
Email Category Prediction

Aston Zhang∗1, Lluis Garcia-Pueyo2, James B. Wendt2, Marc Najork2, Andrei Broder2
1University of Illinois at Urbana-Champaign, IL, USA, 2Google, CA, USA

lzhang74@illinois.edu, {lgpueyo, jwendt, najork, broder}@google.com

ABSTRACT

According to recent estimates, about 90% of consumer received
emails are machine-generated. Such messages include shopping
receipts, promotional campaigns, newsletters, booking confirma-
tions, etc. Most such messages are created by populating a fixed
template with a small amount of personalized information, such
as name, salutation, reservation numbers, dates, etc. Web mail
providers (Gmail, Hotmail, Yahoo) are leveraging the structured
nature of such emails to extract salient information and use it to
improve the user experience: e.g. by automatically entering reser-
vation data into a user calendar, or by sending alerts about upcom-
ing shipments. To facilitate these extraction tasks it is helpful to
classify templates according to their category, e.g. restaurant reser-
vations or bill reminders, since each category triggers a particular
user experience.

Recent research has focused on discovering the causal thread of
templates, e.g. inferring that a shopping order is usually followed
by a shipping confirmation, an airline booking is followed by a con-
firmation and then by a “ready to check in” message, etc. Gamzu
et al. took this idea one step further by implementing a method to
predict the template category of future emails for a given user based
on previously received templates. The motivation is that predicting
future emails has a wide range of potential applications, including
better user experiences (e.g. warning users of items ordered but not
shipped), targeted advertising (e.g. users that recently made a flight
reservation may be interested in hotel reservations), and spam clas-
sification (a message that is part of a legitimate causal thread is
unlikely to be spam).

The gist of the Gamzu et al. approach is modeling the problem as
a Markov chain, where the nodes are templates or temporal events
(e.g. the first day of the month). This paper expands on their work
by investigating the use of neural networks for predicting the cat-
egory of emails that will arrive during a fixed-sized time window
in the future. We consider two types of neural networks: multi-
layer perceptrons (MLP), a type of feedforward neural network;
and long short-term memory (LSTM), a type of recurrent neural
network. For each type of neural network, we explore the effects

∗The work was completed at Google Research.

c©2017 International World Wide Web Conference Committee (IW3C2), published
under Creative Commons CC-BY-NC-ND 2.0 License.

WWW 2017 Companion,, April 3–7, 2017, Perth, Austraila.
ACM 978-1-4503-4914-7/17/04.
http://dx.doi.org/10.1145/3041021.3055166

of varying their configuration (e.g. number of layers or number of
neurons) and hyper-parameters (e.g. drop-out ratio). We find that
the prediction accuracy of neural networks vastly outperforms the
Markov chain approach, and that LSTMs perform slightly better
than MLPs. We offer some qualitative interpretation of our find-
ings and identify some promising future directions.

CCS Concepts

•Information systems → Email; •Computing methodologies →
Machine learning;

Keywords

Email; prediction; time series analysis

1. INTRODUCTION
According to a recent recent study, about 90% of the messages

received by Yahoo users are machine-generated [21]. Such mes-
sages include shopping receipts, promotional campaigns, newslet-
ters, flight booking confirmations, etc. Virtually all such messages
are created by populating a fixed template with a small amount
of personalized information, such as name, salutation, reservation
numbers, dates, etc. Web mail providers (Gmail, Hotmail, Yahoo)
are leveraging the structured nature and the volume of such emails
to extract salient information from received messages [32], and use
it to improve the user experience: e.g. by automatically entering
reservation data into a user calendar, or by sending alerts about up-
coming shipments.

To facilitate these extraction tasks it is helpful to classify tem-
plates according to their category, e.g. “hotel reservations” or “bill
reminders”, since the category of a template determines the infor-
mation that should be extracted, for instance check-in and check-
out dates for a hotel reservation, due date for a bill reminder, and
so on. Determining the category of a template can be framed as a
multi-class classification problem [12, 28].

Ailon et al. [2] observed that an email of a certain category is of-
ten followed by a second email of a related category. For example, a
purchase confirmation email is often followed by a shipping confir-
mation containing a tracking number. Ailon et al. clustered a sam-
ple of emails from Yahoo Mail into templates, classified them into
categories, and induced a causality graph that captured the tempo-
ral sequence of email messages within the same causal thread. The
aim of their research was to improve email organization by group-
ing all emails belonging to the same causal thread into a bundle.

Gamzu et al. took the idea of causal threads one step further, by
investigating whether it is possible to predict the arrival of future
emails – emails generated from the template expected next in an
ongoing causal thread [9]. Predicting the template or category of

495

future emails has a number of possible applications. For example,
the web email service could use the prediction as a signal that the
user is “in market” for a product or a service and show appropriate
contextualized advertisement. The prediction can also be used as a
signal for an email spam classifier – an email belonging to a causal
thread is almost certainly not spam unless the entire thread is spam.
Gamzu et al. modeled the problem as a Markov chain, where the
nodes are a combination of templates and temporal events created
by inferring causal relations (e.g. the first of the month may be
predictive of the arrival of a bill reminder email), and the edges
are transition probabilities. Using this approach, they were able
to predict with about 45% precision that an email belonging to a
particular template would arrive within the next two weeks.

