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ABSTRACT

With increased globalization and labor mobility, human re-
source reallocation across firms, industries and regions has
become the new norm in labor markets. The emergence
of massive digital traces of such mobility offers a unique
opportunity to understand labor mobility at an unprece-
dented scale and granularity. While most studies on labor
mobility have largely focused on characterizing macro-level
(e.g., region or company) or micro-level (e.g., employee)
patterns, the problem of how to accurately predict an em-
ployee’s next career move (which company with what job
title) receives little attention. This paper presents the first
study of large-scale experiments for predicting next career
moves. We focus on two sources of predictive signals: pro-
file context matching and career path mining and propose
a contextual LSTM model, NEMO, to simultaneously capture
signals from both sources by jointly learning latent represen-
tations for different types of entities (e.g., employees, skills,
companies) that appear in different sources. In particular,
NEMO generates the contextual representation by aggregat-
ing all the profile information and explores the dependencies
in the career paths through the Long Short-Term Memory
(LSTM) networks. Extensive experiments on a large, real-
world LinkedIn dataset show that NEMO significantly outper-
forms strong baselines and also reveal interesting insights in
micro-level labor mobility.
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1. INTRODUCTION

With increased globalization and labor mobility, human
resource reallocation across firms, industries and regions has
become the new norm in labor markets [14]. Such labor flow
is a vehicle that matches supply with demand, stimulates
circulation of knowledge at the regional and international
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scale and proves to be a forceful driver of innovation [4].
Given the large-scale digital traces of labor flows available
on the web (e.g., LinkedIn), it is of considerable interest
in understanding the dynamics of employees’ career moves
and the implications on the economy at both the micro and
aggregate levels.

Previous studies on labor mobility have mainly focused
on either the macro-level analysis (e.g., regions, companies)
or characterizing micro-level (e.g., individuals) labor mobil-
ity patterns. At the macro level, the employer-to-employer
flows are discovered to be procyclical and concentrated among
frequent job changers [2]. The labor flow network is proposed
to identify firms with high growth potential through the lens
of network science [14]. At the micro level, the career moves
of scientists across institutions are analyzed, and how the
moves shape and affect individual’s performance is quanti-
fied with scholarly data [6]. In the recommendation domain,
job recommendation models [1] are built based on whether a
user clicks or applies for the recommended jobs. The prob-
lem of how to predict an individual’s actual next job position
(not whether he/she clicks or applies for a job) received rela-
tively little attention [26]. In this paper, we present the first
large-scale analysis for predicting an individual’s next ca-
reer move (which company with what job title) for millions
of users. By modeling each individual differently, we achieve
better prediction accuracy and are able to provide personal-
ized recommendations for each individual from a perspective
different from existing job recommendation models [1].

Building personalized predictive model for individual’s ca-
reer is a challenging problem because there can be many fac-
tors behind a career move, e.g., education background, skill
set, or previous job history and so on. In this paper, we focus
on two types of signals that are available on LinkedIn: First
(profile context matching), the predicted next career move
should reflect an individual’s profile information, e.g., skills,
education, etc, otherwise the so called skills gap would come
in the way. An experienced engineer might find it difficult
to be competent for an accountant position. The profile at-
tributes can also mitigate the cold-start problem where we
do not observe any career history for new users. Second
(career path mining), the predicted next career move should
reflect the trajectory of one’s own past career path. The
knowledge and experience accumulated along the way pre-
pares a job seeker for the next move and it is very rare for
one to switch to an entirely new field.

To build a predictive model using the profile attributes
and career paths, the main challenge is how to integrate



these heterogeneous signals. On the member profile side, we
have categorical attributes that are high dimensional, e.g.,
there are millions of companies but more than half of them
have less than 50 employees. Moreover, some attributes are
single-valued per member (e.g., final education), while other
attributes are multi-valued (e.g., skill set). On the career
path side, we have a sequence of job positions (i.e., company
and job title). A comprehensive model that can handle both
signals is needed.

