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ABSTRACT

With an increasingly large amount of sentimental information em-
bedded in online documents, sentiment analysis is quite valuable
to product recommendation, opinion summarization, and so forth.
Different from most works on identifying documents’ qualitative
affective information, this research focuses on the measurement of
users’ intensity over each sentimental category. Affect indicates
positive or negative sentiment, while cognition includes certainty
and tentative. Thus, our research can help bridge the cognitive
and affective gaps between users and documents. The contribu-
tions of this study are twofold: (i) we proposed a neural network-
based framework to sentiment strength prediction by convolving
hybrid vectors, and (ii) we considered words jointly with a set of
linguistic features for enhancing model robustness and adaptive-
ness. By exploiting the auxiliary features of sentiments from the
corpus, the proposed model did not rely on well-established lexi-
cons, and showed its robustness over sparse words. Experiments
on six corpora validated the effectiveness of our sentiment strength
prediction method.
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1. INTRODUCTION

With the development of web 2.0 technology, many users express
their sentiments and opinions through reviews, blogs, news articles,
and tweets. Sentiment analysis, also called “opinion mining”, is the
field of study that identify users’ opinions, sentiments, appraisals,
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attitudes, and emotions towards subjects [20]. The early studies of
sentiment analysis [26] used supervised learning algorithms to clas-
sify the polarity of reviews. These algorithms aim to identify the
sentiment of the text over positive, negative, and neutral categories
primarily, which are applicable to coarse-grained sentiment indica-
tor prediction tasks. However, coarse-grained sentiment classifica-
tion is limited since it captures only the most dominant sentiment.
Besides, it does not consider the sentimental intensity which is an
important feature for the cognitive computing and decision-making
of potential customers. Affect and cognition are two important psy-
chological conditions, in which positive or negative sentiment is re-
garded as “affect”, while “cognition” includes certainty, tentative,
and other dimensions [31]. Considering two product reviews, one
with the word “excellent” and the other containing the word “good”
as an example, traditional sentiment classification algorithms will
assign the same label to these two documents since both of them
convey positive meaning, in which cognition indicators (e.g., the
confidence of each sentiment) are ignored. In many cases, it is not
sentiment polarity but sentiment intensity that reflects the quality of
products and desire of users, which indicates that sentiment classi-
fication may not be sufficient for real-world applications.

To tackle the aforementioned issue, sentiment strength predic-
tion is introduced to predict the sentimental intensity of documents.
Intuitively, since real-valued sentimental intensity is more natural
and precise in representing the abstract and fuzzy cognition of users
than qualitative labels (e.g., positive or negative category), sen-
timent strength prediction is more powerful and meaningful than
sentiment classification tasks. Early works on sentiment strength
prediction have focused mainly on exploiting lexical features. For
instance, Thelwall et al. [38, 37] developed an algorithm named
SentiStrength, which leveraged machine learning models to explore
the sentiment strengths of terms, and then calculated the intensity
of sentiments by the constructed lookup table of term strengths.
However, such lexicon-based models are heavily dependent on cer-
tain key words, which perform limited since sentiments of words
are sensitive to the topic domain or even aspect [39]. For example,
“large” is negative when used in regards to a battery, but is positive
for screen size. Recently, convolutional neural networks (CNN’s)
have become popular in sentiment analysis [17]. CNNs were ini-
tially used in image recognition, but are also valuable for extracting
internal and fined-grained information from documents [15]. Input
of CNNs in documents is the textual “image”, where the height is



the number of words and the width is the dimension of word em-
beddings. Then, convolutional kernels that are fine-tuned during
training perform 1-dimensional or 2-dimensional convolution over
the textual “image” and produce feature maps that hold the seman-
tic information of documents. With respect to sentiment analysis, a
character-to-sentence CNN (CharSCNN) was proposed to classify
sentiments over documents in one context [8]. The model first used
two convolutional layers to extract both word and character em-
beddings. Then, the output of convolutional layers was processed
by two successive fully connected layers. CharSCNN is not be
affected by the quality of sentiment dictionaries, but it has been re-
ported that the character-level CNNs perform well only when the
dataset goes to a scale of several millions, and the selection of al-
phabet has a great impact on system performance [43]. Besides,
since these window-based models heavily rely on the rich context
(i.e., word sequence within a window) generated by window slid-
ing, word-level information becomes too limited when input words
are sparse.

In light of these considerations, we proposed a hybrid CNN mod-
el (HCNN) to predict sentiment strengths based on semantic and
syntactic information that hold contextual features. Different from
previous studies [8, 17], HCNN aimed to maximize the similarity
rather than likelihood between two output vectors. Firstly, HCNN
obtained semantic representations of input documents via convolv-
ing word vectors within the window. To enhance the representa-
tion learning of corpus-specific information, we added the one-
hot vector of each word on top of the general real-valued vector
(e.g., Word2Vec). To adapt short documents containing few words,
HCNN also generated more abstract features by clustering similar
word usages and grammatical roles, and leveraged auxiliary infor-
mation to discover the hidden linguistic relation between words.
Specifically, we grouped words by their part-of-speech (POS) tags.
We assumed that words in the same “POS-cluster” were similar and
shared some important features. For example, “good” and “bad”,
which lie in the “adjective-cluster”, are both potential sentiment in-
dicators of the document. Furthermore, the intensity of sentiments
could be implied by adverbs such as “quite” and “extremely”. To
model the internal knowledge of a cluster, HCNN borrowed the
mechanism of convolution and distilled the POS-level features by
convolutional filters. Secondly, the concatenated word-level and
POS-level features were fed into a fully connected layer to gener-
ate the hybrid representation of the text. Finally, a fully connected
layer with softmax used the representation as input, and predict-
ed the sentiment strength. It is worth noting that both the one-hot
word vector and the POS information were critical to identifying
sentiments. As mentioned earlier, the “adjective-cluster” is valu-
able for separating sentimental words like “good” and “bad” from
other features; meanwhile, word vectors are important for detecting
the opposite sentiment polarity of these two words.