This paper expands on Gamzu et al.’s work. In particular, we
explored whether prediction accuracy could be improved through a
more sophisticated model. We investigated the performance of two
different types of neural networks: multi-layer perceptrons (MLP),
a type of feedforward neural network; and long short-term memory
(LSTM), a type of recurrent neural network. LSTMs differ from
MLPs in that they have internal memory, making them particularly
suitable for time series analysis. We explored the effects of vary-
ing the configuration of the neural networks (e.g. the number of
layers and the number of neurons), their hyper-parameters (e.g. the
LSTM’s drop-out ratio) as well as the amount of history provided
to each model. We performed experiments on a data set of email
category sequences spanning 90 days of activity for about 100,000
anonymized email users. We found that both MLPs and LSTMs
vastly outperform the Markov chain baseline, and that LSTMs per-
form slightly better than MLPs, presumably due to their superior
ability for time series analysis afforded by their internal memory.
In their best configurations, the Markov chain model yields a mean
reciprocal rank of 0.840 while MLP and LSTM yield 0.918 and
0.923, respectively.

The remainder of this paper is structured as follows: Section 2
reviews related work. Section 3 provides a more formal definition
of the problem. Section 4 reviews Markov chains, multi-layer per-
ceptrons and long short-term memory. Section 5 describes our ex-
perimental evaluation. Finally, Section 6 offers concluding remarks
and avenues for future research.

2. RELATED WORK
Email was invented in 1972, about 19 years earlier than the

World Wide Web. Nowadays, email is known to host significantly
larger user-generated contents than the entire Web, but on the other
hand The New York Times refers to the email overload as “a $650
billion drag on the economy” [2, 27]. Driven by users’ demand
for automatic management of the overwhelming volume of emails,
research in email “intelligence” has been growing, such as email
response prediction [16], email operation prediction [8], email pri-
oritization [26, 27], email threading [2], and email communication
control [13].

Email categorization has been studied for more than twenty
years. Cohen proposed a rule-based learning algorithm [7], and
Provost subsequently suggested naïve Bayesian learning as an al-
ternative [24].

Brutlag & Meek [5] identified the unique technical challenges
in the email domain compared to general text categorization prob-
lems. The release of the Enron email data set [19] provided the
impetus for further research. Recent email categorization tech-
niques are based on graph mining [1, 6], co-training or semi-
supervised learning [18, 28], and sampling probability distribu-
tions [4]. Koren et al. leveraged folder names for categoriza-

Time Received email category

2016-10-17-16-45 Newsletter
2016-10-17-20-15 Hotel Booking
2016-10-18-09-34 Bill
2016-10-21-07-26 Newsletter
2016-10-21-11-45 Recommended Event

Probability Predicted email category

0.61 Hotel Booking
0.25 Newsletter
0.12 Recommended Event

Table 1: Example of the email category prediction task: Given

a series of past email categories received at different times-

tamps by one user, the system provides prediction probabilities

of email categories to be received in the future.

tion [20], while Grbovic et al. investigated automatically tagging
emails with a small set of categories [12].

Very recently Gamzu et al. investigated whether it is possible to
predict the templates of future emails [9]. They construct a causal-
ity graph that captures the sequence of observed templates. Given
a user having received a chain of templates, they use the causality
graph to predict the most likely template to arrive next and achieve
45% precision for this task.

While the techniques proposed by Gamzu et al. predict the next
template, our work aims to predict the category of the next template
– a somewhat easier problem, since there are far fewer categories
than templates. We investigate the prediction performance of two
powerful learning approaches based on deep neural networks and
compare it to a baseline approach based on a k-dependent Markov
chain, which is similar in spirit to Gamzu et al.’s ThreadingBased-

Predictor. Deep neural networks, particularly ones designed for
time series analysis, turned out to perform far better than Markov
chains.

3. EMAIL CATEGORY PREDICTION
In this section we describe and formalize the email category pre-

diction problem.
A machine-generated email is a single instantiation of a pre-

defined structural template. We specifically consider and target
machine-generated emails as they constitute a majority percentage
of all emails and their categorization can be highly accurate [2,
28]. Recent work by Wendt et al. demonstrated that such machine-
generated emails can be categorized with a 91% precision and a
93% recall [28]. For succinctness, we refer to a machine-generated
email as an email in the rest of the paper.

Consider that a user receives a series of emails. Each email has
a timestamp indicating when it was received by the user. We as-
sume that each email is assigned to a pre-defined category by an
email categorization method. This assumption is general enough
to allow the re-using of existing email categorization research. In
this work, the email categorization algorithm deployed at Google is
used to generate categories for emails. Examples of categories in-
clude flight reservations, restaurant bookings, and event reminders.

Intuitively, a user’s received past email categories with tempo-
ral information may be leveraged to predict future categories. As
illustrated in Table 1, given a series of categories Newsletter, Ho-
tel Booking, Bill, Newsletter, and Recommended Event, the future
category could be Hotel Booking as triggered by the latest cate-
gory Recommended Event and repeating an earlier category Hotel
Booking. Or, the future category could be Newsletter since it ap-
peared twice recently, which might suggest the user’s subscriptions

496

to newsletters. Or simply, the future category might just repeat
one of the recent categories, such as Recommended Event. Among
all such possibilities, the future category may be related to one or
many past categories and their temporal information.

More succinctly put, the email categorization problem is to pre-
dict, given the categories and timestamps of a user’s past emails, a
probability distribution over the categories of emails that the user
will receive over the next n days.

More formally, suppose that a user has a series of emails at pre-
diction time. Each of these received emails is assigned with a time
step index t as 1, 2, . . . in the ascending order of time (t = 0 is
used for describing variable initialization as discussed later). We
conduct a one-to-one mapping between category names and cate-
gory integer IDs. The set of all the pre-defined categories is defined
by A = {1, 2, . . . , |A|}, where |A| is the cardinality of the cate-
gory set. We denote an email category as a ∈ A. An email at time
step t has a category a(t) ∈ A and a timestamp m(t).

