
ERA: A Framework for Economic Resource Allocation for
the Cloud

Moshe Babaioff∗ Yishay Mansour† Noam Nisan‡

Gali Noti‡ Carlo Curino§ Nar Ganapathy§

Ishai Menache∗ Omer Reingold¶ Moshe Tennenholtz‖

Erez Timnat‖

ABSTRACT
Cloud computing has reached significant maturity from a systems
perspective, but currently deployed solutions rely on rather basic
economics mechanisms that yield suboptimal allocation of the cost-
ly hardware resources. In this paper we present Economic Resource
Allocation (ERA), a complete framework for scheduling and pric-
ing cloud resources, aimed at increasing the efficiency of cloud re-
sources usage by allocating resources according to economic prin-
ciples. The ERA architecture carefully abstracts the underlying
cloud infrastructure, enabling the development of scheduling and
pricing algorithms independently of the concrete lower-level cloud
infrastructure and independently of its concerns. Specifically, ERA
is designed as a flexible layer that can sit on top of any cloud sys-
tem and interfaces with both the cloud resource manager and with
the users who reserve resources to run their jobs. The jobs are
scheduled based on prices that are dynamically calculated accord-
ing to the predicted demand. Additionally, ERA provides a key in-
ternal API to pluggable algorithmic modules that include schedul-
ing, pricing and demand prediction. We provide a proof-of-concept
software and demonstrate the effectiveness of the architecture by
testing ERA over both public and private cloud systems – Azure
Batch of Microsoft and Hadoop/YARN. A broader intent of our
work is to foster collaborations between economics and system
communities. To that end, we have developed a simulation platform
via which economics and system experts can test their algorithmic
implementations.

Keywords
Cloud Computing; Economics; Dynamic Pricing; Reservations

∗Microsoft Research, moshe,ishai@microsoft.com
†TAU and Microsoft Research, mansour@microsoft.com
‡HUJI and Microsoft Research, noam,gali.noti@cs.huji.ac.il
§Microsoft, ccurino,narg@microsoft.com
¶Stanford University, reingold@stanford.edu
‖Technion and Microsoft, moshet@ie.technion.ac.il, erez-
timn@cs.technion.ac.il

c©2017 International World Wide Web Conference Committee (IW3C2),
published under Creative Commons CC BY 4.0 License.
WWW’17 Companion, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4914-7/17/04.
http://dx.doi.org/10.1145/3041021.3054186

.

1. INTRODUCTION
Cloud computing, in its private or public incarnations, is com-

monplace in industry as a paradigm to achieve high return on in-
vestments (ROI) by sharing massive computing infrastructures that
are costly to build and operate [5, 14]. Effective sharing pivots
around two key ingredients: 1) a system infrastructure that can se-
curely and efficiently multiplex a shared set of hardware resources
among several tenants, and 2) economic mechanisms to arbitrate
between conflicting resource demands from multiple tenants.

State-of-the-art cloud offerings provide solutions to both, but
with varying degrees of sophistication. The system challenge has
been subject to extensive research focusing on space and time mul-
tiplexing. Space multiplexing consists of sharing servers among
tenants, while securing them via virtual machine [34, 32, 7] and
container technologies [23, 22]. Time multiplexing comprises a
collection of techniques and systems that schedule tasks over time.
The focus ranges from strict support of Service Level Objectives
(SLOs) [10, 17, 30, 11] to maximization of cluster utilization [12,
35, 18, 25, 24, 13, 8]. Many of these advances are already de-
ployed solutions in the public cloud [26, 4] and the private cloud
[1, 31, 15, 33, 8]. This indicates a good degree of maturity in how
the system challenge is tackled in cloud settings.

On the other hand, while the economics challenge has received
some attention in recent research (see, e.g., [27, 16, 6, 28, 19, 20]
and references therein), the underlying principles have not yet been
translated into equally capable solutions deployed in practice.

1.1 The Economic Challenge and ERA’s
Approach

In current cloud environments, resource allocation is governed
by very basic economics mechanisms. The first type of mechanism
(common in private clouds [31, 8, 15, 33]) uses fixed pre-paid guar-
anteed quotas. The second type (common in public clouds [26, 4])
uses on-demand unit prices: the users are charged real money1 per
unit of resource used. In most cases these are fixed prices, with
the notable exception of Amazon’s spot instances that use dynam-
ically changing prices.2 Spot-instance offerings, however, do not
provide guaranteed service, as the instances might be evicted if the
user bid is too low. Hence, utilizing spot instances requires special
attention from the user when determining his bid, and might not be
suitable for high-priority production jobs [21, 28, 2]. The funda-
mental problem is finding a pricing and a scheduling scheme that
will result in highly desired outcome, that of high efficiency.

1Or, within a company, fiat money.
2Although, based on independent analysis, even these may not
truly leverage market mechanisms to determine prices [3].

634

Efficiency: From an economics point of view, the most fundamen-
tal goal for a cloud system is to maximize the economic efficiency,
that is, to maximize the total value that all users get from the sys-
tem. For example, whenever two users have conflicting demands,
the one with the lowest cost for switching to an alternative (run-
ning at a different time/place or not running at all) should be the
one switching. The resources would thus be allocated to the user
with “highest marginal value.” The optimal-allocation benchmark
for a given cloud is that of an omniscient scheduler who has access
to the complete information of all cloud users – including their in-
ternal costs and alternative options – and decides what resources
to allocate to whom in a way that maximizes the efficiency goals
of the owner of the cloud. Let us stress: to get a meaningful mea-
sure of efficiency we must count the value obtained rather than the
resources used, and we should aim to maximize this value-based
notion of efficiency.3

Limitations of current solutions: With this value-based notion
of efficiency in mind, let us evaluate commonly deployed pricing
mechanisms. Private cloud frameworks [31, 8, 15, 33] typically
resort to pre-paid guaranteed quotas. The main problem with this
option is that, formally, it provides no real sharing of common re-
sources: to guarantee that every user always has his guaranteed
pre-paid resources available, the cloud system must actually hold
sufficient resources to satisfy the sum of all promised capacities,
even though only a fraction will likely be used at any given time.
Mechanisms such as work-preserving fair-queueing [12] are typ-
ically designed to increase utilization [31, 15], but they do not
fundamentally change the equation for value-based efficiency, as
the resources offered above the user quota are typically distributed
at no cost and with no guarantees. Furthermore, lump-sum pre-
payment implies that the users’ marginal cost for using their guar-
anteed resources is essentially zero, and so they will tend to use
their capacity for “non-useful” jobs whenever they do not fill their
capacity with “useful” jobs. This often results in cloud systems that
seem to be operating at full capacity from every engineering point
of view, but are really working at very “low capacity” from an eco-
nomics point of view, as most of the time, most of the jobs have
very low value.