To the best of our knowledge, this is the first time a CNN-based
framework has exploited sentiment-specific features by the “POS-
cluster” to overcome the lack of context when applying CNNs on
short messages. Our method also took advantage of corpus-specific
and domain-independent features (i.e., one-hot vectors and pre-
trained word embeddings), rather than well-established lexicons for
sentiment strength prediction.

2. RELATED WORK

2.1 Sentiment Analysis

Sentiment analysis, which was proposed primarily to identify the
coarse-grained sentimental category (i.e., positive, negative, or neu-
tral) of given documents, has attracted much attention recently due

to its significant applications in both industry and academia [20].
Most existing methods of sentiment analysis can be categorized
into machine learning algorithms, lexicon-based methods, and la-
beled topic models [22].

The machine learning based algorithms, such as naive Bayes,
support vector machines, and maximum entropy, were aimed to
learn classifiers by training data [26]. They tried to extract and
combine different features for improving the performance of senti-
ment analysis, such as n-gram features [18, 17], POS tags [10], and
user information [36]. The lexicon-based methods, such as Senti-
WordNet that extends WordNet, associated each word or phrase
with a specific sentiment to obtain sentiment lexicons [2]. The
SentiWordNet is a lexical resource developed for supporting sen-
timent annotation, classification, and other tasks. This resources
labels each synset in the WordNet along three sentimental dimen-
sions: positivity, negativity, and neutrality. Another stream of work
is focused on exploring sentiments of latent topics. Latent topics
represent real-world events, objects, or abstract entities that indi-
cate the subject or context of the sentiment [35]. For instance, Lin
and He [19] proposed the joint sentiment-topic model (JSTM) for
sentiment analysis of the movie review corpus. JSTM incorporated
supervision by constraining the model to use only those topics that
correspond to a document’s observed label set.

2.2 Sentiment Strength Prediction

Sentiment can be assessed for the strength with which a positive
or negative sentiment is expressed [37]. Different from the afore-
mentioned coarse-grained sentiment classification tasks, sentiment
strength prediction aims to measure the fine-grained strength of
sentiments in given documents.

In a preliminary study, SentiStrength [38] was designed to ex-
tract sentiment strengths from comments on MySpace. It firstly
established a lexicon in which sentimental words were associated
with strength measures and exploited a set of nonstandard senti-
ment expressing rules. Several methods based on the lexicon and
rules were then employed to score the sentiment strength. As an im-
proved version of SentiStrength, Thelwall et al. [37] assessed that
the lexicon that mainly contained direct sentimental indications was
also effective at predicting the sentiment strength across the social
web. However, the limitation of these lexicon-based methods is
that they are quite dependent on certain keywords.

2.3 Convolutional Neural Networks

With the emergence of neural language models [3] and distribut-
ed vector representations for words [27, 24], CNNs have been wide-
ly used in sentiment analysis. Kim [17] designed a CNN that cap-
tured n-gram information by convolving neighboring word vectors
in a sentence matrix and used multiple kernels to learn meaning-
ful features. Deep CNN [34] is similar to the convolutional archi-
tecture proposed by Kim [17], and contains a single convolutional
layer followed by a non-linearity, max pooling, and softmax clas-
sification layer. Ren et al. [29] proposed a context-based CNN for
Twitter sentiment classification, which combined contextual fea-
tures of current and relevant tweets when producing the semantic
representation. Unfortunately, such a method is designed for cor-
pora containing a conversation-based context. Unlike the above
works, Johnson et al. [14] proposed a convolutional model that did
not use pre-trained word vectors but high-dimensional textual da-
ta with word order information as the network input. Johnson et
al. [15] also introduced a new method that learned embeddings of
small text regions from unlabeled data, and constructed a semi-
supervised framework with CNNs. However, both were concerned



with sentiment classification, which is not applicable to predicting
sentiment strengths.

With respect to CNN models for fine-grained sentiment analysis
tasks, dos Santos et al. [8] adopted two levels of convolution mech-
anisms to incorporate morphological and shape information into
feature learning. The proposed CharSCNN used two convolution-
al layers where the first layer learned character-level embeddings
and the second layer generated sentence/document representations
by convolving character-level and word-level embeddings. Unfor-
tunately, this method is dependent on the context of datasets and
shape of characters. For instance, shape and morphological infor-
mation may introduce some noise since the gap between datasets
from different sources is quite large.

3. SENTIMENT STRENGTH PREDICTION
VIA CONVOLVING HYBRID FEATURES

3.1 Problem Definition

Sentiment strength prediction, the problem we investigate in this
paper, differs from the traditional sentiment classification in which
the document sentiment is encoded as a one-hot polarity vector.
Our task treats overall document sentiments as a list of real val-
ues ranging from O to 1, and each value denotes the intensity of
the corresponding sentiment (so-called sentiment strength). The
main goal of the sentiment strength prediction system is to predict
a strength vector that can reflect multiple sentimental orientations
of the document.

