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ABSTRACT

Dropout prediction in MOOCs is a well-researched problem
where we classify which students are likely to persist or drop
out of a course. Most research into creating models which
can predict outcomes is based on student engagement data.
Why these students might be dropping out has only been
studied through retroactive exit surveys. This helps iden-
tify an important extension area to dropout prediction—
how can we interpret dropout predictions at the student
and model level? We demonstrate how existing MOOC
dropout prediction pipelines can be made interpretable, all
while having predictive performance close to existing tech-
niques. We explore each stage of the pipeline as design com-
ponents in the context of interpretability. Our end result is
a layer which longitudinally interprets both predictions and
entire classification models of MOOC dropout to provide re-
searchers with in-depth insights of why a student is likely to
dropout.

CCS Concepts

•Information systems → Personalization; •Computing
methodologies → Supervised learning by classification;
•Applied computing → Learning management systems;
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1. INTRODUCTION
Massive Online Open Courses (MOOCs) democratize ac-

cess to education for students all around the world. How-
ever, the most prominent downside to MOOCs is their high
attrition rates [23, 15, 20]. This has catalyzed considerable
research towards identifying students likely to drop out of
these courses [31, 16, 13]. Using past student data, these ap-
proaches train classifiers to predict whether a student will
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Figure 1: An Interpreted Prediction for a sample stu-
dent. Dropout prediction’s role ends at providing a set of
labels at each week. Our model provides probability esti-
mates similar to [13] and then links the predicted outcome
to signals from the feature values.

persist in the following week or drop out. Though significant
work has been devoted to identifying who is likely to drop
out, the why has largely been investigated through retroac-
tive surveys [20, 11]. Through this paper, we expand on the
work done on dropout prediction by taking a deeper look
into the models learned and predictions made.

Dropout predictions are meant to be used by MOOC cre-
ators and researchers for intervention efforts and to gain
greater insight into refining future versions of the MOOC.
Instead of just obtaining “anecdotal” predictions about each
student we argue that it is more insightful to interpret the
classifier at the model and the instance level. In Figure 1,
the classifier trained on Week 1 data predicted that this
student was likely to complete the course, whereas given
the next week’s data, the classifier predicted that the stu-
dent was likely to drop out. Using our model, we can go
beyond these binary predictions and suggest 1) probability
estimates (similar to the approach followed in [13]) and 2)
possible signals from feature values which contributed to-
wards the classifier’s predicted output. Our solution here
uses Local Interpretable Model-Agnostic Explanations (or
LIME for short) to reconcile the who with a possible signal
for why from the data [21].
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Figure 2: Interpreting Linear Models. Dropout predic-
tion models trained at each week prioritize features differ-
ently. In this figure, we visualize the relative importance of
various features by plotting linear model coefficients (and
intercept) relative to each other. Longitudinal trends can
be inferred tracing these coefficient values across time for
retrained classifiers. We color code each feature according
to the sign of its coefficient, which in turn is an indication
of which class it nudges the classifier towards.

Echoing this argument for the models used for dropout
prediction, we would like to know how the classifier discrim-
inates signals for dropouts versus persisters at each week
in the MOOC. Model inference on interpretable classifiers
is the most intuitive way to achieve this [9]. An example
of this is shown in Figure 2, where we interpret the coef-
ficients and intercept of logistic regression classifier over a
set of weeks. Here, we visualize the coefficients and inter-
cept of the trained linear model on a real axis. Coefficients
contributing to each class are color coded for ease of vi-
sualization. For classifiers other than the small subset we
identify as interpretable, we suggest alternative techniques
from literature to simulate this level of interpretability in
Subsection 4.2.

While a MOOC is in session, these predictive models are
re-trained each week and as a result, a given student might
have multiple such predictions made during the course of
their interaction with the MOOC. This imparts a longitu-
dinal component to these models and predictions, shown
in Figures 1 and 2. A predictive model evolves over time
and the target student now has a traceable history of pre-
dicted outcomes. We see that the coefficients for a given
feature can be traced across various weekly models. This re-
prioritization is useful in characterizing the changing profile
of dropouts at each week.

Our proposed approach to interpretability of dropout pre-
diction can thus be broken down into the following compo-
nents: 1) Model inference, 2) individual prediction inference,
and 3) tracing models and predictions longitudinally.