To simultaneously capture the two types of signals, we
propose a contextual LSTM model, named NEMO, inspired by
the huge success of neural networks in the several areas (e.g.
speech recognition [9] and natural language processing [21]).
The proposed model follows the encoder-decoder architec-

ture that can learn effective latent representations/embeddings’

for the objects (e.g., skills, companies). In particular, the
encoder maps multiple heterogeneous profile attributes into
a fixed-length context vector. Concretely, the model first
generates the representation for the employee’s skill sets by
aggregating the embeddings of the skills that the employee
has, and then further aggregates the skill set representation
with that of the employee’s education and location represen-
tations. The resulting combined representation would be the
employee’s context vector. The decoder, on the other hand,
maps the context vector to the employee’s sequence of posi-
tions. We take advantage of the Long Short-Term Memory
(LSTM) recurrent neural network [10] to pass along the
long-term dependencies from the previous positions. Specif-
ically, the employee’s context vector is used as the initial
state of the LSTM network to generate the career path. The
hidden states in LSTM capture not only the contextual in-
formation, but also the dynamics along one’s career path.
LSTM is a natural fit in our setting, due to its proven capa-
bility in forming implicit compositional representations over
sequences [7].

We conduct the first large-scale experiments for predict-
ing career moves of individuals using a dataset with millions
of LinkedIn members. Our experiments show two findings.
First, by using signals from both the profile context and ca-
reer path, we achieve significantly better performance than
a number of strong baselines for predicting the next career
move. In particular, we empirically show that each of these
signals is crucial for making accurate predictions. Second,
the model which is trained end-to-end without injecting any
prior knowledge uncovers insightful patterns from our large-
scale analysis.

The main contributions of this paper are as follows:

1. Problem Formulation: We formally define the NEXT
CAREER MOVE PREDICTION, to predict an employee’s
next career move, i.e., his/her next company and title.
To the best of our knowledge, this is the first study of
large-scale analysis for predicting next career move.

2. Algorithm and Analysis: We propose NEMO, a con-
textual LSTM model that integrates the profile context
as well as career path dynamics.

3. Empirical Evaluations: We conduct extensive ex-
periments on a real-world, large-scale LinkedIn dataset
with millions of users and demonstrate the superiority

We use representation and embedding interchangeably in
the paper.
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Table 1: Table of symbols

[ Symbols [ Definition
JY={Ji', JS, ..., J}} | user u’s working experience
Ji = (3 e ) user u worked at company c;’ with title ;'
starting from time ¢}’
S" = {s1,82,...,8m} | user u’s skills set
h" user u’s education institute

rt user u’s current location

U, L,C, K, H, R the collections of all users, titles, compa-
nies, skills, schools, locations

of our model compared to several strong state-of-the-
art baselines.

4. Qualitative Insights: We draw interesting insights
from the prediction case studies as well as career path
sampling.

The rest of the paper is organized as follows. Section 2 for-
mally defines NEXT CAREER MOVE PREDICTION. Section 3
proposes our model. Section 4 presents the experimental
results. Section 5 reviews the related work and the paper
concludes in Section 6.

2. PROBLEM DEFINITION

In this section, we present the notations used throughout
the paper (summarized in Table 1), and formally define the
NEXT CAREER MOVE PREDICTION problem.

LinkedIn is the world’s largest professional network where
members can create their professional profiles and seek jobs.
Users can share their working experience by reporting the
employers they have worked for. Specifically, a user u’s
working experience can be summarized as 7 = {J{", J3, ...,
Jy '}, where Ji* is user u’s i-th job position, denoted by a tu-
ple, ie., J@* = (I, ¢, t}), indicating that user u worked at
company c¢; with title [}' starting from time ¢;'. Besides the
working experience, users can also add skills on the profile or
get their skills endorsed. For example, a user might be good
at Data Mining, Machine Learning and Pattern Recognition.
We denote user u’s skills set by S* = {s¥, s5,..., s}, where
each s;' is a specific skill, e.g., Hadoop. The user can also re-
port their education background in their profile. The user’s
location (e.g., San Francisco Bay Area) is denoted by 7.
For simplicity, we only consider user u’s highest education
institute and denote it by h". Let U, £, C, I, H and R be
the collections of all users, titles, companies, skills, schools
and locations, i.e, u e U, ;' € L, c € C,S*" CK, h"* € H
and r* € R. Note that all the entities (e.g., titles, compa-
nies) are standardized, e.g., the two different titles Senior
Software Engineer and Sr. Software Engineer are mapped
to the same item in £. In the paper, we use bold lower-
case letters for vectors, e.g., we use s{,...,s,, to denote the
embedding vectors of skills sY, ..., sy, and bold upper-case
letters for matrices (e.g., W). Also, we represent the el-
ements in a matrix using a convention similar to Matlab,
e.g., W(:, ) is the 5" column of W, etc.