Assume that we have a document d with strength vector [0.5,
0.3, 0.2], there are three sentimental classes s, s2, and s3, and we
know that the polarity (i.e., dominant sentimental orientation) of d
is s1 while d also expresses some meaning on s2. Additionally, d
or part of d (words, phrases, or clauses) arouses sentiment s3. A
well-performed sentiment strength prediction system should detect
the correct sentiment polarity and also give good predictions on
those sentiments not being dominant. In our case, we employed
word-level and POS-level convolution.

For convenience of describing the model, we used superscripts
w and pos to specify the related notations in the corresponding
convolutional layer. Given a vocabulary V' and a sequence of in-
put instances {I7, ..., I%} (z = w or other POS tags, m denotes
length of input), we firstly looked up the corresponding vectors
in the feature embeddings M € RIVIXdimw 304 constructed the
input embedding matrix E, € R™*¥™w of the input layer. In
the above, I represents the index of the i-th word of input sen-
tences in vocabulary V and dim,, is the dimension of word embed-
dings. Convolutional kernel K, with fixed-sized window wing,
performs vector-level convolution by sliding the window over the
embedding matrix, where the weight matrix of the kernel is denot-
ed as Wy, € R"KeXWinke dimw) hat is the kernel captures
internal relations of wingk, consecutive instances by convolving
wing, corresponding low-dimensional vectors. After convolution,
we performed max-over-time pooling [7] over the generated feature
maps, which produced hybrid feature vectors with a fixed size, i.e.,
m — wing, + 1, thus solving the problem of variable lengths of
input instances. We summarize the frequently used terms and their
descriptions in Table 1.

3.2 Network Architecture

In this section, we detail the architecture of the proposed HCNN,
which aimed to predict sentiment strength of a given document or
sentence with hybrid features. It firstly generated sentence vec-
tors, and then jointly learned representation vectors of POS-tags

Table 1: Notations of frequently used terms.

Notation  Description

\% Vocabulary of words occurring in the dataset
Ving Vocabulary of informative words in the dataset
M Lookup table of word embeddings

Wk, Weight matrix of the convolutional kernel K,
bk, Bias vector of the convolutional kernel K,
wing,, ‘Window size of the convolutional kernel K.
Nels Number of sentiment classes

Ey Input feature matrix of the z-th convolutional layer
Cos Feature map from the z-th convolutional layer
ng, Dimension of feature map C.,

dimy, Dimension of word embeddings

dimpre Dimension of pre-trained word embeddings
dimpyp ~ Dimension of hybrid feature vectors
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Figure 1: Architecture of the proposed HCNN.

according to words’ POS annotations. The architecture of HCNN
is shown in Figure 1.

With respect to learning the semantic representations, we ex-
tended each word to a vector with a fixed length. As a traditional
method, one-hot representation is simple and understandable, but
suffers from the curse of dimensionality [23]. One common solu-
tion is to select a small subset of features in the dataset. We adopted
the document frequency thresholding method, which assumes that
rare terms are either non-informative for prediction or not influen-
tial for global performance [41], to perform dimension reduction.
One-hot representation is also limited since it cannot record the
sentimental meaning and relevance between different words [5].
Thus, we introduced real-valued word embeddings trained from
large-scale corpora [27, 24] to tackle this issue. As mentioned in
previous document classification systems [17, 16], convolution is
a powerful technique in learning semantic representation due to its
property of encoding contextual information automatically. Thus,
we fed the concatenation of corpus-specific information (i.e., one-
hot vectors) and domain-independent word embeddings (i.e., pre-
trained vectors) into a convolutional architecture to obtain feature
vectors that were more meaningful at the semantic level. First, we
constructed the embedding vector of each word instance . For
the corpus-specific part, we selected the most informative words



by filtering words with low document frequency [41] and removing
stop words, and produced one-hot vectors based on these informa-
tive words. For other parts that were independent to the corpus, we
directly employed pre-trained word vectors. Then, we concatenat-
ed these two parts as follows:

MII"] = Ron[I"] & Rpre[I"], M

where R, and R,.. are the one-hot and pre-trained represen-
tation vectors of each word, respectively; & denotes the vector
concatenation operator; and the dimension of word embeddings
dimy = dimpre + |Ving|. Given that input document d contains
n word instances {I’, ..., I}, we look up the vectors for these
words in the document as follows:

where 7;” is the representation of the i-th input word. Then, a doc-
ument matrix E,, € R"*%™w jg constructed vector by vector and
fed into the word-level convolutional layer, as follows:

Cuwlj] = Wk, © (Bwlj] @ ...

3
® Eylj +wink, —1]) + bk, , =

where a word-level kernel weight matrix Wx,, is used to extract
contextual features from wing, neighboring word vectors with
length dim.,, and feature maps with the same dimensionality, i.e.,
Nk, are produced. In this paper, ® represents the matrix multi-
plication. We also note that the number of semantic features maps
for different documents are not equal, and therefore we performed
max-over-time pooling, which preserved only the most important
features. The process of obtaining semantic representation fsem, is
given below:

fsem = hr(max(cw[:v 1]) b...08 maz(cﬂ)[:7an]))’ (4)