On the other hand, public cloud offerings [26, 4] typically em-
ploy on-demand unit-pricing schemes. The issue with this solution
is that the availability of resources cannot be guaranteed in advance.
Typically the demand is quite spiky, with short periods of peak
demand interspersed within much longer periods of low demand.
Such spiky demand is also typical of many other types of shared in-
frastructure such as computer network bandwidth, electricity, or ski
resorts. In all these cases the provider of the shared resource faces a
dilemma between extremely expensive over-provisioning of capac-
ity and giving up on guaranteed service at peak times. In the case
of cloud systems, for jobs that are important enough, users cannot
take the risk of their jobs not being able to run when needed, and
thus “on-demand” pricing is only appealing to low-value or highly
time-flexible jobs, while most important “production” jobs with lit-
tle time flexibility resort to buying long-term guaranteed access to
resources. While flexible unit prices (such as Amazon’s spot in-
stances) may have an advantage over fixed ones as they can better
3Another important goal, of course, is revenue, but we note that
the potential revenue is limited by the value created, so high effi-
ciency is needed for high revenue. Moreover, since there is com-
petition between cloud providers, these providers generally aim to
increase short-term efficiency as this is likely to have positive long-
term revenue effects. The issue of increasing revenue is usually
attacked under the “Platform as a Service” (PaaS) strategy of pro-
viding higher-level services. This is essentially orthogonal to allo-
cation efficiency and is beyond the scope of the present paper.

smooth demand over time, as highlighted above, they only get an
opportunity to do so for the typically low-value “non-production”
jobs.
The ERA approach: The pricing model that we present in ERA
enables sharing of resources and smoothing of demand even for
high-value production jobs. This is done using the well-known no-
tion of reservations, commonly used for many types of resources
such as hotel rooms or super-computer time as well as in a few
cloud systems [10, 17, 30], but in a flexible way in terms of both
pricing and scheduling. We focus on the economic challenges of
scheduling and pricing batch style computations with completion-
time SLOs (deadlines) on a shared cloud infrastructure. The ba-
sic model presented to the user is that of resource reservation. At
“reservation time,” the user’s program specifies its reservation re-
quest. The basic form of such a request is:4

Basic Reservation: “I need 100 containers (with 6GB and 2cores
each) for 5 hours, some time between 6am and 6pm today, and am
willing to pay up to $100 for it.”

This class of workloads is very prominent – much of “big data”
falls under this category [11, 30, 17] – and it provides us with a
unique opportunity for economic investigation. While state-of-the-
art solutions provide effective system-level mechanisms for sharing
resources, they rely on users’ goodwill to truthfully declare their re-
source needs and deadlines to the system. By dynamically manip-
ulating the price of resources, ERA provides users with incentives
to expose to the system as much flexibility as possible. The ERA
mechanism ensures that the final price paid by the user is the lowest
possible price the system can provide for granting the request. The
more flexibility a user exposes, the better the user’s chances of get-
ting a good price. If this minimal price exceeds the stated maximal
willingness to pay, then the request is denied.5 Once a reservation
request is accepted, the payment is fixed at reservation time, and
the user is assured that the reserved resources will be available to
him within the requested window of time. The guarantee is to sat-
isfy the request rather than provide a promise of specific resources
at specific times. For more details regarding the model presented
to the user see Section 2.3.1.

1.2 An Overview of ERA
A key part of the challenge of devising good allocation schemes

for cloud resources is their multi-faceted nature: while our goals
are in terms of economic high-level business considerations, im-
plementation must be directly carried out at the computer systems-
engineering level. These two extreme points of view must be con-
nected using clever algorithms and implemented using appropriate
software engineering. Indeed, in the literature regarding cloud sys-
tems, one can see many papers that deal with each one of these as-
pects – “systems” papers as well as theoretical papers on schedul-
ing and pricing jobs in cloud systems – as cited above. Unfor-
tunately, these different threads in the literature are often discon-
nected from each other and they are not easy to combine to get an
overall solution. We believe that one key challenge at this point is
to provide a common abstraction that encompasses all these con-
siderations. We call this the architectural challenge.

4The general form of requests is given by ERA’s “bidding descrip-
tion language” (see Section 2.3.1) that allows specifying multiple
resources, variable “shapes” of use across time, and combinations
thereof.
5Alternatively, the ERA mechanism may present this minimal price
as a “quote” to the user, who may decide whether to accept or reject
it.

635

Figure 1: ERA Architecture. The ERA system is designed as an
intermediate layer between the users and the underlying cloud
infrastructure. The same actual core code is also interfaced
with the simulator components.

Our answer to this challenge is the ERA system (Economic Re-
source Allocation). The ERA system is designed as an intermediate
layer between the cloud users and the underlying cloud infrastruc-
ture. It provides a single model that encompasses all the very dif-
ferent key issues underlying cloud systems: economic, algorithmic,
systems-level, and human-interface ones. It is designed to integrate
economics insights practically in real-world system infrastructures,
by guiding the resource allocation decisions of a cloud system in
an economically principled way.6 This is achieved by means of
a key architectural abstraction: the ERA Cloud Interface, which
hides many of the details of the resource management infrastruc-
ture, allowing ERA to tackle the economic challenge almost in-
dependently of the underlying cloud infrastructure. ERA satisfies
three key design goals: 1) it provides a crisp theoretical abstrac-
tion that enables more formal studies; 2) it is a practical end-to-end
software system; and 3) it is designed for extensibility, where all
the algorithms are by design easy to evolve or experiment with.
ERA’s key APIs: ERA has two main outward-facing APIs as well
as a key internal API. Figure 1 gives a high-level schematic of the
architecture. The first external API faces the users and provides
them with the economic reservation model of cloud services de-
scribed above. The second external API faces the low-level cloud
resource manager. It provides a separation of concerns that frees
the underlying cloud system from any time-dependent scheduling
or from any pricing concerns, and frees the ERA system from the
burden of assigning specific processors to specific tasks in a rea-
sonable resource-locality way, or from the low-level mechanics of
firing up processes or swapping them out. See more details in Sec-
tion 2.3.