With the above notations, the problem of predicting each
individual’s next career move can be formally defined as fol-
lows:

PrOBLEM 1. NEXT CAREER MOVE PREDICTION
el

Given: the working experience of all users J“', ...

observed up to a timestamp T, the skills sets S, ..., S“IUI |



the education institutes h*', ... h*1Ul and the locations
rUooo el of all users

Predict: the useru’s next career move, including title | yu 11
€ L and company c|gu |11 € C, after time T.

As an illustrative example, Figure 1 shows one LinkedIn
member’s working experience. We can see that the member
worked as a research staff member at IBM Almaden Re-
search Center from Dec. 2010 to June 2013. Suppose we
can observe the member’s career history up to June 2013,
the problem is to predict the member’s next title and com-
pany after June 2013, that is, staff researcher at LinkedIn in
this case.

1
Observed : Predict
Aug. 20}0 Dric. 2010 Ju;le 2013

Decl. 2008 Feb %01 5

Postdoctoral Research Fellow Staff Researcher

Research Staff Member | "
Penn State Universit B R

Al carch Center |

LinkedIn

Oy
o
\

Figure 1: One LinkedIn member’s working experi-
ence.

3. PROPOSED SOLUTIONS

In this section, we present our solution for Problem 1.
We start with the design objectives for the NEXT CAREER
MoVE PREDICTION, and then present the details of our NEMO
predictive model, followed by the model learning.

3.1 Design Objectives

From the prediction perspective, we focus on leveraging
all the information available in the user’s LinkedIn profile.
To be specific, we want to achieve the following two design
objectives:

e Profile context matching. The three most salient sec-
tions in LinkedIn members’ profile that are indicative
of users’ career are Skills, FEducation and Location.
Skills are a critical asset for individuals and differ-
ent jobs have different requirements for skills. Match-
ing skills and jobs has become a high-priority pol-
icy concern. For instance, an individual with strong
skills in machine learning and data mining is more
likely to move to a research scientist position in a high
tech company than an accountant position in a bank.
The next important attribute we consider is education.
A Carnegie Mellon University graduate might have a
higher chance to work in the tech industry compared
to a university best known for its law major. Last
but not least, location of job seekers also biases where
they would eventually go. Companies in the Bay Area
are generally more attractive to Bay Area job seekers
compared to New York based companies. Being able
to incorporate all these contextual information proves
to be the key to match top talents and companies. For
simplicity, we assume that all these profile attributes
are static and fixed.

Career path mining. Another important signal for the
career move is user’s current position. It is natural
to assume that the next position is highly correlated

Time
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to the current one and existing work incorporating
this information show great improvement upon static
methods [28, 33]. However, most professionals might
have more than one jobs throughout their career his-
tory, and considering only the last position misses the
bigger picture of one’s professional life. It is the knowl-
edge and the experiences built up through one’s entire
career history that prepares the candidate for future
opportunities. It is thus desirable for us to learn the
entire career trajectory in order to infer the next move.

In Section 4, we will show that each of these design ob-
jectives is so crucial in predictive performance that we need
to incorporate both in the model.

3.2 NEMO - An Encoder-Decoder Architec-
ture

We carefully design our predictive model to fulfill the
above objectives. The proposed model follows the encoder-
decoder architecture depicted in Figure 2. The encoder
maps the multiple heterogeneous profile contexts into a fixed-
length vector, which we refer to as context vector and the
decoder maps the context vector to a sequence of positions.
Such neural network model is able to compute the condi-
tional probability of the output career path given the in-
put user’s profile information. Success of similar framework
has been shown in machine translation where one encodes
a source language sequence to a vector and then decodes to
the target language sequence [29].