where h, () is the ReLU activation function at this layer, and C[:
,4] can be regarded as a product of the i-th 2-dimensional spatial
convolution over the sentence matrix E,, i.e., the convolution pro-
cess here is equivalent to employing n i, kernels to encode seman-
tic information separately. Thus, the pooling is actually a process
that preserves the most active features from the generated nx,, fea-
ture vectors (i.e., Ciw[:, 1], ..., Cw [:, Nk, |), and drops the others.
As with syntactic-level features, previous works [10, 30] ob-
served that adjectives, verbs, and nouns have high correlation with
sentiment polarity. However, it is challenging to associate POS in-
formation with sentiment strengths, that is, how to use POS infor-
mation to bridge words with both sentiments and intensities. Our
solution is generating sentimental features from the “POS-cluster”.
A “POS-cluster” is actually a word cluster that consists of words
with the same POS annotation, and is similar to a topic that contains
semantically related words via topic modeling [4]. However, the
“POS-cluster” is different from topics in that a “POS-cluster” is not
corpus-specific or domain-dependent. For example, “large” in dif-
ferent corpora may belong to different topics, but it belongs to the
same “POS-cluster” (i.e., “ADJ-cluster”) for every corpus. From
this view, exploiting those clusters to enrich context-independent
sentiment information is useful in sentiment strength prediction.
In our work, we employed the existing POS parser to annotate
documents and categorize the generated tags into four groups ac-
cording to [40]. Group information of POS tags is illustrated in
Table 2. Since cluster “O” contains many background words that
characterize non-discriminative information and may bring some
noise, we preserved clusters “J”, “N”, and “V” for each document.
Note that non-informative nouns and verbs were filtered by the
document frequency thresholding method [41], and all adjectives

Table 2: Group information of POS tags.
Group POS tags

J Adjectives, Adverbs
N Nouns
\'% Verbs
(¢} Other POS tags
r F——— o
i . g
<
S
N =3
. elle] o]
c i 9!
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® | . o
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Rl e = 3
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b
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@ ; ;i E g g Feature \ector

pre-trained vectors
@ one-hot vectors

Embedding Matrix

Figure 2: Convolution and pooling operation.

and adverbs were used for sentiment strength prediction. After
constructing “POS clusters”, we associated their words with sen-
timents. Since vector space models suffer from the curse of di-
mensionality and fail to capture synonyms and polysemous words
[12], traditional methods, like the naive Bayes [21] method, are
limited. This motivated us to explore neural models based on low-
dimensional dense representations. In this article, we extended a
single word in the cluster to a vector that combined dense repre-
sentation and “thin” one-hot representation. We also leveraged the
convolutional kernel to distill sentiment information from word-
level semantic representations for the “POS cluster”. Similar to
Eq. 2, we firstly looked up word vectors from M and built an input
embedding matrix for each cluster. For instance, given an input text
“I like my new book™ and the corresponding POS tag sequence {O,
V, 0, ], N}, we can construct three embedding matrixes: E;=[r{],
En=[rg’], and Ev=[r3’]. Then, we learned POS-level representa-
tions of the document via the following convolution (ref., Figure 2):

Cpos [J] = WKpos © (Epos m ®..0 EPOS[j+

5
1) +by (pos = LN, V), O

WINK 0,

Jros = max(Cpos[:, 1]) @ ... ® maz(Chpos|:, nKpoS})? (6)

where Wk, is the parameter matrix of the convolutional layer
used to extract the sentiment features of “POS cluster” (pos =
J,N,V), and ng,,, is the number of kernels used in this convolu-
tional layer. Since we aimed to encode cluster vectors as sentiment
information, the produced three feature vectors fs, fn, and fy for
the corresponding “POS cluster” had the same size of nk,,,., i.e.,
Nels = NKpos+

We then concatenated semantic representation fsen, and POS-
level sentiment features, and fed the vector into a fully-connected
layer. Output was the hybrid feature representation of document d,
ie.,

fall:fsem@fj®fN®fV7 (7)
fa=hrWsuiiy © faui + bfuity), (8)

where Wiy € R ™hus * (Mkw T3 Kpos) and by, € RIhub
are weight parameters of the fully-connected layer, and dimp,y is



the number of neural units in the fully-connected layer, i.e., the di-
mension of hybrid feature vectors. The ReLU activation function
h(*) was added on the output of convolution. To reduce the im-
pact of overfitting, we also added dropout in the network, that is,
we randomly left some nodes unused in the training process, as
follows:

fd = fa ® mask, ()

where fd is the feature vector of document d after dropout, ® is the
element-wise multiplication operator, and mask is a vector with
binary values. Particularly, each element in mask follows binomial
distribution with probability p, which is a hyper parameter in our
model. Note that we used dropout during training to alleviate the
issue of overfitting, and chose to remove dropout, i.e., fd = fa,
for each testing document to forward more information to the next
layer.

The last component of our network was the prediction module,
which was a softmax layer. The sentiment strength of document d
was calculated as follows:

SV[d] :hs(Wsofthd+bsoft)7 (10)

where hs(x) is the softmax activation function, and Wy, and
bsost denote the parameter matrix and bias vector, respectively.
System output SV'[d] is the predicted strength vector of document
d, and its value on each dimension is the predicted intensity of the
corresponding sentiment.