At the prediction time step t, the output of the predictor is a prob-
ability distribution indicating for each category a the probability
that an email belonging to a will be received during the prediction
time window (m(t),m(t) + ∆]. For instance, the prediction time
window size ∆ may be set to 1 day, 2 days, and so on. Hence, the
output at the prediction time step t is a |A|-dimensional probabil-

ity vector y(t) where the a-th element corresponds to the predicted
likelihood for category a.

4. PREDICTING THE CATEGORY OF FU-

TURE EMAILS
In the following, we provide some detail on the three different

category prediction approaches we explore, after describing the
features that are available to them.

For each user in the training set, we consider the last 90 days
of email messages received. We consider only those messages
for which Google’s category classifier (which we treat as a “black
box”) was able to assign a category. For each email message in
that subset, we record the category of the email and the time at
which it was received. We also record some derived information of
the time of receipt: the day of the week, the period of the month
(beginning, middle or end), and finally the inter-arrival gap to the
previous message.

In order to evaluate the different prediction approaches, we par-
tition the data set into two parts: the first 45 days of each user’s
history go into the training set, while the second 45 days go into
test and validation sets.

4.1 k-dependent Markov chains
We use the k-dependent Markov chain [25] as a baseline system.

This method is based on counting to calculate the probability of
occurrence of an event after the observation of a chain of k con-
secutive events. Given the list of categories 〈a(1), · · · , a(n)〉 of the
n emails received by a user and sorted by received timestamp, we
create state pairs:

{(〈a(i), · · · , a(i+k−1)〉, 〈a(i+1), · · · , a(i+k)〉) ∀i ∈ {1, · · · , n− k}

The first state is a list capturing a sequence of k received emails,
the second state is a suffix of the first list plus the category of the
next received email. Using these state pairs, we construct a directed
graph, where the nodes are states, the edges indicate the presence of
a pair, and the edge weights indicate the probability of a transition
from source to target state. One can view this graph as a mapping
from source states to a probability distribution over target states, or

alternatively (considering only the final category of a target state)
over categories.

Prediction is performed as follows: For each user in the test data
set, we consider a sequence of k received emails and test whether
we can predict the category of the next email. The k emails form a
source state, which can be mapped as described above to a probabil-
ity distribution over categories. This probability distribution forms
the output of the predictor.

4.2 Multilayer Perceptrons
Multilayer perceptrons (MLPs), sometimes called the

“quintessential deep learning model” [10], are a form of feed-
forward neural network. Such a network consists of “neurons”
that can perform simple operations. Neurons are arranged into
“layers”. In a feedforward neural network, each neuron at layer l
is connected to every neuron at layer l − 1. The top and bottom
layers form the input and output layer, the layers in between are
called the hidden layers. Input vectors flow from the input layer to
the output layer, passing through weighted connecting edges and
being transformed by neurons.

The input layer of the neural network takes a vector of numbers,
one value per neuron. We provide a sequence of k received emails
as the input, representing the category and time of receipt of each
email as a vector and concatenating the k vectors. The individual
features of each email are themselves represented as vectors and
concatenated to form the email’s vector. The individual features of
an email received at time step t are encoded as follows:

• We treat the category a(t) as a number between 1 and |A|,
and we represent it through an |A|-dimensional vector, with

the a(t)-th dimension set to 1 and all other dimensions set to
0 (a common technique known as one-hot encoding). Em-
bedding features of one-hot vectors has been found useful
for training neural networks [29, 30], therefore we embed
the |A|-dimensional vector into an a′-dimensional space, re-
sulting in an a′-dimensional vector. The embedding matrix
is inferred during the training phase.

• We encode the day of the week at which the email was re-
ceived as a 7-dimensional binary vector using a similar one-
hot encoding, and embed it into a d′-dimensional space.

• We encode the period of the month as a 3-dimensional binary
vector, again using one-hot encoding, and embed it into a p′-
dimensional space.

• We encode the time gap m(t) − m(t−1) as a real-value,
clamped not to exceed one week and normalized to be be-
tween 0 and 1.

Using this encoding, the entire sequence of k emails is represented
by a vector h0 of ks values, where s = a′ + d′ + p′ +1 is number
of dimensions for a single email.

We chose the neurons to be rectified linear units (ReLUs). Each
layer l of ReLUs transforms its input vector hl−1 as follows:

hl = max(Wl−1hl−1 + bl−1, 0) (4.1)

The vector hl is the output of the neurons at layer l. The matrix
Wl−1 encodes the weights of the edges between layers l−1 and l;
and the bias vector bl−1 encodes the threshold at which each ReLU
neuron is “activated” (returns a value greater than 0).

For an MLP with L hidden layers, the state information hL con-
tains the encoded information about email categories and their tem-
poral information for the sequence of k emails encoded by h0. The
MLP’s output layer uses hL to produce the probability vector for

497

LSTM Block

h
(1)
0

0s,0s

= c
(0)
1 ,h

(0)
1

· · ·

h
(1)
1

LSTM Block

h
(1)
L−1

0s,0s

= c
(0)
L ,h

(0)
L

P(a(2)) =
[

softmax(Wzhh
(1)
L + bz)

]

a(2)

h
(1)
L

Input Layer

Hidden Layers

Output Layer

· · ·
c
(1)
1 ,h

(1)
1

· · ·
c
(1)
L ,h

(1)
L

LSTM Block

h
(t)
0

c
(t−1)
1 ,h

(t−1)
1

· · ·

h
(t)
1

LSTM Block

h
(t)
L−1

c
(t−1)
L ,h

(t−1)
L

P(a(t+1)) =
[

softmax(Wzhh
(t)
L + bz)

]

a(t+1)

h
(t)
L

Figure 1: Category prediction LSTM. Dashed arrows between layers indicate connections where dropout regularization is applied.

all the categories as the final output. We define a |A|-dimensional
logit vector z to apply an affine transformation of hL:

z = WzhhL + bz (4.2)

where weighting matrix Wzh ∈ R
|A|×ks and bias vector bz ∈

R
|A| are decoding parameters that will be inferred during training.