3.2.1 Encoding the Context Representation

We want to learn a compact representation of the context
information from users’ profile. The attributes are usually
high-dimensional categorical features that bear no notion of
similarity and do not generalize well. One way to encode
these discrete entities is to use embeddings inspired by the
success of distributed representations of words in natural
language processing tasks [23].

We now explain how we construct embedding for user’s
profile attributes and begin with skill embedding. Let {s{, s},
...;Sm} be the set of user u’s skills embeddings. Note that
each user has different number of skills, from as few as one
skill to more than 10 skills. To ensure that each user has em-
bedding with the same dimension, we use a pooling method
across skill embedding vectors. In particular, we perform
max-pooling to get a single skill vector,

u
S

1)
where max(-) is applied dimension-wise. The intuition is
that a user’s top skills might dominate more in the career
move. Note that we also tested other pooling methods such
as average pooling but found that max-pooling performs the
best, which aligns with the finding in [33]. Next attributes
are user’s school and location. We concatenate their embed-
dings with skill embedding, and feed it through a one-layer
neural network as follows:

= max(sy, S5, ..., Sm),

v, = tanh (Wu [s"*, h", r“]T + bv)7 (2)
where h* and r" are the user’s school and location embed-
dings, [,-,] concatenates the vectors and W, and b, are
the projection matrix and bias vector, respectively. The fi-
nal output v, from the encoder captures the correlations of
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Figure 2: Framework of NEMO.

user’s skills, school, location and serves as the representa-
tion of user’s profile. We call vector v, the context vector
for user u.

3.2.2 Decoding with Long-Short Term Memory Net-
works

In order to decode one’s career path from the context
vector learned, we take advantage of the Recurrent Neural
Network (RNN) due to its success in modeling sequential
data [24, 3]. In particular, we employ a Long short-term
memory (LSTM) [15], as a particular type of RNN, which
was proposed to address the problem of vanishing gradients.
LSTM is capable of exploiting longer range of temporal de-
pendencies in the sequences and has been the state-of-the-
art for several tasks, including sequence to sequence learn-
ing [29], image caption generation [31]. There are many vari-
ants of LSTM architecture and we refer interested readers
to [12]. In this paper, we use the following LSTM equation:

it = 0c(Wigxt + Wimy_1)

fi = 0c(Wgext + Wemmy_1)

0 = 0(Worxt + Wommy_1) (3)
et =fi ®er1 +ir © tanh(Weext + Wepumy_1)
m; =0t Oet

where ©® is the element-wise multiplication, x; is the input
data, i.e., the embeddings of company and title at time step
t; i, T, or serve as input gate, forget gate, output gate respec-
tively, the various W matrices are the trained parameters,
and m; is the hidden state at time step t. The hidden state
vector m; can be viewed as the dynamic representation of
a user at time t that aggregates the user’s profile context as
well as the user’s career history up to t.

3.3 NEMO - Learning and Prediction

Our final architecture is a combined encoder-decoder net-
work and the entire model is trained end-to-end to max-
imize the log probability of generating the correct career
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path given the observed users’ context information:

0 :argmGaXZIng(j |S“, h", "),

uel

(4)

where 6 are all the model parameters, including all the enti-
ties’ embeddings and parameters in LSTM. Suppose we have
observed a particular user u’s T jobs, the log probability for
that user’s career path further decomposes into,

logp(J"|8", h", ")
T

=Zlogp J|S" )

M’ﬁ Il

[logpe(ci'|S™, n" v ey _,, 1 _,)

’t<t’t<t

+ log pe(1i'|S", h )]
where ¢

o<t and [ )7 . are the user’s previous ¢ — 1 companies
ct,...,ci 1 and t—1 titles (Y, ..., I ;. Note that we assume
ct and i are conditionally independent of each other given
everything observed up to time t — 1. To get the probability
distribution p¢(cf|S*, h*, r*, c¥ e L <t) over companies, we
use the hidden states vector m;_; from the LSTM in Eq. (3)

and feed it to a softmaz layer, i.e.
pt(d‘,‘ = k|8u7 hu7 T C?’<t7 l?’<t) =
exp(W(:, k) 'ms_1 + b.(k))
> ec exp(We(:, ¢)'m;_1 +b.(c))

where W, b, are the softmax weight, bias for company re-
spectively. Similarly we feed m;_; to another softmaz to
predict title distribution. In other words, we are doing multi-
task learning to predict the next company and title jointly
with a shared representation m;_1.