3.3 Parameter Estimation

The parameter set of our model was 0 = [Wk,,; Wk ,o.s Wiuity;
Wisorts bicys DKposs bullys bsopt]. As a frequently used loss
function in classification-oriented works [17, 16, 32], negative log-
likelihood was leveraged to maximize the likelihood between the
true label and predict label, which is a little bit different from the
objective of sentiment strength prediction. The output strengths of
a good sentiment strength prediction system should be as close as
possible to golden ones over dominant sentiment and non-dominant
sentiments. Therefore, we designed a regression-oriented objec-
tive function to minimize the distance between predicted and actual
strengths. In this work, we used Kullback-Leibler divergence (KL
divergence) [25], which measures the dissimilarity of two probabil-
ity distributions as a training objective. The training loss is defined
in the following equations:

Nels
Loss(d) = Y SVyouald, i] - log(SVgotald, i])

i=1

Nels (1 1)
= > 5Votald, ] - log(SV[d, ),
i=1
Loss(0) = Z Loss(d), (12)

deD

where SVy014 and SV are golden and predicted strength vectors,
respectively, D denotes a collection of training documents, Loss(d)
is the prediction loss of training document d, Loss(#) is the total
loss of D, and n.;s is the number of pre-defined sentiments. Model
training was done via back-propagation and stochastic gradient de-
scent. To avoid manually tuning learning rate for different datasets,
we adopted Adadelta [42] as an optimizer.

4. EXPERIMENT

In this section, we evaluate the performance of our framework
for sentiment strength prediction over textual data.

4.1 Dataset

To verify the adaptiveness, effectiveness, and robustness of our
model on sentiment strength prediction over sparse words, a real-
world short corpus was employed in our experiments'. The cor-
pus was also used to evaluate the performance of existing senti-
ment strength detection methods [37]. This dataset included BBC
Forum posts (BBC), Digg.com posts (Digg), MySpace comments
(MySpace), Runners World forum posts (Runners World), Twitter
posts (Twitter), and YouTube comments (YouTube). The above da-
ta sources represented different types of social environments, i.e,
news-related discussion, comments on new stories, messages be-
tween friends, common-interest group messages, microblog broad-
casts, and comments on videos, respectively. Each document was
manually labelled by users with positive and negative sentiment
strength. The positive sentiment strength ranged from 1 (not posi-
tive) to 5 (extremely positive), and the negative sentiment strength
ranged from -1 (not negative) to -5 (extremely negative). To simpli-
fy evaluation [36], we concatenated the positive strength and abso-
lute value of negative strength and treated the normalized strength
vector as the actual strength vector of documents. For instance,
the strength vector of a document with 1 and -3 as the positive and
negative strengths was [0.25, 0.75].

Table 3: Dataset statistics.

Dataset # of documents  Mean words
BBC 1000 64.76
Digg 1077 33.63
MySpace 1041 19.76
Runners World 1046 64.25
Twitter 4242 16.81
YouTube 3407 17.38

The dataset statistics are summarized in Table 3, where the sec-
ond column presents the number of documents in each subset, and
the third one shows the mean number of words in every document
for each subset. Note that punctuation marks and stop words were
removed to produce informative features.

4.2 Experimental Design

To evaluate the performance of the proposed HCNN, we imple-
mented the following baselines for comparison:

e Character to Sentence Convolutional Neural Network (CharSC-
NN) [8]. Two convolutional layers are employed to extract fea-
tures from character to sentence. The result of the second con-
volutional layer is then passed to two fully-connected layers to
compute the sentiment score for each label. Due to the sparse-
ness of features, we set the context windows of word and char-
acter to 1. The dimension of convolution units was 20 for the
character-level and 150 for the word-level. The dimension of the
character embeddings was 5, while the number of hidden units
was 200. We used 0.005 as the learning rate for fine-grained
training.

e Convolutional Neural Network (CNN) [17, 34]. A straightfor-
ward convolutional architecture that employs one convolution-
al layer with multiple kernels to learn sentence representation
and add dropout to prevent over-fitting. Hyper parameters of the
model were specified according to the literature [17]. Sentiment
strength was the output distribution of the softmax layer.

"http://sentistrength.wlv.ac.uk/documentation/.



Table 4: Parameter setting of HCNN.

Parameter Value
dimpre 200
(wink,,, winKpOS) (1, 1)
(dimg,,, dimk,,,) (80,2)
dimhyb 100

e [ ong Short-Term Memory (LSTM) [11]. LSTM takes the whole
corpus as a single sequence, and the mean of the whole hidden
states of all words is used as the feature for prediction. Similar to
the previous baseline, we treated the output of the softmax layer
as the sentiment strength. Conventionally, the hidden represen-
tation dimension was set to 128.

e Convolutional Gated Recurrent Neural Network (ConvGRNN)
[36]. The ConvGRNN model learns semantic representation hi-
erarchically. Firstly, the model obtains sentence vectors by con-
volving pre-trained word embeddings. Secondly, the generated
sentence vectors are fed into Gated RNN to produce the rep-
resentation vector of each document. Hyper parameters of the
model were specified according to the literature [36].

e Supervised SentiStrength (Ssth) [38, 37]. Ssth is a method specif-
ically designed for sentiment strength detection over our em-
ployed corpus. It is a lexicon-based classifier that uses linguistic
information and rules to predict sentiment strengths in short in-
formal English text, and the supervised version tends to be more
accurate than unsupervised SentiStrength and many other ma-
chine learning methods [37].