With the logit vector defined in (4.2), the output probability vector
y is computed with an element-wise softmax operator:

y = softmax(z)

=

[

exp(z1)
∑|A|

i=1 exp(zi)
,

exp(z2)
∑|A|

i=1 exp(zi)
, . . . ,

exp(z|A|)
∑|A|

i=1 exp(zi)

]⊤

(4.3)

where zi is the i-th element of vector z. y in (4.3) is the probability
distribution over categories in A. The probability P(a) is [y]a,
where the category a is treated as an integer between 1 and |A| as
described earlier.

As described above, an MLP has a number of configuration pa-
rameters: the choice of neuron (ReLUs in our case), the number of
layers, and the number of neurons at layer l (which is equal to the
dimensionality of bl−1). The input layer uses embedding parame-
ters for the one-hot encoded vectors, the output layer uses decoding
parameters Wzh and bz in (4.2), and the hidden layers use vari-
ous parameters W and b with different subscripts. To infer these
parameters during the training phase, we need to formalize the ob-
jective function of the training loss. Here we introduce and use
notations for users in the training data set. Suppose that a training
data set is formed by email series of a set of users U , where each
user is denoted by u ∈ U . User u has a series of Tu emails: there
are Tu time steps along the email series for u where each email

with category a
(t)
u and time stamp m

(t)
u is received at time step t.

During training, we maximize the likelihood of all the categories
that arrive within a ∆ time that is equivalent to the prediction win-
dow size. It is equivalent to minimize the following training loss
(known as perplexity):

L = exp

[

−

∑

u∈U

∑Tu−1
t=1 log P(a

(t+1)
u)1(m

(t+1)
u −m

(t)
u ≤ ∆)

∑

u∈U

∑Tu−1
t=1 1(m

(t+1)
u −m

(t)
u ≤ ∆)

]

(4.4)

where indicator function 1 equals to 1 if its predicate is true, other-
wise equals to 0.

To minimize the training loss in (4.4) with respect to parameters
W and b with different subscripts, we use the Adam stochastic

optimization algorithm [17]. To compute the gradients ∂L/W and
∂L/b of L with respect to W and b for Adam, the truncated back-
propagation through time algorithm is used [10, 11]. Examples of
the details of computing such gradients of composite functions by
applying chain rules are provided by Graves [11].

4.3 Long short-term memory
In feedforward neural networks such as the multilayer precep-

tron discussed above, edges may not form cycles. Neural networks
with cyclic connections are called recurrent neural networks. The
most popular of these is the long short-term memory (LSTM) [14].
In the past, LSTMs have been used successfully for many sequence
prediction tasks, making them a promising candidate for the cate-
gory prediction problem.

As the name suggests, LSTM neurons have memory, and that
memory can be used to store information derived from previous
observations. The MLP described in Section 4.2 took a sequence
of the last k emails received by a user as input to predict the next
email. The LSTM, on the other hand, starts out with a blank mem-
ory, processes the emails received by a given user one email at a
time, and uses its internal memory to store information about all
previous emails received by that user. Once all emails of the user
have been processed, the memory is blanked again.

Figure 1 shows a high-level view of an LSTM, with the neurons
of each layer abstracted into a “black box”. The input layer takes
the sequence of emails received by a given user, one email at a time.
We encode the category and temporal information of each email at
time step t in the same way as we did for multilayer perceptrons,

producing a vector h
(t)
0 of dimensionality (a′ + d′ + p′ + 1). The

input flows through the L hidden layers to the output layer, where it
is mapped to a probability distribution over labels in the same way
as for the MLP approach.

For an MLP, the output hl of layer l depends only on hl−1, the
output of layer l − 1. By contrast, given the email at time step

t, the output h
(t)
l of the LSTM block at layer l depends on three

factors: the output h
(t)
l−1 of the LSTM block at layer l − 1 for that

same email, the output h
(t−1)
l of the same LSTM block for the

previous email; and the state c
(t−1)
l of the memory cell. In addition

to producing an output, the LSTM block also updates updates its

memory cell to a new state c
(t)
l . This can be expressed as:

c
(t−1)
l ,h

(t)
l−1,h

(t−1)
l

LSTM Block
−−−−−−→ c

(t)
l ,h

(t)
l (4.5)

498

f
(t)
l

Forget gate

h
(t)
l−1 h

(t−1)
l

⊙

c
(t)
l

Memory
Cell

⊙ h
(t)
l

o
(t)
l

Output
gate

h
(t)
l−1 h

(t−1)
l

⊙

i
(t)
l

Input
gate

h
(t)
l−1 h

(t−1)
l

g
(t)
l

h
(t)
l−1

h
(t−1)
l

Figure 2: Graphical representation of the used LSTM block.

where c
(t−1)
l ,h

(t)
l−1,h

(t−1)
l , c

(t)
l ,h

(t)
l are all s-dimensional vec-

tors. Here s is the dimension of a hidden state, which is determined
by the dimension of h

(t)
0 . By initializing h

(0)
l , c

(0)
l as

h
(0)
l , c

(0)
l = 0s,0s

where 0s is a s-dimensional zero-vector, the LSTM block recur-
rently updates memory and state information as the time step in-
creases. With such a recurrent LSTM block, at time step t, the state
information actually encodes all the captured information by the
input layers from the very beginning of an email series until t.