Finally, the internal API is to pluggable algorithmic scheduling,
pricing, and prediction modules. Our basic scheduling and pric-
ing algorithm dynamically computes future resource prices based
on supply and demand, where the demand includes both resources
that are already committed to and predicted future requests, and
schedules and prices the current request at the “cheapest” possi-
bility. Our basic prediction model uses traces of previous runs to
6Not all resources in the cloud have to be managed via ERA. It is
also possible that the cloud will let ERA manage only a subset of
the resources (allowing the system to be incrementally tested), or
will have several instances of ERA to manage different subsets of
the resources.

Figure 2: ERA Simulator Screenshot

estimate future demand. The flexible algorithmic API then allows
for future algorithmic, learning, and economic optimizations. The
internal interfaces as well as our basic algorithmic implementations
are described in Section 3.

Our goal in defining this abstraction is more ambitious than mere
good software engineering in our system. As part of the goal of fos-
tering a convergence between system and economic considerations,
we have also built a flexible cloud simulation framework. The sim-
ulator provides an evaluation of key metrics, both “system ones”
such as loads or latency, as well as “economic ones” such as “wel-
fare” or revenue, as well as provides a visualization of the results
(see screenshot in Figure 2). The simulator was designed to provide
a convenient tool both for the cloud system’s manager who is inter-
ested in evaluating ERA’s performance as a step toward integration
and for researchers who develop new algorithms for ERA and are
interested in experimenting with their implementation without the
need to run a large cluster. As is illustrated in Figure 1, the same
core code that receives actual user requests and runs over the un-
derlying cloud resource manager may be connected instead to the
simulator so as to test it under variable loads and alternative cloud
models. Comparing the results from our simulator and physical
cluster runs, we find the simulator to be faithful (Section 4).

The ERA system is implemented in Java, and an alternative im-
plementation (of a subset of ERA) in C# was also done. We have
performed extensive runs of ERA within the simulator as well as
proof-of-concept runs with two prominent resource managers in
the public and private clouds: the full system was interfaced with
Hadoop/YARN [31] and the C# version of the code was interfaced
and tested with Microsoft’s Azure Batch7 simulator [29]. These
runs show that the ERA algorithms succeed in increasing the effi-
ciency of cloud usage, and that ERA can be successfully integrated
with real cloud systems. Additionally, we show that the ERA sim-
ulator gives a good approximation to the actual run on a cloud sys-
tem and thus can be a useful tool for developing and testing new
algorithms. In Section 4 we present the results of a few of these
runs.

Contributions: In summary, we present ERA, a reservation sys-
tem for pricing and scheduling jobs with completion-time SLOs.
ERA makes the following contributions:

7Azure Batch is a cloud-scale job-scheduling and compute man-
agement service. https://azure.microsoft.com/en-us/services/batch/

636

1. We propose an abstraction and a system architecture that al-
lows us to tackle the economic challenge orthogonally to the
underlying cloud infrastructure.

2. We devise algorithms for scheduling and pricing batch jobs
with SLOs, and for predicting resource demands.

3. We design a faithful cloud simulator via which economics
and system experts can study and test their algorithmic im-
plementations.

4. We integrate ERA with two cloud infrastructures and demon-
strate its effectiveness experimentally.

2. THE ERA MODEL AND ARCHITECTURE

2.1 The Bidding Reservation Model with
Dynamic Prices

ERA is designed to handle a set of computational resources of
a cloud system, such as cores and memory, with the goal of allo-
cating these resources to users efficiently. The basic idea is that a
user that needs to run a job at some future point in time can make
a reservation for the required resources and, once the reservation
is accepted, these resources are then guaranteed (insofar as physi-
cally possible) to be available at the reserved time. The guarantee
of availability of reserved resources allows high-value jobs to use
cloud just like in the pre-paid guaranteed quotas model, but without
the need to buy the whole capacity (for all times), which thus also
allows for time sharing of resources, which increases efficiency.

The price for these resources is quoted at reservation time and
is dynamically computed according to (algorithmically estimated)
demand and the changing supply. More user flexibility in timing is
automatically rewarded by lower prices. The basic idea is that these
dynamic prices will regulate demand, achieving a better utilization
of cloud resources. This mechanism also ensures that at peak times
– where demand can simply not be met – the most “valuable” jobs
are the ones that will be run rather than arbitrary ones. ERA uses
a simple bidding model in which the user attaches to each of his
job requests a monetary value specifying the maximal amount he
is willing to pay for running the job. The amount of value lost for
jobs that cannot be accommodated at these peak times serves as a
quantification of the value that will be gained by buying additional
cloud resources, and is an important input to the cloud provider’s
purchasing decision process.

2.2 The Cloud Model
The cloud in the ERA framework is modeled as an entity that

sells multiple resources, bundled in configurations, and the capac-
ity of these resources may change over time. The configurations,
as well as the new concept of “virtual resources,” are designed to
represent constraints that the cloud is facing, such as packing con-
straints. Specifically, the cloud is defined by: (1) a set of formal
resources for sale (e.g., core or GB). We also allow for capturing
additional constraints of the underlying infrastructure by using a
notion of “virtual resources”; (2) a set of resource configurations:
each configuration is defined by a bundle of formal resources (e.g.,
“ConfA” equals 4 cores and 7 GB),8 and is also associated with
a bundle of actual resources that reflects the average amount the
system needs in order to supply the configuration. The actual re-
sources will typically be larger than the formal resources. The gap
8These configurations are preset, but notice that ERA’s cloud
model also supports the flexibility that each job can pick its own
bundle of resources (as in YARN) by defining configurations of the
basic formal resources (e.g., “ConfCore” equals a single core).

is supposed to model the overhead the cloud incurs when trying to
allocate the formal amount of resources within a complex system.
The actual resources can be composed of formal as well as virtual
resources; (3) inventory: the amount of resources (formal and vir-
tual) over time; (4) time definitions of the cloud (e.g., the precision
of time units that the cloud considers).