To obtain rich semantic features, we used pre-trained GloVe [27]
word embeddings for HCNN and baseline models of CharSCNN,
CNN, LSTM, and ConvGRNN. Particularly, we initialized word
embeddings with GloVe vectors trained on 2 billion tweets with 27
billion tokens and 1.2 million words>. Words that do not appear in
GloVe were initialized randomly. Although there are more recent
models on sentiment or emotion detection tasks, they were used for
either conversation corpora [29] or news articles [28] that should
provide conversation context and sufficient words in an individual
text. With respect to the POS annotation of documents, we utilized
openNLP POS tagger’ in the experiment. Following the method
proposed by Glorot and Bengio [9], we initialized all parameters by
sampling from uniform distribution (-/6/(r + c), v/6/(r + ¢)),
where 7 and ¢ are numbers of rows and columns in the parameter
matrix, respectively. The document frequency threshold was fine-
tuned on the validation set, and hyper parameters of the model were
also set accordingly. We summarize the parameter settings of the
proposed HCNN in Table 4. Parameters used in Adadelta were
kept the same as in the literature [42].

We employed three evaluation metrics as indicators of model
performance: root mean square error (RMSE) [36, 13], Pearson’s
correlation coefficient (Corr) [38, 37], and accuracy (Acc) [8, 17,
28]. RMSE and Corr are fine-grained metrics that measure the d-
ifference between the predicted and actual strength values over all
sentiments. For each sentiment strength s; (¢ = 1, ..., nes), RMSE
and Corr are respectively calculated as follows:

‘Dtest‘ - -
_ SV(d,i] — SVyoiald, 1])?
RMSE(si) = \/Edl ( [|Dt] t| g [ D ,

13)

2http://nlp.stanford.edu/software/GloVe-1.2.zip.
3https://opennlp.apache.org/.
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Corr(s) = Cov(SV[:, ], SVyoial:,1]) 7
/Var(SVT:,i]) - Var(SVyoual:, 1))

where Dycst is the collection of testing documents; SV[:,i] €
R!Ptestl is a concatenation vector of SV[d,i] (d = 1, ..., | Diest|)
asin Eq. 10, i.e., the predicted strength values over sentiment s; for
all testing documents; and Cov and Var denote the covariance and
variance, respectively. The lower the model’s RMSE value, the bet-
ter its performance. With respect to Corr, its value ranges from -1
to 1, where 1 indicates that actual and system-produced sentiment
strengths are correlated perfectly. To make an appropriate compar-
ison with other neural network-based methods [36], we concate-
nated the positive strength and absolute value of negative strength
to a normalized strength vector for each document. Thus, a sin-
gle RMSE or Corr value was output for each case. We also used
Acc as a coarse-grained metric to evaluate the overall classification
performance. Accordingly, a predicted ranked list of sentiment la-
bels was correct if the list’s first item was identical to the actual
ranked list’s first item. If two sentiment labels in the actual ranked
list had the same number of votes, then their positions were inter-
changeable. Particularly, an evaluation index Pred; was applied
to measure prediction quality as a binary variable, where 0 and 1
represent incorrect and correct prediction, respectively. Pred; is
defined as follows:

(14)

1 ys c Ygold
Pred; = 7 Jd d_’
reda { 0, otherwise,

where y; is the top-ranked predicted sentiment label, and Y7 old g
the set of top-ranked labels derived from the actual strength vector
of d. Then, we computed the Acc value based on Pred ; as follows:

Zo@e Diest P’redci
‘Dtest|

15)

Acc = (16)
A larger value of Acc indicates that the model is more effective in
predicting the top-ranked sentiment.

The ablation experiment was conducted to respectively test the
improvement of POS information, corpus-specific vectors, and pre-
trained embeddings for HCNN. By discarding particular features,
we obtained three models named HCNN - POS, HCNN - one-hot,
and HCNN - GloVe for comparison, where “-” means that the spe-
cific feature was eliminated. Both single-source and cross-sources
testing were performed to evaluate the effectiveness of our HCNN
and baseline models. For the single-source testing, models were
compared on each aforementioned subset (ref., Table 3), as fol-
lows. Given instances from a same source such as BBC, we con-
ducted single-source testing by randomly selecting 60% as training
samples, 20% as validation samples, and the remaining 20% for
testing. To evaluate the adaptiveness and robustness of different
models, we also conducted cross-sources testing by using one sub-
set for training and others for testing. For instance, given a Twitter
subset as the training set, we randomly selected 20% samples in
the other subset A (i.e., BBC, Digg, MySpace, Runners World, or
YouTube) as the validation set, and the rest of A as the testing set.

4.3 Results and Analysis

In this section, we compare the performance of different models
in terms of RMSE, Corr, and Acc. Table 5 presents model perfor-
mance of single-source testing, with the best result boldfaced.

The first four rows of Table 5 present results of the ablation
experiment for each subset, from which we can observe that pre-
trained embeddings via GloVe had a positive impact on HCNN for
sentiment strength prediction. Compared to HCNN - GloVe, the
averaged performance of HCNN over the 6 subsets improved by



Table 5: Model performance of single-source testing.