Figure 1 treats each LSTM block as a black box. An LSTM
block has mechanisms to enable “memorizing” information for an
extended number of time steps. We use the LSTM block decribed
in a recent work by Zaremba et al. [30], shown in Figure 2. The
following transformations are defined for mapping the inputs to the
outputs in (4.5):

i
(t)
l = σ(With

(t)
l−1 +Wilh

(t−1)
l + bi), (4.6)

f
(t)
l = σ(Wfth

(t)
l−1 +Wflh

(t−1)
l + bf), (4.7)

o
(t)
l = σ(Woth

(t)
l−1 +Wolh

(t−1)
l + bo), (4.8)

g
(t)
l = tanh(Wgth

(t)
l−1 +Wglh

(t−1)
l + bg), (4.9)

c
(t)
l = f

(t)
l ⊙ c

(t−1)
l + i

(t)
l ⊙ g

(t)
l , (4.10)

h
(t)
l = o

(t)
l ⊙ tanh(c

(t)
l), (4.11)

where ⊙ is an element-wise multiplication operator, and for all
x = [x1, x2, . . . , xk]

⊤ ∈ R
k the two activation functions σ(x) =

[

1/[1 + exp(−x1)], . . . , 1/[1 + exp(−xk)]
]⊤

and tanh(x) =
[

[1− exp(−2x1)]/[1 + exp(−2x1)], . . . , [1− exp(−2xk)]/[1 +

exp(−2xk)]
]⊤

. Recall that h
(t)
0 ∈ R

s, the dimensions of the
hidden-layer parameters W and b with different subscripts in
(4.6)—(4.9) are characterized as W ∈ R

s×s and b ∈ R
s. Hence,

all the vectors on the left-hand sides of (4.6)—(4.11) have the same
dimension s.

In (4.10), the memory cell c
(t)
l stores the “long-term” memory

in the vector form. In other words, the information accumulatively

captured and encoded until time step t is stored in c
(t)
l and is only

passed along the same layer over different time steps. Referring

to Figure 2, given the inputs c
(t−1)
l , h

(t)
l−1, h

(t−1)
l as described in

(4.5), the input gate i
(t)
l in (4.6) and forget gate f

(t)
l in (4.7) will

help the memory cell to decide how to overwrite or keep the mem-

ory information. The output gate o
(t)
l in (4.8) further lets the LSTM

block decide how to retrieve the memory information to generate

Training

Validation

Testing

Time

Users

(a)

Training Validation

Testing

Time

Users

(b)

Figure 3: Dataset splits for training, validation, and testing.

the current state h
(t)
l in (4.11) that is passed to both the next layer

of the current time step and the next time step of the current layer.
Such decisions are made using the hidden-layer parameters W and
b with different subscripts in (4.6)—(4.9): these parameters will be
inferred during the training phase.

To reduce overfitting in the training, we adopt the dropout regu-
larization method for recurrent neural networks proposed by Pham
et al. [22]. With dropout regularization, a random subset of the

state h
(t)
l−1 from the previous layer in (4.6)—(4.9) will be cleared to

zero. Note that dropout regularization is only applied on the state
passed between layers for the same time step as elucidated as the
dashed arrows in Figure 1.

5. EVALUATION
In this section we evaluate and compare the performance of the

k-dependent Markov chain, MLP, and LSTM architectures for the
email category prediction task.

5.1 Data Description
We use an experimental dataset consisting of 102,743 users and

2,562,361 machine-generated emails spanning 90 days. Each email
is represented with its timestamp of receipt and one of 17 categori-
cal labels that define the body contents (e.g. restaurant reservation,
online purchase, job listing, etc.). We anonymize the dataset by
keeping only the timestamp and category of each email, and dis-
carding all other information (including user data and email con-
tents).

The data is split into training and testing/validation sets by bi-
secting the data at the 45 day midpoint. The training set comprises
the earlier half and the testing/validation sets comprise the later
half. The first configuration in Figure 3 ensures that the testing set
consists of unseen future emails for a known set of users on which
the models have been trained. The second configuration enables
evaluation of the models over an unseen set of future emails as well
as an unseen set of new users.

Unless stated otherwise, we use a prediction time window of 3
days in our experiments. The effects of varying the prediction time
window sizes are studied in Section 5.3.5. Mean values of at least
10 replications of each experiment are reported.

5.2 Metrics
Mean reciprocal rank (MRR) is a common measure to evaluate

the ranking accuracy of a prediction [3, 31]. We define the best

rank of a prediction to be the position of the first correctly pre-
dicted category in the prediction output when sorted by decreasing
probability. If the category with the highest predicted probability is

499

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

k

MRR
SR@1
SR@2
SR@3

(a)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

k

MRR
SR@1
SR@2
SR@3

(b)

Figure 4: Markov chain model MRR and SR@r. (a) Training

and testing sets differ in time period, not user base. (b) Training

and testing sets differ by time period and user base.

indeed observed within the prediction time window, the best rank
is 1. For our email category prediction task we compute the MRR
using the best rank of a predicted category of any email that is re-
ceived within the prediction time window.

The success rate at r (SR@r) is the proportion of testing exam-
ples where the best rank is smaller than or equal to r. For example,
a success rate of 0.9 for SR@2 implies that 90% of testing exam-
ples had a best rank of either 1 or 2. SR@r is also used to evaluate
the ranking accuracy for prediction [15, 31].

In general, a higher MRR or SR@r indicates higher accuracy in
email category prediction.

