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these heterogeneous signals. On the member profile side, we
have categorical attributes that are high dimensional, e.g.,
there are millions of companies but more than half of them
have less than 50 employees. Moreover, some attributes are
single-valued per member (e.g., final education), while other
attributes are multi-valued (e.g., skill set). On the career
path side, we have a sequence of job positions (i.e., company
and job title). A comprehensive model that can handle both
signals is needed.

To simultaneously capture the two types of signals, we
propose a contextual LSTM model, named NEMO, inspired by
the huge success of neural networks in the several areas (e.g.
speech recognition [9] and natural language processing [21]).
The proposed model follows the encoder-decoder architec-
ture that can learn effective latent representations/embeddings1

for the objects (e.g., skills, companies). In particular, the
encoder maps multiple heterogeneous profile attributes into
a fixed-length context vector. Concretely, the model first
generates the representation for the employee’s skill sets by
aggregating the embeddings of the skills that the employee
has, and then further aggregates the skill set representation
with that of the employee’s education and location represen-
tations. The resulting combined representation would be the
employee’s context vector. The decoder, on the other hand,
maps the context vector to the employee’s sequence of posi-
tions. We take advantage of the Long Short-Term Memory
(LSTM) recurrent neural network [10] to pass along the
long-term dependencies from the previous positions. Specif-
ically, the employee’s context vector is used as the initial
state of the LSTM network to generate the career path. The
hidden states in LSTM capture not only the contextual in-
formation, but also the dynamics along one’s career path.
LSTM is a natural fit in our setting, due to its proven capa-
bility in forming implicit compositional representations over
sequences [7].

We conduct the first large-scale experiments for predict-
ing career moves of individuals using a dataset with millions
of LinkedIn members. Our experiments show two findings.
First, by using signals from both the profile context and ca-
reer path, we achieve significantly better performance than
a number of strong baselines for predicting the next career
move. In particular, we empirically show that each of these
signals is crucial for making accurate predictions. Second,
the model which is trained end-to-end without injecting any
prior knowledge uncovers insightful patterns from our large-
scale analysis.

The main contributions of this paper are as follows:

1. Problem Formulation: We formally define theNext

Career Move Prediction, to predict an employee’s
next career move, i.e., his/her next company and title.
To the best of our knowledge, this is the first study of
large-scale analysis for predicting next career move.

2. Algorithm and Analysis: We propose NEMO, a con-
textual LSTM model that integrates the profile context
as well as career path dynamics.

3. Empirical Evaluations: We conduct extensive ex-
periments on a real-world, large-scale LinkedIn dataset
with millions of users and demonstrate the superiority

1We use representation and embedding interchangeably in
the paper.

Table 1: Table of symbols
Symbols Definition

J u = {Ju

1 , J
u

2 , . . . , J
u

n} user u’s working experience
Ju

i = (lui , c
u

i , t
u

i ) user u worked at company cui with title lui
starting from time tui

Su = {s1, s2, . . . , sm} user u’s skills set
hu user u’s education institute
ru user u’s current location

U , L, C, K, H, R the collections of all users, titles, compa-
nies, skills, schools, locations

of our model compared to several strong state-of-the-
art baselines.

4. Qualitative Insights: We draw interesting insights
from the prediction case studies as well as career path
sampling.

The rest of the paper is organized as follows. Section 2 for-
mally defines Next Career Move Prediction. Section 3
proposes our model. Section 4 presents the experimental
results. Section 5 reviews the related work and the paper
concludes in Section 6.

2. PROBLEM DEFINITION
In this section, we present the notations used throughout

the paper (summarized in Table 1), and formally define the
Next Career Move Prediction problem.