2.3 The ERA Architecture
The ERA system is designed as a smart layer that lies between

the user and the cloud scheduler, as shown in Figure 1. The system
receives a stream of job reservation requests for resources arriving
online from users. Each request describes the resources the user
wishes to reserve and the time frame in which these resources are
desired, as well as an economic value specifying the maximal price
the user is willing to pay for these resources. ERA grants a subset
of these requests with the aim of maximizing total value (and/or
revenue). The interface with these user requests is described in
Section 2.3.1.

ERA interfaces with the cloud scheduler to make sure that the
reservations that were granted actually get the resources they were
promised. ERA instructs the cloud how it should allocate its re-
sources to jobs, and the cloud should be able to follow ERA’s
instructions and (optionally) to provide updates about its internal
state (e.g., the capacity of available resources), allowing ERA to
re-plan and optimize. ERA’s interface with the cloud scheduler is
described in Section 2.3.2.

The architecture encapsulates the logic of the scheduling and
pricing in the algorithm module. The algorithms use the prediction
module to compute prices dynamically based on the anticipated de-
mand and supply. This architecture gives the ability to change be-
tween algorithms and to apply different learning methods. ERA’s
internal interface with the algorithmic components is described in
Section 3.

2.3.1 ERA-User Interface
The ERA-User interface handles a stream of reservation requests

that arrive online from users, and determines which request is ac-
cepted and at which price.

The Bidding Description Language.
Each reservation request bids for resources according to ERA’s

bidding description language – an extension of the reservation def-
inition language formally defined in [10]. The bid is composed of
a list of resource requests and a maximum willingness to pay for
the whole list. Each resource request specifies the configurations of
resources that are requested, the length of time for which these are
needed, and a time window [arrival, deadline). All the resources
must be allocated after the arrival time (included) and before the
deadline (excluded). For example, a resource request may ask for a
bundle of 3 units of ConfA and 2 units of ConfB, for a duration of
2 hours, sometime between 6AM and 6PM today. Each configura-
tion is composed of one or more resources, as described in Section
2.2.

By supporting a list of resource requests, ERA allows the de-
scription of more complex jobs, including the ability to break each
request down to the basic resource units allowing for MapReduce
kinds of jobs, or to specify order on the requests to some degree.
The current ERA algorithms accept a job only if all of the resource
requests in the list can be supplied; i.e., they apply the AND oper-
ator between resource requests. More sophisticated versions may
allow more complex and rich bidding descriptions, e.g., support of
other operators or recursive bids. For clarity of presentation, in this
paper we present ERA in the simple case, where the reservation re-

637

quest is a single resource request, and there is only a single resource
rather than configurations of multiple resources.

The makeReservation method.
The interface with the user reservation requests is composed of

the single “makeReservation” method, which handles a job reser-
vation request that is sent by some user. Each reservation request
can either be accepted and priced or declined by ERA.

The basic input parameters to this method are the job’s bid and
the identifier of the job. The bid encapsulates a list of resource
requests along with the maximum price that the user is willing to
pay in order to get this request (as described above). The output is
an acceptance or rejection of the request, and the price that the user
will be charged for fulfilling his request in case of acceptance.9

The main effect of accepting a job request is that the user is guar-
anteed to be given the desired amount of resources sometime within
the desired time window. An accepted job must be ready to use all
requested resources starting at the beginning of the requested win-
dow, and the request is considered fulfilled as long as ERA provides
the requested resources within the time window.

2.3.2 ERA-Cloud Interface
The interface between ERA and the cloud-scheduler is composed

of two main methods that allow the cloud to get information about
the allocation of resources it should apply at the current time, and
to provide ERA with feedback regarding the actual execution of
jobs and changes in the cloud resources.

The getCurrentAllocation method.
This is the main interface with the actual cloud scheduler. The

cloud should repeatedly call this method (quite often, say, every
few seconds) and ask ERA for the current allocations to be made.10

The method returns an allocation, which is the list of jobs that
should be instantaneously allocated resources and the resources
that should be allocated to them. In the simple case of a single re-
source, it is a list of “job J should now be getting W resources.” The
actual cloud infrastructure should update the resources that it cur-
rently allocates to all jobs to fit the results of the current allocation
returned by this query. This new allocation remains in effect until
a future query returns a different allocation. It is the responsibil-
ity of the underlying cloud scheduling system to query ERA often
enough, and to put these new allocations into effect ASAP, so that
any changes are effected with reasonably small delay. The main
responsibility of the ERA system is to ensure that the sequence of
answers to this query reflects a plan that can accommodate all ac-
cepted reservation requests.

The main architectural aspect of this query is to make the inter-
face between ERA and the cloud system narrow, such that it com-
pletely hides the plan ERA has for future allocation. It is assumed
that the cloud has no information on the total requirements of the
jobs, and follows ERA as accurately as possible.

The update method (optional usage).
The cloud may use this method to periodically update ERA with

its actual state. Using this method is important since the way re-

9Alternatively, the system may allow determining the payment af-
ter running is completed (depending on the system load at that
time), or may allow flexible payments that take into account both
the amount of resources reserved and the amount of resources ac-
tually used.

10For performance, it is also possible to replace this query with an
event-driven scheme in which ERA pushes an event to the cloud
scheduler when the allocations change.

sources are actually used in real time may be different from what
was planned for. For example, some processors may fail or be taken
offline. Most importantly, it is expected that most jobs will use sig-
nificantly less resources than what they reserved (since by trying to
ensure that they have enough resources to usually complete execu-
tion, they will probably reserve more than they actually use). The
ERA system should take this into account and perhaps re-plan.

The simple version of the cloud feedback includes: (1) changes
in the current resources under the cloud’s management (e.g., if
some computers crashed); (2) the current resource consumption;
(3) termination of jobs; (4) the number of waiting processes of each
job, which specifies how many resources the job could use at this
moment, if the job were allocated an infinite amount.

3. ALGORITHMS
The internal algorithmic implementation of ERA is encapsulated

in separate components – the algorithm and the prediction com-
ponents – in a flexible “plug and play” design, allowing to eas-
ily change between different implementations to fit different condi-
tions and system requirements. The algorithm component is where
the actual scheduling and pricing of job requests are performed.
The algorithm may use the prediction component in order to get
the market prices or the estimated demand, and the ERA system
updates the prediction component online with every new request.