5.3 Experimental Results

5.3.1 k-dependent Markov chain

Figure 4 shows that the MRR of the baseline k-dependent
Markov chain peaks at 0.840 (k = 5) and 0.818 (k = 4) for the
respective dataset split configurations described in Figure 3.

Memory information is effectively encoded into the Markov
chain model by training on k past categories where k > 1. While
an immediate increase in k improves overall performance, at k > 5
the input space grows to 24+ million possible encodings, which is
10 times the number of training examples in our dataset, eventually
deteriorating the model’s performance to even worse than at k = 1.
Increasing the size of the training input will theoretically improve
overall performance as the model observes more training examples
for each embedding, however this is ultimately an intractable solu-
tion since improving the performance at k requires an exponential
increase in training input for each increase in k.

Table 2: MRR for varying configurations of 2-layer MLPs

trained using k = 1 past emails. Tested on new users. The

columns correspond to the number of neurons in the first layer,

n1. The rows correspond to the number of neurons in the sec-

ond layer, n2.

8 16 32 64 127 256

8 0.8562 0.8555 0.8454 0.8525 0.8529 0.8467
16 0.8615 0.8636 0.8638 0.8627 0.8613 0.8614
32 0.8628 0.8644 0.8644 0.8623 0.8637 0.8635
64 0.8636 0.8626 0.8644 0.8638 0.8644 0.8646

128 0.8627 0.8630 0.8638 0.8644 0.8642 0.8637
256 0.8633 0.8632 0.8644 0.8646 0.8645 0.8643

2 4 6 8 10
0.86

0.87

0.88

0.89

0.9

0.91

0.92

k

M
R

R

8
16
32
64
128
256

Figure 5: MRR for varying configurations of 2-layer MLPs

with 256 neurons in the second layer. Tested on new users. The

legend corresponds to the number of neurons in the first layer,

n1.

It should be pointed out that the Markov chain approach is hand-
icapped compared to the other two approaches, since it uses only
the categories but not the temporal features of past emails.

5.3.2 MLP

The MLP architecture provides a substantial improvement over
the k-dependent Markov chain. The best configured MLP predicts
the next email category with an average MRR of 0.918 and 0.917
for the respective dataset configurations described in Figure 3.

To find this best hyper-parameter configuration we perform a pa-
rameter sweep over the number of hidden layers, the number of
neurons at each hidden layer, and the number of past emails used
to train the model. Table 2 and Figure 5 present slices of the con-
figuration results for the 2-layer architecture. Our first observation
is that increasing the number of hidden layers above 2 provides no
further gains in the performance metrics. In fact, the number of
neurons at each layer has a relatively small impact on performance
past 8 neurons in either layer.

Since the sizes of either layer have a relatively similar impact on
the performance of the network, Figure 5 can then provide us with
insight into the impact of the number of past emails, k, used in
training. Our first observation is that increasing the amount of past
history used as input to the MLP from k = 1 to k = 4 provides
substantial improvements. However, the marginal benefits diminish
as k increases.

500

1 2 3 4 5 6 7 8 9 10

Training Time (Epochs)

2.60

2.70

2.80

2.90

3.00

3.10

3.20

T
ra

in
in

g
 L

o
s
s

1 2 3 4 5 6 7 8 9 10

Training Time (Epochs)

0.84

0.88

0.92

0.96
0.97

V
a

lid
a

ti
o

n
 A

c
c
u

ra
c
y

MRR SR@1 SR@2 SR@3

Figure 6: Example LSTM training loss and validation accu-

racy.

0 0.1 0.2 0.3 0.4

Dropout Ratio

1

2

3

4

#
H

id
d

e
n

 L
a

y
e

rs

0.917

0.918

0.919

0.920

0.921

0.922

0.923

Figure 7: MRR for various configurations of LSTM hyper-

parameters.

5.3.3 LSTM

The performance improvement of LSTM over MLP is statisti-
cally significant, albeit small, predicting an average MRR of 0.923
and 0.922 for the dataset configurations described in Figure 3.

An example of the training loss (recall equation (4.4)) and valida-
tion accuracy across training epochs is depicted in Figure 6. Early
stopping is suggested to prevent overfitting when stable results are
observed on the validation data [23]. Thus, we limit training to 10
epochs in our experiments.

To find the best configuration for the LSTM architecture we per-
form a sweep across hyper-parameters including the number of hid-
den layers and dropout ratio. Recall from Section 4.3 that dropout

regularization clears a random subset of the state h
(t)
l−1 from the

previous layer in (4.6)—(4.9). The dropout ratio is the proportion
of states that are zeroed.

Figure 7 depicts the results of our parameter sweep. Note that
some memory loss via a positive dropout ratio improves the perfor-
mance of the LSTM network by reducing the potential for overfit-
ting. Also note that a single hidden layer is sufficient in our case
to achieve our optimal results. This confirms that the LSTM archi-
tecture is able to capture the complexity of sequential patterns that
traditional feedforward networks require multiple layers and wider
layers to model.

LSTM is known for its application to sequential prediction prob-
lems such as for natural language processing and time series pre-
diction. In our first experiments, we only provided the model with
sequences of email categories and excluded the detailed timestamp
information and derivatives (e.g. time of week). The results of
these experiments were comparable to the 1-dependent Markov

1 2 3 4 5
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Prediction Time Window (days)

M
R

R

LSTM+
MLP, k>1
Markov, k=5

Figure 8: Comparison of MRR over prediction time window

size for memory-imparied and memory-enabled Markov chain,

MLP, and LSTM models.

chain, thus, they have been omitted here for brevity. In summary,
while LSTM is able to “memorize” sequences, it still requires ex-
plicit time-based input features if those sequences have a depen-
dence on time, not just order.