We demonstrate how each of these components can be
implemented in a real MOOC by providing a fully outlined
case-study. Our data comes from an edX MOOC hosted at a
Midwest university in 2015. Out of the 14,809 students that
participated in the course 1,941 completed the course, result-
ing in completion rate of 13.1% which is typical of MOOCs.
Following the clickstream-based approach used by [16], we
implement an automated machine learning based dropout
predictor. This framework observes past student data every
week and predicts whether a student s active in the MOOC

during week i is likely to drop out in the next week (i+ 1).
Our definition of dropout is the same as [28], which com-
bines participation and learning objective components of the
MOOC. If a student has not finished the final “certification”
module of the course and has no interaction with the MOOC
between time t and the course-end date, then we say that
the student has dropped out.

Given this pipeline, our approach helps interpret individ-
ual predictions and classification models. It provides an in-
terpretation at each week, and longitudinally across weeks,
creating a contextualized history of models and their pre-
dictions. Establishing a link between signals recorded in
clickstreams and likely outcomes is extremely valuable to
MOOC researchers and content creators. The models them-
selves can be used to describe profiles of successful students
and can directly be fed into learning management systems.
Various types of signals which predict dropout can be used
to create tailor-made intervention strategies.

Contributions This paper’s main contributions are in
the form of answers to the following questions:

• How can MOOC dropout prediction pipelines be made
interpretable? What is an interpretable model? What
parts of the pipeline can we interpret and what are
some current limitations?

• What machine learning techniques does one need to
consider? We explore feature engineering, data pre-
processing, model selection and metrics as design pa-
rameters in the context of interpretability.

• Can this be generalized to other MOOCs? We show
how our analyses could be extended to MOOCs which
differ from ours in format and platform (Coursera,
Udacity, Udemy, etc).

2. RELATED WORK
MOOCs serve as an excellent testing ground for multi-

disciplinary research and have attracted the attention of
experts in computer science, applied statistics, education,
psychology and economics. This mixed expertise has made
it possible to attack problems like low completion rates in
MOOCs from various fronts. Some of the relevant compo-
nents of the dropout prediction problem are described below:

Dropout Definition.
The broadest definition of dropout is the lack of engage-

ment by students. Student engagement can be notoriously
difficult to quantify [10] as a result, various proxy measures
are used in literature. Definitions of dropout depend on the
MOOC’s intended pedagogical and engagement goals, and
target student generated signals which capture these forms
of engagement. Two distinct forms of engagement which
influence dropout definitions are participation and comple-
tion of learning objectives. Lack of participation in MOOCs
can be defined as a lack of interaction with the MOOC [2,
16], submission of assignments and quizzes [25, 27], viewing
video content [24], or participating in discussion forums [31].
Some researchers focus on whether the student has achieved
the learning objectives of the MOOC, defining dropout as
not earning a certificate in the course [13] or not being able
to finish a certain set of modules [7]. Hybrid definitions aim
to capture both these components of engagement and label
the absence on both fronts as “dropout” [12, 28]. One such
example used in [12] is as follows: if a student has been
absent from the course for more than 1 month and/or has
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viewed fewer than 50% of the videos in the course, then they
are labeled as dropouts. In this paper, we use the definition
used by [28]: if a student has no interaction between day t

into the MOOC and the end of the MOOC and they have
not completed the final “certification”module, then they are
labeled as dropouts.

Feature Selection and Engineering.
The electronic nature of MOOC instruction makes cap-

turing signals of student engagement extremely challenging,
giving rise to proxy measures for various use-cases. Click-
streams [16, 24, 27, 13], assignment grades [12, 14], social
networks [2, 31] and even demographic information has been
used in literature as potential sources of feature data to
predict dropout. In more recent approaches like [28], data
from across various MOOCs was pooled together to predict
dropout using transfer learning. In this paper, we focus on
dropout centered around a single MOOC using clickstream
and video data. The idea behind using clickstreams is to
reconstruct a story from the trail of digital breadcrumbs left
behind by users. Most MOOCs contain video content and
student interactions with these videos has been shown to
quantify engagement and ultimately predict dropout [16,
24]. We deliberately restrict ourselves to features which
are available across MOOC platforms, namely— access pat-
terns, user agent data and video features.