Model BBC Digg MySpace Runners World Twitter YouTube
RMSE Corr Acc RMSE Corr Acc RMSE Corr Acc RMSE Corr Acc RMSE Corr Acc RMSE Corr Acc

HCNN 0.1260 | 0.4462 | 0.9150 | 0.1297 | 0.6000 | 0.8519 | 0.1024 | 0.6585 | 0.9278 | 0.1133 | 0.4942 | 0.8857 | 0.1177 | 0.5625 | 0.9058 | 0.1360 | 0.7264 | 0.8942
HCNN - POS 0.1287 | 0.3925 | 0.9150 | 0.1410 | 0.4928 | 0.8472 | 0.1141 | 0.5532 | 0.9183 | 0.1210 | 0.4331 | 0.8667 | 0.1189 | 0.5523 | 0.9058 | 0.1433 | 0.7105 | 0.8750
HCNN - one-hot | 0.1340 | 0.3121 | 0.9150 | 0.1370 | 0.5200 | 0.8560 | 0.1141 | 0.5185 | 0.8942 | 0.1195 | 0.3824 | 0.8476 | 0.1198 | 0.5348 | 0.8939 | 0.1370 | 0.7235 | 0.8942
HCNN - GloVe 0.1342 | 0.2834 | 0.9150 | 0.1572 | 0.2798 | 0.7963 | 0.1203 | 0.4443 | 0.8942 | 0.1285 | 0.2630 | 0.8286 | 0.1310 | 0.4039 | 0.8610 | 0.1370 | 0.5562 | 0.8061
CharSCNN 0.1335 | 0.2860 | 0.9100 | 0.1505 | 0.3329 | 0.8279 | 0.1233 | 0.4291 | 0.8990 | 0.1263 | 0.1433 | 0.8278 | 0.1309 | 0.4037 | 0.8632 | 0.1586 | 0.6280 | 0.8649
CNN 0.2061 | 0.3172 | 0.8900 | 0.2139 | 0.4533 | 0.8380 | 0.3098 | 0.5375 | 0.9038 | 0.2967 | 0.4325 | 0.8857 | 0.3438 | 0.3948 | 0.8763 | 0.2432 | 0.6704 | 0.8899
LST™M 0.2943 | 0.2989 | 0.8800 | 0.2743 | 0.4501 | 0.8519 | 0.2993 | 0.5015 | 0.9038 | 0.3458 | 0.1955 | 0.8000 | 0.3112 | 0.3887 | 0.8716 | 0.2273 | 0.6866 | 0.8767
ConvGRNN 0.2002 | 0.1788 | 0.9100 | 0.1548 | 0.4260 | 0.8287 | 0.2745 | 0.5514 | 0.9187 | 0.1955 | 0.0178 | 0.8333 | 0.2385 | 0.5202 | 0.8928 | 0.2582 | 0.6204 | 0.8856
Ssth 0.1538 | 0.4430 | 0.7600 | 0.1641 | 0.4174 | 0.7070 | 0.1319 | 0.4762 | 0.8990 | 0.1543 | 0.2956 | 0.8373 | 0.1454 | 0.4422 | 0.8868 | 0.1613 | 0.6024 | 0.8473
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Figure 3: Model performance of cross-sources testing on RMSE.

10.3%, 56.4%, and 5.5% on RMSE, Corr, and Acc, respectively.
This indicated that word embeddings trained on a large-scale ex-
ternal corpus were quite valuable for alleviating the sparseness of
words in our employed datasets. Corpus-specific embeddings (i.e.,
one-hot word vectors) and POS-level features are also both useful
to boost performance, especially for the fine-grained metrics Corr
and RMSE. However, POS-level features have limited effect when
each document’s words are extremely sparse (e.g., Twitter). Com-
pared to HCNN - POS, the performance of HCNN over Twitter
only improved by 1.0% and 1.8% on RMSE and Corr, respectively.
Furthermore, there was no difference between HCNN - POS and
HCNN over Twitter in terms of Acc. A possible reason for this is
that very short text cannot provide enough POS information. We al-
so observed that POS-features, one-hot vectors, and GloVe did not
affect Acc much. This was because the basic convolutional archi-
tecture was effective to capture enough features for coarse-grained
polarity detection.

Compared to baseline methods of CharSCNN, CNN, LSTM, Con-
vGRNN, and Ssth, the proposed HCNN outperformed by a large
margin on fine-grained metrics (i.e., RMSE and Corr), and also
performed better on the coarse-grained metric (i.e., Acc). Besides,
both HCNN and CNN achieved competitive performance over oth-
er methods on the classification evaluation metric (i.e., Acc), which
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indicated that encoding contextual information via convolution is
quite useful for classification tasks. However, the difference be-
tween model performance was generally indistinctive since Acc
did not take sentimental distributions into account. With respect
to the distance-based metric RMSE, the proposed HCNN could
generate sentiment strength distributions that were most similar to
the golden distributions. Compared to the best-performing base-
line of CharSCNN, the prediction error (i.e., RMSE) of our HCNN
reduced from 6% to 17% over these 6 subsets. This indicated that
the regression-oriented objective function (i.e., KL divergence) was
better than classification-oriented objective functions in sentiment
strength prediction. The proposed HCNN also outperformed base-
lines in terms of the other fine-grained metric Corr. For instance,
our HCNN performed an average of 27% better than CNN over
these 6 subsets. These results indicated that hybrid features are a
benefit to sentiment strength prediction, and it is insufficient to use
only pre-trained word embeddings. We also observed that CNN
performed worse than CharSCNN on Twitter. A possible reason
for this is that the lexical variation caused by typos, use of slang,
and abbreviations, leads to a great number of singletons and out-
of-vocabulary words [1]. Thus, it is difficult to estimate and up-
date pre-trained word embeddings for these words. In this case,
character-level embeddings provide some features that word-level
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Figure 4: Model performance of cross-sources testing on Corr.
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Figure 5: Model performance of cross-sources testing on Acc.
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Table 6: The p values of statistical tests on the HCNN and base-
lines over RMSE.

single-source | cross-sources

Models F-test | t-test | F-test | t¢-test
CharSCNN | 0.376 | 0.029 | 0.000 | 0.000
CNN 0.002 | 0.001 | 0.000 | 0.000
LSTM 0.011 | 0.000 | 0.000 | 0.000
ConvGRNN | 0.006 | 0.001 | 0.000 | 0.000
Ssth 0.469 | 0.001 | 0.303 | 0.000

embeddings do not have. However, CharSCNN performed worse
than CNN on other subsets, which may have been caused by the
overfitting of character-level embeddings. For the proposed HCNN
model, we concatenated pre-trained word embeddings and corpus-
specific one-hot vectors to consolidate both global and local seman-
tics of words. These results of single-source testing validated the
effectiveness of our method.