5.3.4 Model Comparison

Finally, we compare the results of MRR and SR@r for two con-
figurations of each of the Markov chain, MLP, and LSTM models
in Tables 3 and 4. Each model is configured once using minimal
memory capabilities—i.e. k = 1 for Markov chain and MLP, and
clearing the memory cell to zero in LSTM—and one best configu-
ration established via parameter sweeping.

While each memory-enabled model performs better than its min-
imal memory counterpart, LSTM performs the best overall in both
cases.

Another important observation is that the performance of all
models suffer when tested on unseen users versus trained and tested
on the same user set. While this is expected, the majority of the
models are relatively resilient to the differences between the two
configurations. Only the 5-dependent Markov model suffered a sig-
nificant reduction in performance.

5.3.5 Prediction Time Window Size

Figure 8 depicts the change in performance metrics for varying
configurations of the Markov chain, MLP, and LSTM models as
we change the prediction time window size. As expected, when
the prediction time window increases, the problem becomes less
challenging and the MRR of each model increases. Notably, the
advantage of the LSTM over weaker methods becomes less obvi-
ous.

6. CONCLUSION
Email categorization has been extensively studied but their out-

puts have not been fully utilized for important problems such as im-
proving ads quality and improving users’ email experiences. The
goal of this research is to study the email category prediction prob-
lem: given the categories and timestamps of user’s past emails, we
want to predict the probability distribution over the categories of
emails that the user will receive in the next n days.

We considered three different techniques for predicting the cate-
gories of future emails: a k-dependent Markov chain (capturing the
last k emails received by the user) as a baseline; a multi-layer per-

501

Table 3: Comparison of configurations of the Markov chain, MLP, and LSTM models. k refers to the number of past emails used in

training. nl refers to the number of neurons in hidden layer l.

Model
MRR SR@1 SR@2 SR@3

Mean ±Std. Mean ±Std. Mean ±Std. Mean ±Std.

Markov chain (k = 1) 0.7366 0.00004 0.5846 0.00008 0.7844 0.00007 0.8671 0.00005
Markov chain (k = 5) 0.8399 0.00005 0.7394 0.0001 0.8867 0.00005 0.9343 0.00004
MLP (n1 = 32, n2 = 256, k = 1) 0.8652 0.0005 0.7968 0.0010 0.8772 0.0003 0.9152 0.0002
MLP (n1 = 32, n2 = 256, k = 10) 0.9182 0.0002 0.8678 0.0003 0.9381 0.0002 0.9637 0.0001
LSTM∗ 0.8672 0.0002 0.8012 0.0003 0.8760 0.0003 0.9147 0.0002

LSTM† 0.9229 0.0003 0.8737 0.0005 0.9435 0.0003 0.9686 0.0002
∗ 1-layer memory-impaired LSTM in which both memory cell and hidden state from previous time steps are cleared to zero.
† 1-layer LSTM with dropout ratio of 0.1.

Table 4: Predicting categories of future emails on new users only.

Model
MRR SR@1 SR@2 SR@3

Mean ±Std. Mean ±Std. Mean ±Std. Mean ±Std.

Markov chain (k = 1) 0.7331 0.0004 0.5803 0.0005 0.7796 0.0007 0.8632 0.0004
Markov chain (k = 5) 0.7919 0.0001 0.7054 0.0002 0.8328 0.0002 0.8666 0.0002
MLP (n1 = 32, n2 = 256, k = 1) 0.8642 0.0003 0.7963 0.0007 0.8739 0.0006 0.9137 0.0004
MLP (n1 = 32, n2 = 256, k = 10) 0.9165 0.0003 0.8655 0.0005 0.9365 0.0002 0.9620 0.0003
LSTM∗ 0.8653 0.0003 0.7991 0.0004 0.8722 0.0006 0.9132 0.0003

LSTM† 0.9220 0.0003 0.8726 0.0004 0.9423 0.0003 0.9676 0.0002

ceptron as a prototypical feedforward neural network, and a long
short-term memory as a prototypical recurrent neural network. We
compared these techniques experimentally, using categorized his-
torical emails of about 100,000 anonymized email users. We ex-
plored the effects of providing more or less history, different neural
network configurations (varying the number of layers and the num-
ber of neurons), and the impact of hyper-parameter settings (e.g.
drop-out ratio for LSTMs). We found that both types of neural net-
works substantially outperform k-dependent Markov chains, that
LSTMs slightly outperform perceptrons (due to their aptitude for
time series analysis afforded by their internal state). Under the best
configuration, our success rate at 1 is 0.8737 – meaning that for
87.37% of the predictions, an email of the predicted top category
will indeed arrive within the next 3 days.

Regarding future work, one avenue for future research is to in-
vestigate whether prediction accuracy can be improved by provid-
ing more features of past emails, beyond the current category and
temporal features. We also think that features from other emails
(e.g. those without an assigned category) could further improve
prediction performance. Another suitable research direction is the
exploration of email chains beyond predetermined email categories
to infer new labels and user needs.

7. REFERENCES
[1] M. Aery and S. Chakravarthy. eMailSift: Email classification

based on structure and content. In 5th IEEE International

Conference on Data Mining, pages 1–8, 2005.

[2] N. Ailon, Z. S. Karnin, E. Liberty, and Y. Maarek. Threading
machine generated email. In 6th ACM International

Conference on Web Search and Data Mining, pages
405–414, 2013.

[3] Z. Bar-Yossef and N. Kraus. Context-sensitive query
auto-completion. In 20th International Conference on World

Wide Web, pages 107–116, 2011.