However, it would be practically infeasible to directly max-
imize the log probability in Eq. (4) since computing the
full softmazr would have a cost proportional to the num-
ber of companies and titles, which are usually very large,
e.g., there are in the order of millions of companies in U.S.
alone and hundreds of thousands even after aggressive pre-
processing. To improve scalability, we adopt the “sampled

t

Il
-

C ’ l

“ort
’ ’t<t’t<t

u

(6)



softmaz” strategy to approximately maximize Eq. (4). The
basic idea is instead of performing softmax over the entire
output space, we randomly sample a subset (e.g. 50) of
companies/titles and do the softmax over this much smaller
space. We omit details here for space limit and refer inter-
ested readers to [17] for more rigorous derivations.

After learning, it becomes straightforward to predict the
user’s next career move. Suppose we have observed a user
u’s career path until time 7', and want to predict what u’s
next company and title would be. We can first obtain the
hidden states vector mr , which captures all the contextual
information and the career path dynamics up until time T
We then predict the next company and title using the full
softmaz to get the full distribution over the next company,
title and select the top-K most probable results.

3.4 Discussion

We will show in Section 4 that NEMO gives superior pre-
dictive performance. In addition to the predictive power,
however, we also note that our model allows us to sample
career trajectories from a given member profile. In other
words, our model essentially defines probability distribution
of career given the contextual profile. With this generative
ability, we can answer questions like “what kinds of career
path does a Stanford Computer Science graduate have?”.
Such insight will be useful for students who are applying
for graduate schools. We will show some of sampled career
paths in Section 4.4.2.

4. EMPIRICAL EVALUATIONS

In this section, we present the experimental evaluations.
The experiments are designed to inspect the following as-
pects: (1) Effectiveness: how accurate are the proposed NEMO
model for predicting next career move? and (2) Insights:
what insights can we draw from the model?

4.1 Dataset

We use the real-world data from LinkedIn to evaluate the
proposed model. In particular, we construct two datasets as
follows. (1) Computer, which consists of members from the
following industries: “computer software”, “internet”; “com-
puter hardware”, “computer networking” and “information
technology and services”; and (2) Finance, which consists of
members from the following industries: “banking”, “financial
services”, “investment banking”, “investment management”.
Industries are pre-defined by LinkedIn for users to choose.
Both datasets span from the inception of LinkedIn service
t0 09/24/2016. For preprocessing, we remove members with
no positions or with more than 20 positions reported in their
profile. We also remove skills, companies, titles and schools
that appear less than 10 times in the dataset. The positions,
i.e. tuples of company and title, observed up to 12/01/2015
are used for training the model and the task is to predict
the first new position (i.e., both company and title) after
12/01/2015. The statistics of the two datasets after prepro-
cessing are summarized in Table 2.

4.2 Experimental setup

Evaluation Metric: We use the Mean Percentile Rank-
ing (MPR) [16] to evaluate the quality of the prediction.
Let Uiest be the set of members who have a new position
during the testing period. The MPR for both the company
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Table 2: Statistics for our two datasets. Note that
only the scale is reported for the privacy concern.

#members >1M
#skills >10K
#companies >100K
F#titles >10K

##schools >1K
#locations >100
#training positions | >10M
F#testing positions | >100K

and title prediction can be computed as follows:

1 1
MPR(c) = —_rank(c;
() o] ue%: , \C\mn (ch)
MPR(l) = ! Z i7"ank(l*)
o ‘Z/{test| wElgest ‘Ef‘ wn

where rank(cy,) and rank(c;,) are the rank of user u’s actual
company c,, and actual title [};, and the rank is obtained by
sorting the model’s prediction scores. Lower values are more
desirable as they indicate the model can rank the true com-
pany/title higher in the ranking list. Note that classic classi-
fication metrics (precision and recall) are ranking-agnostic,
and the Mean Average Precision (MAP) and Normalized
Discounted Cumulative Gain (NDCG) at certain ranking
position are too coarse given there is only one ground-truth
in the ranking list.