LinkedIn is the world’s largest professional network where
members can create their professional profiles and seek jobs.
Users can share their working experience by reporting the
employers they have worked for. Specifically, a user u’s
working experience can be summarized as J u = {Ju

1 , J
u

2 , . . . ,

Ju

n}, where Ju

i is user u’s i-th job position, denoted by a tu-
ple, i.e., Ju

i = (lui , c
u

i , t
u

i ), indicating that user u worked at
company cui with title lui starting from time tui . Besides the
working experience, users can also add skills on the profile or
get their skills endorsed. For example, a user might be good
at Data Mining, Machine Learning and Pattern Recognition.
We denote user u’s skills set by Su = {su1 , s

u

2 , . . . , s
u

m}, where
each sui is a specific skill, e.g., Hadoop. The user can also re-
port their education background in their profile. The user’s
location (e.g., San Francisco Bay Area) is denoted by ru.
For simplicity, we only consider user u’s highest education
institute and denote it by hu. Let U , L, C, K, H and R be
the collections of all users, titles, companies, skills, schools
and locations, i.e., u ∈ U , lui ∈ L, cui ∈ C, Su ⊆ K, hu ∈ H
and ru ∈ R. Note that all the entities (e.g., titles, compa-
nies) are standardized, e.g., the two different titles Senior
Software Engineer and Sr. Software Engineer are mapped
to the same item in L. In the paper, we use bold lower-
case letters for vectors, e.g., we use su1 , . . . , s

u

m to denote the
embedding vectors of skills su1 , . . . , s

u

m, and bold upper-case
letters for matrices (e.g., W). Also, we represent the el-
ements in a matrix using a convention similar to Matlab,
e.g., W(:, j) is the jth column of W, etc.

With the above notations, the problem of predicting each
individual’s next career move can be formally defined as fol-
lows:

Problem 1. Next Career Move Prediction

Given: the working experience of all users J u1 , . . . ,J u|U|

observed up to a timestamp T , the skills sets Su1 , . . . ,Su|U| ,

506



the education institutes hu1 , . . . , hu|U| and the locations
ru1 , . . . , ru|U| of all users

Predict: the user u’s next career move, including title l|Ju|+1

∈ L and company c|Ju|+1 ∈ C, after time T .

As an illustrative example, Figure 1 shows one LinkedIn
member’s working experience. We can see that the member
worked as a research staff member at IBM Almaden Re-
search Center from Dec. 2010 to June 2013. Suppose we
can observe the member’s career history up to June 2013,
the problem is to predict the member’s next title and com-
pany after June 2013, that is, staff researcher at LinkedIn in
this case.

Dec. 2008 Aug. 2010 Dec. 2010 June 2013 Feb 2015

Time

Observed Predict

Figure 1: One LinkedIn member’s working experi-
ence.

3. PROPOSED SOLUTIONS
In this section, we present our solution for Problem 1.

We start with the design objectives for the Next Career

Move Prediction, and then present the details of our NEMO
predictive model, followed by the model learning.

3.1 Design Objectives
From the prediction perspective, we focus on leveraging

all the information available in the user’s LinkedIn profile.
To be specific, we want to achieve the following two design
objectives:

• Profile context matching. The three most salient sec-
tions in LinkedIn members’ profile that are indicative
of users’ career are Skills, Education and Location.
Skills are a critical asset for individuals and differ-
ent jobs have different requirements for skills. Match-
ing skills and jobs has become a high-priority pol-
icy concern. For instance, an individual with strong
skills in machine learning and data mining is more
likely to move to a research scientist position in a high
tech company than an accountant position in a bank.
The next important attribute we consider is education.
A Carnegie Mellon University graduate might have a
higher chance to work in the tech industry compared
to a university best known for its law major. Last
but not least, location of job seekers also biases where
they would eventually go. Companies in the Bay Area
are generally more attractive to Bay Area job seekers
compared to New York based companies. Being able
to incorporate all these contextual information proves
to be the key to match top talents and companies. For
simplicity, we assume that all these profile attributes
are static and fixed.

• Career path mining. Another important signal for the
career move is user’s current position. It is natural
to assume that the next position is highly correlated

to the current one and existing work incorporating
this information show great improvement upon static
methods [28, 33]. However, most professionals might
have more than one jobs throughout their career his-
tory, and considering only the last position misses the
bigger picture of one’s professional life. It is the knowl-
edge and the experiences built up through one’s entire
career history that prepares the candidate for future
opportunities. It is thus desirable for us to learn the
entire career trajectory in order to infer the next move.

