Knapsack and Mincost, both in the unweighted and weighted
model (with c

write

= 1). For this small dataset, even the perfor-
mance of the offline optimal Mincost is at least 80% of AlwaysIn.
As the two plots show, the Knapsack heuristic is a good approx-
imation to the Mincost solution, at least in this dataset. In the
subsequent plots, since we cannot calculate Mincost on the large
datasets, we only show Knapsack as the offline comparison.

Performance of various online algorithms. Next we show com-
pare the various online algorithms. Figure 3 shows the read-cost
ratio, the write-cost ratio as well as the total-cost ratio of all the
online algorithms, and Knapsack, on the two large datasets FI-
NANCIAL and ALEGRA in the unweighted model. Note that the
read-cost ratio of AlwaysIn is obviously much better than the oth-
ers, since it essentially focuses on only the reads. However, in terms
of the write cost, and thus, the total-cost, both Ski and Work im-
prove upon the baseline significantly. However, it does not seem
possible to identify one of the MTS as a strict winner in terms of
the total-cost ratio, since their relative orders are different in the two
datasets. However, both of them give at least a 10% (20% for best)
improvement over AlwaysIn. Note that this is in the c

write

= 1

case, as the c

write

increases, the gap between the MTS algorithms
and AlwaysIn will surely increase.

Also note that it is fairly obvious that Knapsack is not a good
stand-in for the optimal in the ALEGRA dataset.

In Figure 4(a) we also investigate the performances of the weighted
model, where each item has its own weight. Again, both the MTS
algorithms have a cost that is at most 80% of the baseline (70%
for Work). Simultaneously, we see that both the MTS algorithms
actually end up storing much less items than given the cache size.

Number of cached items. Figure 4(b) shows the number of cached
items by each algorithm as the requests arrive in FINANCIAL, ALE-
GRA, and SYNTHETIC datasets. In each of these datasets, it is in-
structive to note that the proposed MTS algorithms actually caches
less items than the maximum number allowed. This is in fact a big
plus, combined with the previous observation that the total cost of
these algorithms is also less than the AlwaysIn baseline. The ‘best’
MTS caches only 40-60% of the number cached by AlwaysIn.

Statefulness vs stateless. We next investigate the comparative per-
formance of the stateless (i.e., MTS maintained only for items in
cache) and the stateful versions. In all datasets, the performances
are extremely close, there being less than 0.04% difference in the
maximum total cost for the largest dataset FINANCIAL (total costs
351690 vs 351802 for the 5-millionth step). Given this observa-

650

(a) Read-cost ratio, total-cost ratio, and number of cached item comparisons for the weighted model for ALEGRA.

(b) Ratio of the number of cached items in the unweighted case for FINANCIAL, ALEGRA, and SYNTHETIC.

(c) Read-, write-, and total-cost ratio in the unweighted case for SYNTHETIC for dataset with at most 0.5 fraction reads.

Figure 4: Performance of algorithms (lower is better).

tion, we advocate the stateless version in practice even though it
has a slightly worse competitive ratio.

SYNTHETIC dataset. Using the SYNTHETIC dataset, we study the
effect of varying the parameters ↵, r

max

, and �. For lack of space
we only show plots with ↵ = 2.0 and � = 0.3. We choose r

max

2
{0.1, 0.5} to investigate the effect of varying proportions of read
and write. Figures 4(c) show the performance when the fraction of
reads is at most 0.5 (the performance when the fraction of reads is
at most 0.1 is qualitatively similar and omitted). As expected, as the
fraction of writes increases in the input, the gain by the proposed
algorithms also increases, from 0.85 for at most 50% reads to 0.6
when the data has at most 10% reads.

7. CONCLUSIONS
In this paper we introduced and studied the problem of read-

write or dual cost caching. Our work is motivated by distributed
cache settings where items can be updated often, and there is a cost
to keeping certain items in the cache owing to the overhead of in-
validating them often. Our formulation is simple and builds upon
the formulation used in traditional caching. Our online algorithm

takes this one step further by building upon online algorithms for
traditional caching, and using them in conjunction with algorithms
for MTS. We believe this composition and the analysis of its per-
formance is novel and could have other applications. Also, given
the simplicity of our algorithm and its use of existing algorithms as
black-boxes, it should be easy to adopt it in practice. To fully un-
derstand the performance of this online algorithm, we also develop
an optimal offline algorithm, which is a generalization of Belady’s
well-known algorithm for the read-only case.

While we have solved the basic case of read-write caching, there
are several other interesting research directions to be explored. Un-
derstanding the performance of the online algorithm for stylized
workloads would be useful from a theoretical angle. An offline
optimal that is not based on min-cost flow would be valuable in
practice. It will also be interesting to introduce a notion of time
into our framework so that existing policies for cache expirations
can be folded into the framework in a principled manner.

8. REFERENCES[1] A. Adamaszek, A. Czumaj, M. Englert, and H. Räcke. An
O(log k)-competitive algorithm for generalized caching. In SODA,
2012.

651

[2] S. Alici, I. S. Altingovde, R. Ozcan, B. B. Cambazoglu, and
O. Ulusoy. Timestamp-based result cache invalidation for Web
search engines. In SIGIR, pages 973–982, 2011.