Comparison Methods: We compare our NEMO with the
following strawmen and state-of-the-arts:

e Top: always recommend the most popular company/title.

e Bigram: estimate the transition probability using a
simple counting method. This is a consistent estimator
under the first-order Markov assumption. It is usually
a strong baseline when the data is not sparse.

e Context Only: use only the contextual information
of users without considering the career path to recom-
mend the next position.

e MC: Markov Chain sequential model [28] that em-
beds each company and title into the semantic space
and consider only the previous company/title in the
prediction phase.

e HRM: Hierarchical Representation Model [33] that
simply aggregates the embeddings of all the previous
companies/titles through max-pooling to make the pre-
diction.

e LSTM: use only LSTM to explore the whole career
path without the profile context. This model was re-

cently applied in the next item recommendation by
[36].

e NEMO: the context-aware LSTM model proposed by
this paper, which encodes different contextual infor-
mation from a member into a latent vector represen-
tation, and then learns to decode the members’ career
trajectory based on this vector.



Table 3: Mean percentile rank comparisons on pre-
dicting the next title and the next company.

Computer Finance

Company Title Company Title

TOP 0.1318 0.0634 0.1098 0.0663
Bigram 0.1054 0.0437 0.0850 0.0518
Context Only 0.0512 0.0286 0.0403 0.0391
MC 0.0542 0.0277 0.0496 0.0351
HRM 0.0519 0.0269 0.0499 0.0369
LSTM 0.0432 0.0225 0.0411 0.0299
NEMO 0.0299 0.0182 0.0260 0.0253

Implementation Details: For Top and Bigram, we
randomly recommend a position if multiple positions meet
the recommendation criteria. For all neural network-based
methods, we use mini-batch SGD with Adagrad accelera-
tion [8], where the batch size is set to 64. The learning rate
is set to be 0.05 divided by the batch size. We use small
l2 regularization in each model. The embedding dimension
and the number of hidden units are both set to 200, with 2
hidden layer for all the models.

4.3 Quantitative Results

Summarized Results: The performance of each model
is presented in Table 3. A salient observation is that our

NEMO model significantly outperforms all the comparison meth-

ods on both datasets. In particular, compared to the best
baseline LSTM, we achieve about 30% and 19% relative
improvements in company and title prediction respectively
on Computer.

Table 3 also shows the effectiveness of the two impor-
tant ingredients of our proposed model: profile context and
career path. Models incorporating the career path (HRM
and LSTM) outperform the models using the last position
only (MC and Bigram). Compared with HRM, LSTM per-
forms better because it models the ordering of the positions,
whereas HRM simply aggregates the history. Finally, NEMO
outperforms LSTM, showing the importance of modeling
context in addition to the position sequences.

Results with Varying Embedding Dimension: We
now compare in more details how varying the embedding
dimension affects the performance of each model on Com-
puter. From Figure 3, we observe a diminishing return in
the performance of all the models. For instance, our NEMO
with 50 dimensional embeddings performs almost as well as
that with 200 dimensions, but enjoys 3 times faster training
as well as smaller memory footprint.

Results Segmented by Position’s Popularity: Fig-
ure 4 presents how performance varies with the popularity
of the users’ actual company and title in Computer. As can
be seen from the figure, the improvement of NEMO is espe-
cially dramatic when the target company /title is really rare,
in which case Bigram would fail due to insufficient data for
estimating the transition probabilities. On the other end,
all models have a small MPR for predicting very popular
targets.

Results Segmented by Member’s Seniority: The
performance of each model with varying members’ seniority
in Computer is shown in Figure 5 where the seniority is
defined by the number of positions the member has in the
training set.
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MPR (company) v.s. embedding size
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Figure 3: Performance with varying embedding size
of the comparison methods on Computer. The lower
the better. Top: performance on company predic-
tion, Bottom: performance on title prediction.

This experiment shows the importance of out two design
objectives: Career path modeling and Profile context match-
ing. First, we focus on the benefit of considering career path.
Context only model, which does not use career path at all,
shows flat performance regardless of the number of positions
observed, while all other methods achieve smaller error as
we observe more positions. Moreover, the experiment shows
that considering all career positions is better than using the
last position only. The models using all positions (HRM,
LSTM and NEMO) outperform the models using the last po-
sition only (MC and Bigram) as a member has more and
more positions.