In Section 4, we will show that each of these design ob-
jectives is so crucial in predictive performance that we need
to incorporate both in the model.

3.2 NEMO - An Encoder-Decoder Architec-
ture

We carefully design our predictive model to fulfill the
above objectives. The proposed model follows the encoder-
decoder architecture depicted in Figure 2. The encoder
maps the multiple heterogeneous profile contexts into a fixed-
length vector, which we refer to as context vector and the
decoder maps the context vector to a sequence of positions.
Such neural network model is able to compute the condi-
tional probability of the output career path given the in-
put user’s profile information. Success of similar framework
has been shown in machine translation where one encodes
a source language sequence to a vector and then decodes to
the target language sequence [29].

3.2.1 Encoding the Context Representation

We want to learn a compact representation of the context
information from users’ profile. The attributes are usually
high-dimensional categorical features that bear no notion of
similarity and do not generalize well. One way to encode
these discrete entities is to use embeddings inspired by the
success of distributed representations of words in natural
language processing tasks [23].

We now explain how we construct embedding for user’s
profile attributes and begin with skill embedding. Let {su1 , s

u

2 ,

..., sum} be the set of user u’s skills embeddings. Note that
each user has different number of skills, from as few as one
skill to more than 10 skills. To ensure that each user has em-
bedding with the same dimension, we use a pooling method
across skill embedding vectors. In particular, we perform
max-pooling to get a single skill vector,

su = max(su1 , s
u

2 , . . . , s
u

m), (1)

where max(·) is applied dimension-wise. The intuition is
that a user’s top skills might dominate more in the career
move. Note that we also tested other pooling methods such
as average pooling but found that max-pooling performs the
best, which aligns with the finding in [33]. Next attributes
are user’s school and location. We concatenate their embed-
dings with skill embedding, and feed it through a one-layer
neural network as follows:

vu = tanh
(

Wv[s
u
,hu

, ru]T + bv

)

, (2)

where hu and ru are the user’s school and location embed-
dings, [·, ·, ·] concatenates the vectors and Wv and bv are
the projection matrix and bias vector, respectively. The fi-
nal output vu from the encoder captures the correlations of
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softmax” strategy to approximately maximize Eq. (4). The
basic idea is instead of performing softmax over the entire
output space, we randomly sample a subset (e.g. 50) of
companies/titles and do the softmax over this much smaller
space. We omit details here for space limit and refer inter-
ested readers to [17] for more rigorous derivations.

After learning, it becomes straightforward to predict the
user’s next career move. Suppose we have observed a user
u’s career path until time T , and want to predict what u’s
next company and title would be. We can first obtain the
hidden states vector mT , which captures all the contextual
information and the career path dynamics up until time T .
We then predict the next company and title using the full
softmax to get the full distribution over the next company,
title and select the top-K most probable results.

3.4 Discussion
We will show in Section 4 that NEMO gives superior pre-

dictive performance. In addition to the predictive power,
however, we also note that our model allows us to sample
career trajectories from a given member profile. In other
words, our model essentially defines probability distribution
of career given the contextual profile. With this generative
ability, we can answer questions like “what kinds of career
path does a Stanford Computer Science graduate have?”.
Such insight will be useful for students who are applying
for graduate schools. We will show some of sampled career
paths in Section 4.4.2.

4. EMPIRICAL EVALUATIONS
In this section, we present the experimental evaluations.

The experiments are designed to inspect the following as-
pects: (1) Effectiveness: how accurate are the proposed NEMO

model for predicting next career move? and (2) Insights:
what insights can we draw from the model?