3.1 Scheduling and Pricing Algorithms

Interface.
The ERA algorithm is an online scheduling and pricing algo-

rithm that provides the logic of an ERA system. The ERA sys-
tem forwards queries arriving from users and from the cloud to be
answered by the algorithm, and so the internal interface between
ERA and the algorithm is similar to the external ERA interface (de-
scribed in Sections 2.3.1 and 2.3.2), except that it abstracts away
all the complexities of interfacing with the external system. The
main change between these two interfaces is that the algorithm is
not given the bids (the monetary value) of the reservation requests,
and must decide on the price independently of the bid. It can only
make a one-time comparison against the value, and the request is
accepted as long as the value is not smaller than the price. Thus, the
architecture enforces that the algorithm will be monotonic in value
(as it sets a threshold price for winning), creating an incentive-
compatible mechanism with respect to the value; i.e., the resulting
mechanism is truthful by design.

The scheduling and pricing of a new job is performed in the
makeReservation method. As described in detail in Section 2.3.1,
the input to this method is a reservation request of the form “I
need W cores for T time units, somewhere in the time range [Ar-
rival,Deadline), and will pay at most V for it.” The answers are of
the form “accept/reject” and a price P in case of acceptance. The
algorithm should also keep track of its planned allocations to ac-
tually tell the cloud infrastructure when to run the accepted jobs
upon a getCurrentAllocation query, and re-plan and optimize upon
an update query (see Section 2.3.2).

Basic Econ Scheduling.
The Basic Econ Scheduling (Algorithm 1) is our basic imple-

mentation of an ERA algorithm. Whenever a new job request ar-
rives, the algorithm dynamically sets a price for each time and each
unit of the resource (e.g., second*core), and the total price is the

638

sum over these unit prices for the requested resources.11 It then
schedules the job to start at the cheapest time within its requested
window that fits the request, as long as the job’s value is not lower
than the computed total price. To determine the price of a resource
in a specific time unit t in the future, the algorithm takes into ac-
count the amount of resources already promised as well as its pre-
diction for future demand for that time unit. Essentially, the price
is set to reflect the externalities imposed on future requests due to
accepting this job, according to the predicted demand. The predic-
tion of demand is encapsulated in the prediction component we will
discuss in the next section.

Note that this simple algorithm gives up the flexibility to preempt
jobs (swap jobs in and out) and instead allocates to each job a con-
tinuous interval of time with a fixed starting time. It also allocates
exactly the W requested cores concurrently instead of trading off
more time for less parallel cores. We chose to give up these flexi-
bilities in the basic implementation, although they are supported by
the ERA API, in order to isolate concerns: this choice separates the
algorithmic issues (which are attacked only in a basic way) from
pricing issues (which are dealt with) and from learning issues. In
addition, such schedules are robust and applicable under various
real-world constraints, and in other cases they may simply be sub-
optimal and serve as benchmarks.

Algorithm 1 Basic-Econ Scheduling
1: Input: a new job request {W*T in [A,D), V}
2: Output: accept or reject, and a price if accepted
3: procedure MAKE RESERVATION
4: for each t ∈ [A,D) do
5: demandt()← the demand estimate function at t
6: for each i ∈ [1,W] do
7: pricet(i)← the highest price p s.t. demandt(p)+
promised[t] + i > Capacity

8: cost[t]← pricet(1) + pricet(2) + ...+ pricet(W)

9: for each t ∈ [A,D − T] do
10: totalCost[t]← cost[t] + ...+ cost[t+ T − 1]

11: t∗ ← argmint∈[A,D−T] totalCost[t]
12: if V ≥ totalCost[t∗] then
13: schedule the job to start at t∗

14: return accept at cost totalCost[t∗]
15: else
16: return reject
17: end procedure

3.2 Demand Prediction

Interface.
The prediction component is responsible for providing an esti-

mation of demand at a future time t at any given price, given the
current time. Since the inverse function is what we really need, our
actual interface provides that inverse function:12 given a future time
t, the current time, and a quantity of demand q, it returns the high-
est price such that the demand that arrives from the current time till
t, at this price, is equal to the specified quantity q.

11In case of multiple resources, the simple generalization is to set
the total price additively over the different types of resources. We
choose to focus on additive pricing due to its simplicity and good
economic properties (e.g., splitting a request is never beneficial).

12Yet, we present the predictors using both the demand function and
its inverse. Moving between the two is straightforward.

In general, one cannot expect future demand to be determined
deterministically – thus a prediction would, in its most general
form, be required to specify a probability distribution over prices
that will result in selling the specified quantity. As such an object
would be hard to work with, our basic implementation simplifies
the prediction problem, and requires the predictor to only specify a
single price for each demand quantity, as if demand is determinis-
tic. Such an approach is justified when the total demand is a result
of the aggregation of a large number of independent requests. In
that case the demand will be concentrated and the single expected
price will reasonably approximate the price distribution.

Data-based predictors: prediction based on historic
data.

ERA’s predictor – the demand oracle – builds its estimations
based on historic data of job requests. It gets as input a list of
past requests, and learns, for every time t, the demand curves (i.e.,
the demand as a function of price) according to the demand in the
list. Of course, this approach presents multiple challenges: first,
there is the “cold start” problem – as ERA defines a new interface
for job requests, there are no past requests of the form that ERA
can use to learn. Second, the success of the prediction depends on
the ability to determine cycles in the demand, such as day-night or
days of the week. In addition, the learning methods must also over-
come sampling errors and address the non-deterministic nature of
the demand (as discussed above).

Our first implementation of a data-based predictor puts these
challenges aside and aims to suggest an approach to address an
additional major challenge: the time flexibility of jobs. Essentially,
the problem is that we expect the predictor to provide the instan-
taneous demand, while in ERA the requests are for resources for
some duration, within a window of time that is usually longer than
the duration. Thus, we should answer the following question: how
should a job request affect the predicted demand in its requested
time window?