On the other hand, profile context is powerful for users
with very few observed positions. We note that baselines
using all career positions (LSTM and HRM) do not per-
form well for members with very few observed positions.
For example, when a members has only one position ob-
served, Context-only model outperforms all other baselines
in both title prediction and company prediction. Since NEMO
leverages profile attributes, it can outperforms models solely
based on career path significantly when a member has a very
short history (i.e., cold-start case).
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Figure 4: Performance with varying popularity of
target company/title in Computer. The lower the
better. Top: evaluation on company prediction.
Bottom: evaluation on title prediction.

4.4 Qualitative Analysis
4.4.1 Prediction Case Study

We present a few anecdotal evidences that show how NEMO
predicts next position accurately when other models cannot.
Table 4 shows predictions for two members from NEMO and
two baseline (Context-only, Bigram). We show the mem-
ber’s previous position (which is given to the model), cur-
rent position (ground-truth), and the top 5 companies and
the top 5 titles predicted by NEMO.

For the user at the top row, he transitioned from a invest-
ment company to a airline company, which is very hard to
predict. Indeed, Bigram and Context Only models could not
get the correct company even at the top 100. We found that
the reason for our model to be able to predict correctly is
that this user has worked at a Airline company before, and
LSTM model was able to “remember” that in the memory
cell to make correct recommendations in the future, which
was not possible for models that do not consider sequence.
Moreover, NEMO leverages that the member has been work-
ing in Dallas, which would help narrow down to predicting
Southwest Airlines.
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Figure 5: Performance with varying seniority of a
member in Computer. The lower the better. We
stratify members into different buckets by the num-
ber of position they have in the past. The average
MPR is shown for each bucket. Top: evaluation on
company prediction. Bottom: evaluation on title
prediction.

For the second user, again, we found that the user has
worked at the same company United States Patent and Trade-
mark Office (USPTO) three positions before. Also the user
has been working in the Washington, D.C. metro area and
has information technology skills. In both cases, NEMO is able
to provide accurate predictions due to its power to combine
profile context as well as career trajectory.

4.4.2  Sampling Career Path with NEMO

When LSTM is trained on natural text, sampling one word
at a time allows us to probe into what the model has learned
about the text. In our scenario, the model is trained on pro-
fessionals’ career path and we can sample one position at a
time to form a career trajectory of a member. Now, sup-
pose the model is input with a member at SF Bay area with
skills “machine learning”, “data mining”, “artificial intelli-
gence” and “algorithms”, graduated from Carnegie Mellon
University and with first job as Machine Learning Engineer
at Google, we obtain the following sampled path: Machine
Learning Engineer at WhatsApp Inc. — Machine Learning
Engineer at Uber — Data Scientist at Facebook — Engineer-
ing Lead at LinkedIn. Our model can also handle cold-start
users for whom we do not observe any prior working experi-
ence. For instance, given a member having skills “Financial
Services”, “Investments” and graduated from Harvard Busi-
ness School living in the Greater New York Area, we obtain
the following sampled trajectory: Investment Banker at Citi



Table 4: Prediction case study for 2 users. We list users’ previous position, ground-truth next position, top
5 predicted companies and titles from left to right in the table. Bigram model ranks the Southwest Airlines
at 125th place for the first user (top row) where Context Only method ranks it at 146th. For second user

(bottom row), Bigram ranks USPTO at 1319 whereas Context Only ranks at it 395.

previous position

Ground-truth next position

Top 5 recommended company

Top 5 recommended Title

Senior Project Manager at
Fidelity Investments

Project Manager at
Southwest Airlines

Fidelity Investments
American Airlines
Southwest Airlines
Epsilon
Bank of America

Senior Project Manager

Technical Project Manager
Senior Technical Project Manager
Program Manager

Software Architect/Tech Lead at
Bureau of Labor Statistics

Consultant at
United States Patent
and Trademark Office (USPTO)

Fannie Mae
USPTO
FINRA
Lockheed Martin
Freddie Mac

Technical Lead
Senior Software Engineer

Senior Consultant
Solutions Architect

— Technology Strategist at Citi — Relationship Manager at
Citi — Vice President at Morgan Stanley — Vice President
Brokerage at JPMorgan Chase. As can be seen, both mem-
bers have a rising career trajectory. These sampled career
trajectories can provide guidance to students in terms of
university and major selections. Note that NEMO is the first
model that can draw sample career trajectories given mem-
bers’ attributes since it handles both profile context and
career sequence.