[3] Y. Azar, U. Feige, and S. Nath. On the work function algorithm for
two state task systems. Technical report, MSR-TR-2007-20,
Microsoft, 2007.

[4] X. Bai and F. P. Junqueira. Online result cache invalidation for
real-time Web search. In SIGIR, pages 641–650, 2012.

[5] N. Bansal, N. Buchbinder, and J. S. Naor. A primal-dual randomized
algorithm for weighted paging. JACM, 59(4):19, 2012.

[6] W. Bein, L. Larmore, and J. Noga. Uniform metrical task systems
with a limited number of states. IPL, 104(4):123–128, 2007.

[7] L. Belady. A study of replacement algorithms for a virtual-storage
computer. IBM Systems Journal, 5(2):78–101, 1966.

[8] R. Blanco, E. Bortnikov, F. Junqueira, R. Lempel, L. Telloli, and
H. Zaragoza. Caching search engine results over incremental indices.
In WWW, pages 1065–1066, 2010.

[9] A. Borodin and R. El-Yaniv. Online Computation and Competitive
Analysis. Cambridge University Press, 1998.

[10] N. Bruno and S. Chaudhuri. An online approach to physical design
tuning. In ICDE, pages 826–835. IEEE, 2007.

[11] B. B. Cambazoglu, F. P. Junqueira, V. Plachouras, S. Banachowski,
B. Cui, and S. Lim. A refreshing perspective of search engine
caching. In WWW, pages 181–190, 2010.

[12] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni.
PNUTS: Yahoo!’s hosted data serving platform. PVLDB,
1(2):1277–1288, 2008.

[13] A. Das, J. Gehrke, and M. Riedewald. Approximate join processing
over data streams. In SIGMOD, pages 40–51, 2003.

[14] A. Fiat and M. Mendel. Better algorithms for unfair metrical task
systems and applications. SICOMP, 32(6):1403–1422, 2003.

[15] G. Francès, X. Bai, B. Cambazoglu, and R. Baeza-Yates. Improving
the efficiency of multi-site Web search engines. In WSDM, pages
3–12, 2014.

[16] K. Hose, D. Klan, and K.-U. Sattler. Online tuning of aggregation
tables for olap. In ICDE, pages 1679–1686, 2009.

[17] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and
H. C. Li. An analysis of Facebook photo caching. In SOSP, pages
167–181, 2013.

[18] A. Karlin, M. Manasse, L. McGeoch, and S. Owicki. Competitive
randomized algorithms for nonuniform problems. Algorithmica,
11(6):542–571, 1994.

[19] J. Kleinberg and E. Tardos. Algorithm Design. Pearson, 2005.
[20] I. Koltsidas and S. D. Viglas. Flashing up the storage layer. PVLDB,

1(1):514–525, 2008.
[21] R. Lempel and S. Moran. Predictive caching and prefetching of query

results in search engines. In WWW, pages 19–28, 2003.
[22] R. Lempel and F. Silvestri. Web search result caching and

prefetching. In Encyclopedia of Database Systems, pages
3501–3506. Springer, 2009.

[23] X. Long and T. Suel. Three-level caching for efficient query
processing in large Web search engines. In WWW, pages 257–266,
2005.

[24] H. Lu, K. Veeraraghavan, P. Ajoux, J. Hunt, Y. J. Song, W. Tobagus,
S. Kumar, and W. Lloyd. Existential consistency: measuring and
understanding consistency at Facebook. In SOSP, pages 295–310,
2015.

[25] T. Malik, X. Wang, R. Burns, D. Dash, and A. Ailamaki. Automated
physical design in database caches. In ICDEW, pages 27–34, 2008.

[26] S. Nath and A. Kansal. Flashdb: Dynamic self-tuning database for
nand flash. In IPSN, pages 410–419, 2007.

[27] S. Pandey, A. Z. Broder, F. Chierichetti, V. Josifovski, R. Kumar, and
S. Vassilvitskii. Nearest-neighbor caching for content-match
applications. In WWW, pages 441–450, 2009.

[28] S. Paul and Z. Fei. Distributed caching with centralized control.
Computer Communications, 24(2):256–268, 2001.

[29] M. Rabinovich and O. Spatscheck. Web Caching and Replication.
Pearson, 2001.

[30] C. Ravishankar and J. Goodman. Cache implementation for multiple
microprocessors. Computer Communications, pages 346–350, 1983.

[31] M. Satyanarayanan. A survey of distributed file systems. Annual
Review of Computer Science, 4(1):73–104, 1990.

[32] K. Schnaitter and N. Polyzotis. A benchmark for online index
selection. In ICDE, pages 1701–1708, 2009.

[33] K. Schnaitter and N. Polyzotis. Semi-automatic index tuning:
Keeping dbas in the loop. PVLDB, 5(5):478–489, 2012.

[34] J. Xie, J. Yang, and Y. Chen. On joining and caching stochastic
streams. In SIGMOD, pages 359–370, 2005.

[35] J. Zhang, X. Long, and T. Suel. Performance of compressed inverted
list caching in search engines. In WWW, pages 387–396, 2008.

652