The naive approach would be to spread the demand over the win-
dow, e.g., a request of 10 cores for 5 minutes over a window of 50
minutes would contribute 1 core demand in each of the 50 minute
window. However this may not reflect the actual demand we should
expect. For example, consider the input of low-, medium-, and
high-value jobs. Each type asks for 100% of the capacity, where the
high-value jobs can run only during the day and the low- and the
medium-value jobs can run either day or night. Using the spreading
approach we count the demand of the high-value jobs at day, and
spread the low- and medium-value jobs over day and night, such
that at night we obtain a demand of 50% of the low- and 50% of
the medium-value jobs. Using this demand gives the impression
that we can fill only half of the capacity using the medium-value
jobs at night, and so we will set the price to be too low, and will
accept low-value jobs at the cost of declining medium-value ones.

We suggest that this problem can be overcome by taking a dif-
ferent approach based on the LP relaxation of the problem. The
LP-based predictor runs a linear program, offline, to find the op-
timal (value-maximizing) fractional allocation over past requests,
and predicts the demand at time t using the fractional optimal allo-
cation at that time. Note that this LP requires many variables – one
variable for every job and every time in the job’s time window, and
the number of degrees of freedom may be large, and so one may
suspect that the predicted demand will be very different at differ-
ent times that are experiencing essentially the same demand. Our
preliminary empirical tests suggest that this LP-based approach is
stable, yet future work should test this further and establish theo-
retical justifications for the approach.

639

4. THE ERA SYSTEM AND SIMULATIONS
ERA is a complete working system: it is implemented as a soft-

ware package that provides the interfaces described above together
with basic implementations of the pricing, scheduling, and predic-
tion algorithms, which are pluggable and can be extended or re-
placed. In addition, the system contains a simulation platform that
can simulate the execution of an algorithm given a sequence of job
requests and a model of the underlying cloud, using exactly the
same core code that is interfaced with the real cloud and users. See
the system architecture in Figure 1 and a screen-shot of the simula-
tor in Figure 2.

We have performed extensive runs of ERA within the simulator
as well as proof-of-concept runs with two cloud systems: Hadoop/
YARN and Microsoft’s Azure Batch simulator. Next we present a
few of these runs to demonstrate the large potential gains of moving
from the simple cloud-pricing systems, like the ones currently in
use, to ERA – the Economic Resource Allocation system – and to
demonstrate the ability of the ERA system to integrate with existing
cloud systems.

The importance of economic allocation.
We first demonstrate the ability of the ERA system to improve

the efficiency of cloud resource usage significantly, by considering
the jobs’ values. We use the simulator with input of jobs that were
sampled according to distributions describing a large-scale MapRe-
duce production trace at Yahoo [9], after some needed modifica-
tions of adding deadlines and values that were not included in the
original trace. In this input, there are 6 classes of jobs, and about
1,400–1,500 jobs of each class. Jobs of class “yahoo-5” have the
largest average size, and we set them to have a low average value
per unit of $1, while we set jobs of all other classes to have a high
value per unit of $10, to model high-value production jobs. The
cluster is way too small to fit all jobs.

We compare ERA’s Basic-Econ scheduling algorithm with a gre-
edy algorithm that does not take into account the values of the jobs,
but instead charges a fixed price per resource unit, and that sched-
ules the job to run at the earliest possible time within its requested
time window. The simulation shows that the greedy algorithm pop-
ulates most of the cluster with the large, low-value jobs (of class
yahoo-5) and results in a low efficiency of only 10% of the total
requested value. In sharp contrast, ERA’s Basic-Econ algorithm,
which is aware of the values of the jobs and uses dynamic pric-
ing to accept the higher-value jobs, achieves 51% of the requested
value (note that getting 100% is not possible as the cloud is too
small to fit all jobs).

ERA–Rayon integration.
We next demonstrate that it is feasible to integrate ERA with a

real cloud system by showing that the cloud succeeds in running
real jobs using ERA. In addition, we show that the ERA simulator
provides a good approximation to the outcome of the real execu-
tion.

We have fully integrated ERA with Rayon [10], which is a cloud
system that handles reservations for computational resources, and
is part of Hadoop/YARN [31] (aka MapReduce 2.0). The inte-
gration required, first, that we introduce economic considerations
into the Rayon system, as Rayon’s original reservation mechanism
did not consider the reservations’ monetary valuations. Next, we
plugged ERA’s core code into Rayon’s reservation and scheduling
process, by adding a layer of simple adapter classes that bridge be-
tween ERA’s and Rayon’s APIs. The bridging layer configured
Rayon to completely follow ERA’s instructions via the getCur-

rentAllocation method (see Section 2.3.2), but made one extension
to this query: it added an “empty allocation” (i.e., allocation of zero
resources), for jobs that are during their reservation time-window
but are currently not allocated resources. Rayon opened a queue for
each job that was returned by ERA, including jobs with an empty
allocation, and thus it was able to run jobs earlier than they were
scheduled when it was possible.

We tested the integration by using a workload of MapReduce
jobs that we generated using the Gridmix13 platform. The jobs read
and wrote synthetic data from files of 100 GB created for this pur-
pose. Eight hundred and fifteen jobs were processed, all of which
finished successfully. They arrived during a period of one hour,
asked on average for 3 GB memory, for a duration of 60 seconds
on average (σ = 6 seconds). The cluster consisted of 3 nodes, of
80 GB memory each. Rayon’s resource manager was configured
to use ERA with the simplest greedy algorithm (described above)
that allocates a single resource – GB of memory (as the version of
Rayon at the time allocated only memory).

We ran the same job workload in the ERA simulator, with the
same greedy algorithm, and a cloud model that communicates with
ERA every second with no failures. The comparison between these
two runs – over Rayon (Hadoop) system and in the simulator –
shows that the simulator gives a good approximation to the per-
formance of ERA on a cloud system. We found that jobs were
scheduled and running on approximately similar points in time and
had similar durations. The main difference between the two runs is
that while the simulator assigns jobs a constant capacity throughout
their (simulated) execution, the real cluster changes their capacity
according to various system considerations that are out of ERA’s
control. The total allocation obtained in these two runs (GB*sec)
was similar: 76,730 using the simulator vs. 77,056 in the real cloud.

Testing Azure Batch.
The next set of simulations shows the advantage of using ERA

over existing algorithms when applied on a cloud scale. In a typ-
ical cloud environment, we cannot expect one instance of ERA to
have complete control of millions of cores. Thus, our goal here is
to evaluate whether ERA will work with a subset of cores in a re-
gion, even while the underlying resource availability is constantly
changing.