S. RELATED WORK

In this section, we review related work in terms of (a)
labor mobility, and (b) representation learning.

Labor Mobility. Quantifying and modeling labor mo-
bility has been extensively studied in the economics litera-
ture. Early work combine a search model with a matching
model to identify reasons behind workers’ move from job
to job as well as move into and out of the labor markets
and develop the view that the move is because of changes
in the perceived value of workers’ market opportunities [18].
The Labor Force Survey data has been examined to estab-
lish several key facts regarding the properties of the labor
market flows, including the transition probabilities between
employment, unemployment and inactivity [11]. Tools from
the network science have been brought into economics to
characterize the properties of the labor flow network among
the different companies and prove to be useful in identify-
ing firms with high growth potential [14]. Thanks to the
availability of massive datasets providing individuals’ career
path, large-scale studies of the labor flow become possible.
Academia, as a particular job market, exhibits a unique ca-
reer movement pattern that is characterized by a high degree
of stratification in institutional ranking [6]. The impact of
such movement on scientists’ research performance has also
been quantified. Job recommendation with emphasis on the
tenure is effective in improving the utility of the system, i.e.,
making the recommendation at the right time when the user
is likely to change the job is critical [32]. The career trajec-
tories can be employed as professional similarities between
two individuals by first aligning the sequences and then ex-
tracting the temporal and structural features [34].

[26] is one of the seminal papers on predicting individual’s
career transition. We note that our work differentiates itself
from [26] in that our work leverages a full career trajectory
while their is solely based on profile information, and our
work conducted a very large scale predictive task with mil-
lions of users while they did with less than 100,000 users.
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Representation Learning. Representation learning aims
to learn good feature representation for input entities with-
out hand-crafting rules. It has shown promising results in
many application domains, ranging from natural language
processing [23], network science [27] to health care [5]. In
NLP, skip-gram model [23] learns embedding for words by
predicting a word’s surrounding words and the embeddings
learned exhibit linguistic regularities that have analogy to al-
gebraic operations [25]. The task of fine grained entity type
classification can also be addressed by embedding methods
on labels [35]. In computer vision, Multi-model concept rep-
resentations from the concatenation of linguistic representa-
tion vectors and visual concept representation vectors have a
substantial performance gain on some semantic relatedness
evaluation tasks [19]. The image and sentence embeddings
can also be jointly learned in the same space and is shown to
be effective for ranking images and descriptions and is able
to capture multi-model regularities [20]. Some recent efforts
in network science have been devoted to learn embeddings
for vertices in a network that can encode the structural rela-
tions. DeepWalk [27], in particular, applies skip-gram model
to the truncated random walks and achieve improvement on
multi-label classification tasks on several social networks.
Richer representations can be learned through a biased ran-
dom walk procedure [13]. LINE [30] learns network embed-
dings by optimizing a carefully designed objective function
that preserves both the first-order and second-order proxim-
ities. Several other use cases include representing physical
locations with spatial and temporal contexts modeled using
a recurrent model for the next location predictions [22] and
embedding the dynamics of baskets of items to enhance the
performance of next basket recommendation [36].

6. CONCLUSION

In this paper, we study the problem of NEXT CAREER
MoVE PREDICTION to predict an employee’s next career
move. We propose a contextual LSTM model named NEMO
that integrates the profile context as well as career path dy-
namics. The proposed model follows the encoder-decoder ar-
chitecture and we show significant improvements over strong
baselines. There are many interesting future directions. First,
it is desirable to provide interpretable predictions. We are
working on attention network to let the model focus on dif-
ferent skills for different positions. Second, user homophily
can be exploited from users’ social connections. It would be
interesting to see how one’s career is affected by their close
friends or colleagues. Third, our current model assumes that
attributes (e.g. skills) are static for simplicity, which might



not be true in practice. It would be interesting to model
the dynamics of the attributes, resulting in a sequence-to-
sequence style model.
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