4.1 Dataset
We use the real-world data from LinkedIn to evaluate the

proposed model. In particular, we construct two datasets as
follows. (1) Computer, which consists of members from the
following industries: “computer software”, “internet”, “com-
puter hardware”, “computer networking” and “information
technology and services”; and (2) Finance, which consists of
members from the following industries: “banking”, “financial
services”, “investment banking”, “investment management”.
Industries are pre-defined by LinkedIn for users to choose.
Both datasets span from the inception of LinkedIn service
to 09/24/2016. For preprocessing, we remove members with
no positions or with more than 20 positions reported in their
profile. We also remove skills, companies, titles and schools
that appear less than 10 times in the dataset. The positions,
i.e. tuples of company and title, observed up to 12/01/2015
are used for training the model and the task is to predict
the first new position (i.e., both company and title) after
12/01/2015. The statistics of the two datasets after prepro-
cessing are summarized in Table 2.

4.2 Experimental setup
Evaluation Metric: We use the Mean Percentile Rank-

ing (MPR) [16] to evaluate the quality of the prediction.
Let Utest be the set of members who have a new position
during the testing period. The MPR for both the company

Table 2: Statistics for our two datasets. Note that
only the scale is reported for the privacy concern.

#members >1M
#skills >10K

#companies >100K
#titles >10K
#schools >1K
#locations >100

#training positions >10M
#testing positions >100K

and title prediction can be computed as follows:

MPR(c) =
1

|Utest|

∑

u∈Utest

1

|C|
rank(c∗u)

MPR(l) =
1

|Utest|

∑

u∈Utest

1

|L|
rank(l∗u),

where rank(c∗u) and rank(c∗u) are the rank of user u’s actual
company c∗u and actual title l∗u, and the rank is obtained by
sorting the model’s prediction scores. Lower values are more
desirable as they indicate the model can rank the true com-
pany/title higher in the ranking list. Note that classic classi-
fication metrics (precision and recall) are ranking-agnostic,
and the Mean Average Precision (MAP) and Normalized
Discounted Cumulative Gain (NDCG) at certain ranking
position are too coarse given there is only one ground-truth
in the ranking list.

Comparison Methods: We compare our NEMO with the
following strawmen and state-of-the-arts:

• Top: always recommend the most popular company/title.

• Bigram: estimate the transition probability using a
simple counting method. This is a consistent estimator
under the first-order Markov assumption. It is usually
a strong baseline when the data is not sparse.

• Context Only: use only the contextual information
of users without considering the career path to recom-
mend the next position.

• MC: Markov Chain sequential model [28] that em-
beds each company and title into the semantic space
and consider only the previous company/title in the
prediction phase.

• HRM: Hierarchical Representation Model [33] that
simply aggregates the embeddings of all the previous
companies/titles through max-pooling to make the pre-
diction.

• LSTM: use only LSTM to explore the whole career
path without the profile context. This model was re-
cently applied in the next item recommendation by
[36].

• NEMO: the context-aware LSTM model proposed by
this paper, which encodes different contextual infor-
mation from a member into a latent vector represen-
tation, and then learns to decode the members’ career
trajectory based on this vector.
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Table 4: Prediction case study for 2 users. We list users’ previous position, ground-truth next position, top
5 predicted companies and titles from left to right in the table. Bigram model ranks the Southwest Airlines

at 125th place for the first user (top row) where Context Only method ranks it at 146th. For second user
(bottom row), Bigram ranks USPTO at 1319 whereas Context Only ranks at it 395.

previous position Ground-truth next position Top 5 recommended company Top 5 recommended Title

Senior Project Manager at
Fidelity Investments

Project Manager at
Southwest Airlines

Fidelity Investments
American Airlines

Southwest Airlines
Epsilon

Bank of America

Senior Project Manager
Project Manager

Technical Project Manager
Senior Technical Project Manager

Program Manager

Software Architect/Tech Lead at
Bureau of Labor Statistics

Consultant at
United States Patent

and Trademark Office (USPTO)

Fannie Mae
USPTO
FINRA

Lockheed Martin
Freddie Mac

Technical Lead
Senior Software Engineer

Consultant
Senior Consultant
Solutions Architect

→ Technology Strategist at Citi → Relationship Manager at
Citi → Vice President at Morgan Stanley → Vice President
Brokerage at JPMorgan Chase. As can be seen, both mem-
bers have a rising career trajectory. These sampled career
trajectories can provide guidance to students in terms of
university and major selections. Note that NEMO is the first
model that can draw sample career trajectories given mem-
bers’ attributes since it handles both profile context and
career sequence.