The simulations were of a datacenter consisting of 150K cores.
ERA was given access to 20% of the resources and the remain-
ing 80% were allocated to non-ERA requests, which were modeled
using the standard Azure jobs. This means that resources were con-
stantly being allocated/freed in the underlying region and ERA had
to account for this. The 20% of the resources under ERA’s manage-
ment came from the pre-emptible resources, but the design does not
restrict its use to pre-emptible resources alone. ERA itself was run
as a layer on top of the Azure Batch simulator, which simulates
batch workloads on top of the Azure simulator of Microsoft.

ERA’s Basic-Econ scheduling algorithm was experimented rela-
tive to two other algorithms: (1) the on-demand algorithm, which
accepts jobs if there are enough available resources to start and run
them (availability is checked only for the immediate time, ignoring
the duration that the resources are requested). It schedules accepted
jobs to run immediately and charges a fixed price; (2) the greedy
(“FirstFit”) algorithm (described above), which charges the fixed,
discounted, price of 65% of the non-pre-emptible resources price.

A common practice in the industry is to bound the maximal dis-
count over non-pre-emptible machines. Accordingly, in our exper-
iments ERA’s Basic-Econ algorithm was restricted so that the price

13http://hadoop.apache.org/docs/r1.2.1/gridmix.html

640

Figure 3: ERA over Azure Batch – simulation results (axis
scales removed). ERA’s econ algorithm dominates on-demand
and first-fit algorithms in terms of the two desired measures of
revenue and percentage of late jobs.

would be no higher than the non-pre-emptible jobs and would give
no more than 35% discount. Several variants of the econ algorithm
were explored: (1) using either a linear predictor that is based on
prior knowledge of the job distributions, or a predictor that uses
past observations; (2) with or without an exponential penalty for
later scheduling. Each of the variants was tested at a different ca-
pacity of the algorithm’s use, so that the higher the capacity the
fewer the resources that remained as spares for re-running failed
jobs.

All jobs in the simulation workloads requested a time-window
that started at their request-time (i.e., jobs did not reserve in ad-
vance). As ERA was getting 20% of the resources, we wanted to
evaluate two measure metrics: (1) late-job percentage: this is the
percentage of jobs that finished later than their deadlines; (2) ac-
cepted revenue: as we can charge only for jobs that are accepted,
the better the algorithm, the more jobs we can accept. Figure 3
shows that ERA’s econ algorithm dominates the other algorithms
in terms of these two desired measures.

5. GRAND CHALLENGES
Clearly, the main challenge is to get the ERA system integrated

in a real cloud system, and interface with real paying costumers.
Short of this grand challenge, there are many research challenges.
In this section we describe several challenges of a practical and the-
oretical nature related to the ERA (Economic Resource Allocation)
project.

5.1 Job Scheduling
There is a vast literature on job scheduling both in the stochas-

tic and adversarial models. The most obvious related model is job
scheduling with laxity, which is the difference between the arrival
time and the latest time in which the job can be scheduled and still
meet the deadline. The current issues that are raised by our frame-
work give rise to new challenges in both domains. In our setting
it is very reasonable to assume that any job requires only a small
fraction of the total resources, and that the laxity is fairly large com-
pared to the job size. An interesting realistic challenge is to have a
job give a tradeoff between time (to run) and resources (number of
machines), which depends on the degree of parallelism of the job.
Another interesting challenge is to exhibit a model that interpolates

between the stochastic model, which gives a complete model of
the job arrival process, and the adversarial model, which does not
make any assumptions. It would be nice to have a model that would
require only a few parameters and be able to capture many arrival
sequences. Finally, jobs of a reoccurring nature would be very in-
teresting to study both in the stochastic and adversarial models.

5.2 Pricing
In our model we assume that the user has both a clear deadline

in mind and an explicit bound on the length of the job. It would be
interesting to give a more flexible guarantee, which would help the
user to set his preferences in a less conservative way. For example,
one could allow the job to run after it exhausts its resources at a
certain cost and at a slightly lower priority for a certain additional
amount of time. Another similar guarantee is that the user would
have his “preferred deadline” and his “latest deadline” with a guar-
antee that most jobs finish at the preferred deadline. All this is
aimed at a more flexible Quality of Service (QoS) guarantee by the
system. Pricing such complex guarantees is a significant practical
and theoretical challenge.

From the theoretical side, it would be nice to give theoretical
guarantees to our system. First, to show that the users have an
incentive to report their information truthfully, and not to try and
game the system, or at least achieve this approximately. Second, to
show that the system reaches a satisfiable steady state (e.g., show-
ing an appropriate equilibrium notion and a related price of anar-
chy).

5.3 Learning
Our proposed framework requires a significant component of

learning. Much of the learning depends on the observed time se-
ries from the past that would be used to predict future requests.
A clear challenge in our setting is to accommodate seasonality ef-
fects (daily, such as day versus night; weekly, such as work week
versus weekend; annual, such as holidays). Such challenges are
well known in the time-series literature. A more interesting effect
is that we have a system where the available resources and the de-
mand are constantly growing, and the challenge is to bundle the two
forecasts or somewhat separate them. It seems that our prediction
model would need a more refined prediction than only the expected
value, but for many of our forecasting applications we need to get
more detailed information.

An additional uncertainty is that our system might be unable to
see certain requests since the user decides that they were unlikely
to be accepted and therefore never submitted them. For example,
if a more important job is already rejected due to a low value, less-
important jobs might be not submitted, and thus the prediction of
the demand is even more challenging, given this partial informa-
tion.

Finally, learning should not be limited only to the forecast of de-
mand, but should also forecast the accuracy of the requests. Since
in the current system we require that the job will not exceed its
maximum length, it is likely to be a conservative estimate, and
learning what is the “actual” demand might free significant re-
sources.

5.4 Robustness
For any practical system to run it needs a significant level of

robustness. Robustness should take into account both planned and
unexpected failures in the various resources. Modeling this might
be done as part of the greater challenge of a QoS guarantee. We
should study what kind of an extreme-case guarantee can we give.

641

References
[1] Apache Hadoop Project. http://hadoop.apache.org/.