For cross-sources testing, we present the performance over RMSE
in Figure 3. Compared to the best-performing baseline of Ssth,
the proposed HCNN performed competitively when using BBC for
training and other subsets for testing. For all other cases, our HC-
NN outperformed Ssth on the fine-grained metric. Ssth performed
well on cross-sources testing because it was manually developed to
cope with a wide variety of types of text, especially for short in-
formal English messages [38]. The following processes were also
employed by Ssth to enhance the sentiment strength detection ef-
fectiveness [37]: First, the sentiment word list was extended with
negative terms with human-coded sentiment weights. Second, a su-
pervised learning algorithm was used to optimize sentiment word
strengths and potentially change polarity. Third, spelling mistakes
and slang words were corrected using a dictionary. With respect to
Corr (ref., Figure 4) and Acc (ref., Figure 5), the proposed HCNN
performed better than CharSCNN, CNN, LSTM, ConvGRNN, and
Ssth by (on average) 104.2%, 25.0%, 54.6%, 147.5%, and 12.0%,
and 16.6%, 1.9%, 7.8%, 17.9%, and 6.1%, respectively. We also
conducted the ablation experiment on cross-sources testing, and re-
sults indicated that POS-features and pre-trained embeddings had
a larger positive impact on HCNN than one-hot vectors. For exam-
ple, the prediction error (i.e., RMSE) of HCNN reduced by 15.7%,
2.9%, and 2.7% on average when compared with HCNN - GloVe,
HCNN - POS, and HCNN - one-hot, respectively.

To evaluate the differences in model performance, we performed
two statistical tests on the HCNN and each baseline model in terms
of RMSE, Corr, and Acc, and the corresponding p values are shown
in Table 6, Table 7, and Table 8, respectively. The first evaluated
the stability of performance in terms of variances, and the second
compared performance in terms of means. We used the convention-
al significance level (i.e., p-value) of 0.05. First, we employed the
analysis of variance named F-test to test the underlying assumption
of homoscedasticity (i.e., the homogeneity of variance). The re-
sult showed that the performance of HCNN was significantly more
stable than most baselines on cross-sources testing, and the differ-
ence in variances between the HCNN and each baseline model was
more significant on cross-sources testing than that of single-source
testing. Second, we conducted t-tests to test the underlying as-
sumption that the difference in performance between paired models
had a mean value of zero. The results indicated that the proposed
HCNN outperformed the baseline methods on cross-sources test-
ing significantly, except for CNN over the coarse-grained metric
(i.e., Acc). For single-source testing, the difference in performance
between our HCNN and each baseline model was more significant

13

Table 7: The p values of statistical tests on the HCNN and base-
lines over Corr.

single-source | cross-sources

Models F-test | t-test | F-test | ¢-test
CharSCNN | 0.174 | 0.011 | 0.034 | 0.000
CNN 0.358 | 0.057 | 0.399 | 0.003
LSTM 0.150 | 0.038 | 0.120 | 0.000
ConvGRNN | 0.047 | 0.053 | 0.001 | 0.000
Ssth 0.461 | 0.022 | 0.058 | 0.007

Table 8: The p values of statistical tests on the HCNN and base-
lines over Acc.

single-source | cross-sources

Models F-test | t-test | F-test | t¢-test
CharSCNN | 0.290 | 0.055 | 0.001 | 0.000
CNN 0.369 | 0.143 | 0.044 | 0.279
LSTM 0.270 | 0.050 | 0.099 | 0.005
ConvGRNN | 0.219 | 0.177 | 0.000 | 0.000
Ssth 0.020 | 0.032 | 0.013 | 0.001

on fine-grained metrics than that of the coarse-grained metric. The
above results validated the effectiveness of our method on senti-
ment strength prediction tasks, especially when the training set and
the testing set are from different sources.

5. CONCLUSIONS

In this article, we proposed a neural network-based framework
for sentiment strength prediction. Our model introduced one-hot
vectors to capture corpus-specific information and jointly learned
hybrid features at semantic and syntactic levels for enhancing mod-
el robustness and adaptiveness. Experimental results validated the
effectiveness of the proposed sentiment strength prediction method.
The main conclusions of our paper are the following:

e Corpus-specific embeddings and POS-level features are both use-
ful to boost sentiment strength prediction performance.

e The differences in variances and performance between our pro-
posed method and each baseline model are more significant on
cross-sources testing than that of single-source testing.

In the future, the following directions will be studied: Firstly,
we plan to explore effective methods to obtain and exploit topic
level features, which is valuable to enrich the semantic information.
Secondly, other neural network-based architectures, such as gated
recurrent unit [6] and bidirectional recurrent neural networks [33],
will be leveraged to learn semantic representation of documents,
which could then be incorporated into our method. Finally, we
plan to extend our model on cross-domain sentiment analysis.
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