5. RELATED WORK
In this section, we review related work in terms of (a)

labor mobility, and (b) representation learning.
Labor Mobility. Quantifying and modeling labor mo-

bility has been extensively studied in the economics litera-
ture. Early work combine a search model with a matching
model to identify reasons behind workers’ move from job
to job as well as move into and out of the labor markets
and develop the view that the move is because of changes
in the perceived value of workers’ market opportunities [18].
The Labor Force Survey data has been examined to estab-
lish several key facts regarding the properties of the labor
market flows, including the transition probabilities between
employment, unemployment and inactivity [11]. Tools from
the network science have been brought into economics to
characterize the properties of the labor flow network among
the different companies and prove to be useful in identify-
ing firms with high growth potential [14]. Thanks to the
availability of massive datasets providing individuals’ career
path, large-scale studies of the labor flow become possible.
Academia, as a particular job market, exhibits a unique ca-
reer movement pattern that is characterized by a high degree
of stratification in institutional ranking [6]. The impact of
such movement on scientists’ research performance has also
been quantified. Job recommendation with emphasis on the
tenure is effective in improving the utility of the system, i.e.,
making the recommendation at the right time when the user
is likely to change the job is critical [32]. The career trajec-
tories can be employed as professional similarities between
two individuals by first aligning the sequences and then ex-
tracting the temporal and structural features [34].

[26] is one of the seminal papers on predicting individual’s
career transition. We note that our work differentiates itself
from [26] in that our work leverages a full career trajectory
while their is solely based on profile information, and our
work conducted a very large scale predictive task with mil-
lions of users while they did with less than 100,000 users.

Representation Learning. Representation learning aims
to learn good feature representation for input entities with-
out hand-crafting rules. It has shown promising results in
many application domains, ranging from natural language
processing [23], network science [27] to health care [5]. In
NLP, skip-gram model [23] learns embedding for words by
predicting a word’s surrounding words and the embeddings
learned exhibit linguistic regularities that have analogy to al-
gebraic operations [25]. The task of fine grained entity type
classification can also be addressed by embedding methods
on labels [35]. In computer vision, Multi-model concept rep-
resentations from the concatenation of linguistic representa-
tion vectors and visual concept representation vectors have a
substantial performance gain on some semantic relatedness
evaluation tasks [19]. The image and sentence embeddings
can also be jointly learned in the same space and is shown to
be effective for ranking images and descriptions and is able
to capture multi-model regularities [20]. Some recent efforts
in network science have been devoted to learn embeddings
for vertices in a network that can encode the structural rela-
tions. DeepWalk [27], in particular, applies skip-gram model
to the truncated random walks and achieve improvement on
multi-label classification tasks on several social networks.
Richer representations can be learned through a biased ran-
dom walk procedure [13]. LINE [30] learns network embed-
dings by optimizing a carefully designed objective function
that preserves both the first-order and second-order proxim-
ities. Several other use cases include representing physical
locations with spatial and temporal contexts modeled using
a recurrent model for the next location predictions [22] and
embedding the dynamics of baskets of items to enhance the
performance of next basket recommendation [36].

6. CONCLUSION
In this paper, we study the problem of Next Career

Move Prediction to predict an employee’s next career
move. We propose a contextual LSTM model named NEMO

that integrates the profile context as well as career path dy-
namics. The proposed model follows the encoder-decoder ar-
chitecture and we show significant improvements over strong
baselines. There are many interesting future directions. First,
it is desirable to provide interpretable predictions. We are
working on attention network to let the model focus on dif-
ferent skills for different positions. Second, user homophily
can be exploited from users’ social connections. It would be
interesting to see how one’s career is affected by their close
friends or colleagues. Third, our current model assumes that
attributes (e.g. skills) are static for simplicity, which might
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not be true in practice. It would be interesting to model
the dynamics of the attributes, resulting in a sequence-to-
sequence style model.
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