[2] V. Abhishek, I. A. Kash, and P. Key. Fixed and market pricing for
cloud services. arXiv preprint arXiv:1201.5621, 2012.

[3] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir.
Deconstructing amazon ec2 spot instance pricing. ACM Transactions
on Economics and Computation, 1(3):16, 2013.

[4] Amazon. Amazon elastic mapreduce. At http://aws.amazon.
com/elasticmapreduce/.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwin-
ski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al. A view of cloud
computing. CACM, 53(4):50–58, 2010.

[6] Y. Azar, I. Kalp-Shaltiel, B. Lucier, I. Menache, J. S. Naor, and
J. Yaniv. Truthful online scheduling with commitments. In Proceed-
ings of the Sixteenth ACM Conference on Economics and Computa-
tion, pages 715–732. ACM, 2015.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtu-
alization. In ACM SIGOPS Operating Systems Review, volume 37,
pages 164–177. ACM, 2003.

[8] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and
L. Zhou. Apollo: Scalable and coordinated scheduling for cloud-scale
computing. In OSDI, pages 285–300, Broomfield, CO, Oct. 2014.
USENIX Association.

[9] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The case for evaluat-
ing mapreduce performance using workload suites. In Symposium on
Modelling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems, 2011.

[10] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan,
and S. Rao. Reservation-based scheduling: If you’re late don’t blame
us! In SoCC, 2014.

[11] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca.
Jockey: guaranteed job latency in data parallel clusters. In Proceed-
ings of the ACM European Conference on Computer Systems, Eu-
roSys, 2012.

[12] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica. Dominant resource fairness: Fair allocation of multiple re-
source types. In NSDI, volume 11, pages 24–24, 2011.

[13] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella.
Multi-resource packing for cluster schedulers. In ACM SIGCOMM
Computer Communication Review, volume 44, pages 455–466. ACM,
2014.

[14] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The cost of a
cloud: research problems in data center networks. ACM SIGCOMM
computer communication review, 2008.

[15] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica. Mesos: a platform for fine-grained
resource sharing in the data center, 2011.

[16] N. Jain, I. Menache, J. S. Naor, and J. Yaniv. A truthful mechanism
for value-based scheduling in cloud computing. Theory of Computing
Systems, 54(3):388–406, 2014.

[17] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthym, A. Tu-
manov, and et. al. Morpheus: Towards automated slos for enterprise
clusters. In OSDI, 2016.

[18] K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chaliparambil, G. M.
Fumarola, S. Heddaya, R. Ramakrishnan, and S. Sakalanaga. Mer-
cury: Hybrid centralized and distributed scheduling in large shared
clusters. In ATC, 2015.

[19] C. Kilcioglu and J. M. Rao. Competition on price and quality in cloud
computing. In WWW, 2016.

[20] I. Menache, A. Ozdaglar, and N. Shimkin. Socially optimal pricing
of cloud computing resources. In ICST Conference on Performance
Evaluation Methodologies and Tools, 2011.

[21] I. Menache, O. Shamir, and N. Jain. On-demand, spot, or both: Dy-
namic resource allocation for executing batch jobs in the cloud. In
11th International Conference on Autonomic Computing (ICAC 14),
pages 177–187, 2014.

[22] P. Menage, P. Jackson, and C. Lameter. Cgroups. Available on-line at:
http://www.mjmwired.net/kernel/Documentation/
cgroups.txt, 2008.

[23] D. Merkel. Docker: lightweight linux containers for consistent devel-
opment and deployment. Linux Journal, 2014(239):2, 2014.

[24] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow:
Scalable scheduling for sub-second parallel jobs. Technical Report
UCB/EECS-2013-29, EECS Department, University of California,
Berkeley, Apr 2013.

[25] J. Rasley, K. Karanasos, S. Kandula, R. Fonseca, M. Vojnovic, and
S. Rao. Efficient queue management for cluster scheduling. In Pro-
ceedings of the Eleventh European Conference on Computer Systems,
page 36. ACM, 2016.

[26] D. Sarkar. Introducing hdinsight. In Pro Microsoft HDInsight, pages
1–12. Springer, 2014.

[27] B. Sharma, R. K. Thulasiram, P. Thulasiraman, S. K. Garg, and
R. Buyya. Pricing cloud compute commodities: a novel financial eco-
nomic model. In IEEE-CCGRID, 2012.

[28] Y. Song, M. Zafer, and K.-W. Lee. Optimal bidding in spot instance
market. In INFOCOM, 2012 Proceedings IEEE, pages 190–198.
IEEE, 2012.

[29] M. A. team. Azure batch: Cloud-scale job scheduling and compute
management. In https://azure.microsoft.com/en-us/
services/batch/, 2015.

[30] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch, M. Harchol-Balter,
and G. R. Ganger. Tetrisched: global rescheduling with adaptive plan-
ahead in dynamic heterogeneous clusters. In Eurosys, 2016.

[31] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, et al. Apache hadoop
yarn: Yet another resource negotiator. In ACM - SoCC, 2013.

[32] A. Velte and T. Velte. Microsoft virtualization with Hyper-V.
McGraw-Hill, Inc., 2009.

[33] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes. Large-scale cluster management at google with borg. In
Eurosys, 2015.

[34] C. A. Waldspurger. Memory resource management in vmware esx
server. SOSP, 2002.

[35] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica. Delay Scheduling: A Simple Technique for Achieving
Locality and Fairness in Cluster Scheduling. In Eurosys, 2010.

642

http://hadoop.apache.org/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
http://www.mjmwired.net/kernel/Documentation/cgroups.txt
http://www.mjmwired.net/kernel/Documentation/cgroups.txt
https://azure.microsoft.com/en-us/services/batch/
https://azure.microsoft.com/en-us/services/batch/

	Introduction
	The Economic Challenge and ERA's Approach
	An Overview of ERA

	The ERA Model and Architecture
	The Bidding Reservation Model with Dynamic Prices
	The Cloud Model
	The ERA Architecture
	ERA-User Interface
	ERA-Cloud Interface

	Algorithms
	Scheduling and Pricing Algorithms
	Demand Prediction

	The ERA System and Simulations
	Grand Challenges
	Job Scheduling
	Pricing
	Learning
	Robustness