Interpretability.
Most existing works and this paper structure MOOC dropout

prediction as a supervised classification problem. Making
these models and predictions interpretable entails challenges
at several levels of the pipeline. Preprocessing steps like
principal component analysis used in [16, 27] render other-
wise interpretable input features uninterpretable. Prevail-
ing solutions to making interpretable classification models
is to use “interpretable” classification algorithms [1], or to
be model-agnostic and analyze the predictions post-hoc. In-
terpretable classification techniques identified in [22] include
linear models [13], decision trees [26], falling rule lists [30].
Examples of non-interpretable classifiers include recurrent
neural networks [8] and stacking multiple classifiers [29].
On the other hand, model-agnostic interpretability is eas-
ier to integrate into existing pipelines using wrappers like
Parzen [1] and Local Interpretable Model-Agnostic Expla-
nations (LIME) [21]. These explain individual predictions
by training locally interpretable models. The model ag-
nosticity of these solutions helps them bypass the fidelity-
interpretability trade-off. Student-centric stories like those
shown in Figure 1 from [13] help illustrate their likelihood
of dropout over time. As Figure 2 shows, we extend this
metaphor by showing the feature values of a student in a
given week which contribute towards their probability score.

3. DATA DESCRIPTION
“I Heart Stats” was an introductory statistics course of-

fered by the University of Notre Dame. A major objec-
tive of this course was to alleviate student anxiety towards
statistics [7]. This course was made available through edX1

from April 15 to June 17, 2015 spanning a total of 64 days.
We describe the format of how this course was offered and
how this shaped our dropout definition. Throughout this

1https://www.edx.org/ is a popular MOOC platform.

Table 1: Glossary of symbols

Symbol Description
Si Set of students by week i

S
(i−1,i)
i Set of students in week i also existing

in week i− 1
sij The jth student by week i

Xi Feature data on Si

X
(i−1,i)
i Feature data on S

(i−1,i)
i

xij Feature data for student j by week i

Yi Set of labels for students by week i

yij Label of the jth student by week i

process, we ensure reproducibility of our methods on other
such MOOCs and generalizability beyond our chosen learn-
ing platform (edX).

3.1 Course Format
The course contained eight modules covering various in-

troductory statistical topics from levels of measurement to
ANOVA, designed to be completed in sequential order. How-
ever, since all the modules were released to the students
from the first day of the MOOC, students had the choice
to complete them at their own pace and in the order they
chose. The key content in this course was delivered via 96
videos spread throughout the course. Under the Clark Tax-
onomy of MOOCs [5], this MOOC has traits largely similar
to asynchMOOCs, in that students have the freedom to — 1)
join and leave any time during the MOOC, 2) consume con-
tents in the order they choose. One notable trait here is that
the students can only access the MOOC during the window
of a set start and end date, which is a trait of synchMOOCs.

How can we generalize this analysis to other MOOC
formats? Even though this paper uses a largely asynch-

MOOC for its analyses, the steps described here can be easily
generalized to MOOCs which follow a different format. We
consider two alternative MOOC formats (not mutually ex-
clusive) that represent a special case of the one followed in
“I Heart Stats”:

1. Courses which require registration from the start of the
course— If we only consider the subset of students
enrolled from day one in our MOOC, then it becomes
analogous to such a format.

2. Courses which do not disseminate all of their content
from day one and impose a set assessment schedule—
If such a course follows the same definition of dropout
as used in [28] and this paper then this paper’s analy-
ses can be used without modification. Typically, such
courses use a dropout definition based on attrition in-
stead [11]. We discuss how this can be treated as a
modified version of our MOOC in Subsection 3.3.

3.2 edX Clickstream Data
Platforms like edX make course their data available to

MOOC providers in the form of raw, queriable logs. Typ-
ically, these capture information on course content, learner
progress, discussion forum interactions and (clickstream) track-
ing logs. In this paper, we use the “student events” from
the “tracking log” data for feature extraction and “course-
ware studentmodule” from the “learner progress” to label
module (and therefore course) completion.
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It should be noted that the clickstream data used for pre-
diction in this paper does not include fields like IP address,
location, ISP, referrers, landing search queries. These are
typically available via proprietary tools like Adobe Analyt-
ics [17]. In this paper, we restrict our analysis to features
extracted from video viewing patterns and device informa-
tion. In line with most MOOCs, this course’s offerings are
in the form of videos. This is a basic proxy for student ac-
cess patterns, how they interact with the course content and
what kind of device experience they have when accessing the
course.

How can we generalize this analysis to other MOOC
platforms? Echoing the argument made by [16], we per-
form our analyses using a relatively small subset of available
feature data to demonstrate the predictive value of click-
stream data that is most commonly available across MOOC
platforms. We deliberately select two of the most commonly
available feature-sets that are available across most popu-
lar MOOC platforms. These features have been found in
dropout prediction implementations in literature across plat-
forms like edX [2], MITx [27], Harvardx [28] (both hosted on
edX), and Coursera [16, 13]. We believe that these features
can be similarly found in clickstream logs for other MOOC
platforms not listed here.