[4] P. Bermejo, J. A. Gámez, and J. M. Puerta. Improving the
performance of naive bayes multinomial in e-mail foldering
by introducing distribution-based balance of datasets. Expert

Systems with Applications, 38(3):2072–2080, 2011.

[5] J. D. Brutlag and C. Meek. Challenges of the email domain
for text classification. In 8th International Conference on

Machine Learning, pages 103–110, 2000.

[6] S. Chakravarthy, A. Venkatachalam, and A. Telang. A
graph-based approach for multi-folder email classification.
In 10th IEEE International Conference on Data Mining,
pages 78–87, 2010.

[7] W. W. Cohen. Learning rules that classify e-mail. In 1996

AAAI Spring Symposium on Machine Learning in

Information Access, pages 18–25, 1996.

[8] D. Di Castro, Z. Karnin, L. Lewin-Eytan, and Y. Maarek.
You’ve got mail, and here is what you could do with it!:
Analyzing and predicting actions on email messages. In 9th

ACM International Conference on Web Search and Data

Mining, pages 307–316, 2016.

[9] I. Gamzu, Z. Karnin, Y. Maarek, and D. Wajc. You will get
mail! Predicting the arrival of future email. In 24th

International Conference on World Wide Web, pages
1327–1332, 2015.

[10] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning.
Book in preparation for MIT Press, 2016.

[11] A. Graves. Neural networks. In Supervised Sequence

Labelling with Recurrent Neural Networks, pages 15–35.
Springer, 2012.

[12] M. Grbovic, G. Halawi, Z. Karnin, and Y. Maarek. How
many folders do you really need?: Classifying email into a
handful of categories. In 23rd ACM International Conference

on Conference on Information and Knowledge Management,
pages 869–878, 2014.

[13] R. Gupta, G. Liang, H.-P. Tseng, R. K. Holur Vijay, X. Chen,
and R. Rosales. Email volume optimization at LinkedIn. In
22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 97–106, 2016.

[14] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[15] J.-Y. Jiang, Y.-Y. Ke, P.-Y. Chien, and P.-J. Cheng. Learning
user reformulation behavior for query auto-completion. In

502

37th International ACM SIGIR Conference on Research &

Development in Information Retrieval, pages 445–454, 2014.

[16] A. Kannan, K. Kurach, S. Ravi, T. Kaufmann, A. Tomkins,
B. Miklos, G. Corrado, L. Lukács, M. Ganea, P. Young, and
V. Ramavajjala. Smart reply: Automated response suggestion
for email. In 22nd ACM SIGKDD Conference on Knowledge

Discovery and Data Mining, pages 495–503, 2016.

[17] D. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint:1412.6980, 2014.

[18] S. Kiritchenko and S. Matwin. Email classification with
co-training. In 2001 Conference of the Center for Advanced

Studies on Collaborative Research, page 8, 2001.

[19] B. Klimt and Y. Yang. The Enron corpus: A new dataset for
email classification research. In 15th European Conference

on Machine Learning, pages 217–226, 2004.

[20] Y. Koren, E. Liberty, Y. Maarek, and R. Sandler.
Automatically tagging email by leveraging other users’
folders. In 17th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 913–921,
2011.

[21] Y. Maarek. Is mail the next frontier in search and data
mining? In 9th ACM International Conference on Web

Search and Data Mining, pages 203–203, 2016.

[22] V. Pham, T. Bluche, C. Kermorvant, and J. Louradour.
Dropout improves recurrent neural networks for handwriting
recognition. In 14th International Conference on Frontiers in

Handwriting Recognition, pages 285–290, 2014.

[23] L. Prechelt. Automatic early stopping using cross validation:
quantifying the criteria. Neural Networks, 11(4):761–767,
1998.

[24] J. Provost. Naïve-bayes vs. rule-learning in classification of
email. University of Texas at Austin, 1999.

[25] W. J. Stewart. Probability, Markov Chains, Queues, and

Simulation: The Mathematical Basis of Performance

Modeling. Princeton University Press, Princeton, NJ, USA,
2009.

[26] B. Wang, M. Ester, J. Bu, Y. Zhu, Z. Guan, and D. Cai.
Which to view: Personalized prioritization for broadcast
emails. In 25th International Conference on World Wide

Web, pages 1181–1190, 2016.

[27] B. Wang, M. Ester, Y. Liao, J. Bu, Y. Zhu, Z. Guan, and
D. Cai. The million domain challenge: Broadcast email
prioritization by cross-domain recommendation. In 22nd

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 1895–1904, 2016.

[28] J. B. Wendt, M. Bendersky, L. Garcia-Pueyo, V. Josifovski,
B. Miklos, I. Krka, A. Saikia, J. Yang, M.-A. Cartright, and
S. Ravi. Hierarchical label propagation and discovery for
machine generated email. In 9th ACM International

Conference on Web Search and Data Mining, pages
317–326, 2016.

[29] K. Yao, G. Zweig, M.-Y. Hwang, Y. Shi, and D. Yu.
Recurrent neural networks for language understanding. In
14th Annual Conference of the International Speech

Communication Association, pages 2524–2528, 2013.

[30] W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neural
network regularization. arXiv preprint:1409.2329, 2014.

[31] A. Zhang, A. Goyal, R. Baeza-Yates, Y. Chang, J. Han, C. A.
Gunter, and H. Deng. Towards mobile query
auto-completion: An efficient mobile application-aware

approach. In 25th International Conference on World Wide

Web, pages 579–590, 2016.

[32] W. Zhang, A. Ahmed, J. Yang, V. Josifovski, and A. J.
Smola. Annotating needles in the haystack without looking:
Product information extraction from emails. In 21st ACM

SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 2257–2266, 2015.

503