3.3 Defining Dropout Labels
Our definition of dropout is a slightly modified version

of [28]. Instead of a certificate, we use the completion of
the final module as part of the course design to denote com-
pletion of learning objectives. As a result, our definition of
dropout is as below—

A student s has stopped out by time t if and only
if: s does not complete the final module and s

takes no further action between time t and the
course-end date when certificates are issued

The learning objective component of this definition en-
sures that we correctly label students who complete the
course’s objectives as “Completers”. This is a direct result
of the course format offering students all of the content to
study at their own pace. The participation component en-
sures that we correctly label students who do not interact
with the course as “Dropouts”. In alternative course formats
where content is not distributed all at once, the special case
of this definition becomes equivalent to [2], which is purely
participation dependent.

4. MAKING THE DROPOUT PREDICTION

PIPELINE INTERPRETABLE
We describe each component of the dropout prediction

pipeline and discuss its role in our interpretablity goals. Us-
ing this pipeline, we train predictors each week to get models
and predictions. We use this to create a longitudinal inter-
pretation of how the models and predictions evolve in the
MOOC. We take a deeper look into the interplay between
these two phenomena to trace individual predictions back to
student feature data.

4.1 Overview of the pipeline
Dropout prediction follows the simple idea of learn on

past student behavior to predict future outcomes. This dic-
tates the way authors have structured pipelines to approach
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Figure 4: Percent minority class (completers) over
time. Students who are active into the latter days of the
MOOC are more likely to complete the course. This ratio
for the training set approaches the overall completion ratio
(black dashed line) towards the end of the MOOC.

this problem. Dropout prediction is an imbalanced class
problem at heart and in keeping with machine learning con-
vention, we label the minority class (“Completers”) as 1 and
the majority class (“Dropouts”) as 0 throughout this paper.

Feature Engineering.
Even though we limit our treatment to video interaction

and user-agent data, the feature engineering lessons here are
generalizable to any other dataset which also uses these or
similar variables. This data is recorded in the form of JSON-
type events, which we then structure into columnar feature
form as described below.

Video interaction data in edX is recorded for each user-
generated event separately. Each row in the raw clickstream
logs records actions like load, start, play, pause, stop, seek
(from timestamp T1 to T2 in the video) and change of play-
back speed. We aggregate these into simple, interpretable
features for each video id-student id pair: percent watched,
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percent re-watched, total time of seeks, number of forwards,
plays, seeks and speed changes. Each of these captures var-
ious latent factors in a student’s consumption of the video
content. This is still too granular for our study since we need
features at the student level, so we aggregate these video id-
student id pairs for each day of the MOOC. We average out
the fractional quantities (percentage of video watched and
rewatched) and add the rest of the variables which represent
raw counts.

Clickstreams record user agent data as raw strings which
need further processing to be made into features. Pars-
ing this string returns categorical features which describe
the device, browser and operating system in intricate de-
tail. In addition to this parsed information, we would like
to know if the device is a pc, tablet or phone and whether
it is touch capable or not. These signals influence the de-
gree to which the user is able to interact with the MOOC
at large. These categorical variables are then encoded into
one-hot encoded versions of their respective value. Similar
to our treatment of video interaction features, we aggregate
user agent-student id pairs by adding their absolute counts.
So, if a student uses Chrome on a Windows PC and Chrome
on an Android phone, their feature-space would record 2
Chrome browsers, 1 Windows OS and 1 Android OS.

Preprocessing.
Like most MOOCs, our dataset also suffers from class im-

balance, where the number of dropouts far outweighs the
number of completers. Class imbalance is a well documented
problem in machine learning [4], where the presence of im-
balance can bias a predictor to output the majority class.
In dropout prediction, this can cause a classifier to aggres-
sively predict that students are likely to dropout. This is
especially dangerous for those students who in reality are
completers, but are mislabeled by such a biased model as
dropouts. The metrics and evaluation angle to this problem
is discussed in greater detail in Evaluation. Though the
severity of class imbalance has been recognized by MOOC
researchers, measures to mitigate its effects in biasing pre-
dictors are surprisingly absent.

An effective technique to overcome this bias is to resample
the data to alter the distribution of labels in the training set.
Approaches range in complexity from randomly undersam-
pling the majority class to creating synthetic instances of the
minority class [3]. In educational data mining, these tech-
niques have been proven useful when predicting dropout in
Mexican high schools [19]. In this paper, we predict dropout
both with and without random undersampling of the major-
ity class to demonstrate the value of overcoming this bias.

Classification.
For each week (i), we train a classifier on Xi−1 student

data observed from the start of the MOOC till the end of
week i− 1 and observed labels Yi−1. Cross validation of our
trained model ensures that we do not overfit on our training
set and can generalize to test data. We then predict whether

students active at the beginning of week i (S
(i−1,i)
i ) are likely

to drop out. The outcomes of these students are used as
true labels for evaluation at each stage and repeat the pro-
cess for each consecutive week. In our pipeline, we com-
pare examples of both interpretable and non-interpretable
classification techniques. We select the two most directly
interpretable classification techniques— Decision Trees and

Figure 5: Resampling data helps achieve better AUC.
It should be noted that the Y-axis is magnified for greater
clarity.

Figure 6: Comparison across classification techniques
on the same test data. Significance testing done using
confidence intervals of 99%.

Logistic Regression and pit them against non-interpretable
techniques like Random Forest and Gradient Boosted Trees.
For this example, our goal is to select the best model out of a
set of classifiers, which is why we restrict this experiment to
these algorithms. A detailed analysis of suitable alternative
approaches is presented in Subsection 4.2.

Evaluation.
Perhaps the most notable aspect of imbalanced class pre-

diction is how it is evaluated. Given an imbalanced class
problem with 99:1 imbalance, a naive predictor which al-
ways predicts the majority class will effortlessly achieve 99%
accuracy. In our MOOC, a simple classifier which predicts
that everyone will drop out scores an accuracy of 86.9% (=
100% - minority class abundance). In light of the misleading
nature of accuracy, MOOC researchers have borrowed sev-
eral metrics used in imbalanced class learning and informa-
tion retrieval. Several alternatives include Specificity [12],
Recall [12], Kappa Statistic [24] and Area Under the ROC
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Curve (often abbreviated as “AUC”) [28, 13]. In the interest
of comparison with existing literature, we use AUC as our
metric of choice in this paper. A perfect predictor would
score 1.0, whereas a random predictor would score 0.5 on
AUC. The AUC values are computed for each week, on all
classifiers and summarized in Figure 6. Now that we have a
set of classifiers and their respective performance scores, we
find out which model is the most suitable in a given dropout
prediction pipeline.

Model Selection.
We identify two key traits which guide our model selection

process—1) consistently high predictive performance and 2)
(in case of a tie in 1),...) greater interpretability. This can
be answered using the AUC scores and the significance anal-
ysis illustrated in Figure 6. Decision Trees perform better
than, or equivalent to competing techniques consistently and
emerge as the classifier of choice on both of our desired crite-
ria. We note that a singular algorithm may not always out-
perform competing techniques at all points in the MOOC.
These predictive models are based on a small subset of fea-
tures available to competing techniques, and yet they come
within striking distance of AUC scores like 0.88 [27], 0.87 [13]
and 0.850 (AT1x) to 0.907 (SW12.2x) [28].

4.2 Model Level Interpretability
Interpretability in models can be approached in three ways

using— 1) intrinsically intepretable models, 2) partially in-
terpretable models and 3) after-the-fact approaches which
treat the classifier as a black-box. Since these operate at
very different stages in the prediction process, these are not
necessarily mutually exclusive.

Intrinsically Interpretable.
We make a case for readily interpretable classification al-

gorithms Decision Trees and Linear Models and describe the
steps to draw inferences from them [9]. Decision trees encode
multiple sets of rules in the form of hierarchical nodes which
subset the instance space till a stopping criteria is achieved.
Each node is a logical test on a feature value and each path-
to-leaf represents a distinct“rule” followed exclusively by the
instances in that leaf. Decision Trees for dropout prediction
resemble the one shown in Figure 8, where values of engage-
ment define dropout-intensifying or completion-intensifying
signals. In the interest of being interpretable, these trees are
often pre-pruned to be limited in their depth. The decision
trees used in this paper are similarly pre-pruned to a depth
of 5. However, for brevity of illustration, we demonstrate 3
consecutive trees limited at depth 3 in Figure 8.

Immediate observations can be drawn from this figure at
each week and across weeks. Three distinct profiles of Com-
pleters exist at Week 3, these are inferred from paths to
leaves indicating label = Completer. These profiles are 1)
“Students who log in through one or no PCs, hit play more
than 52 times on a video and do not use Firefox”, 2) “stu-
dents who use 1 or 2 PCs” and 3) “students who use more
than 2 PCs”. The last two demographics can be merged to-
gether into one segment: “students who use 1 or more PCs”.
Across the weeks, the changes in the topology and node val-
ues of the tree indicate a change in the behavior of students
who drop out. By Week 2, it does not matter if the student
uses Windows OS or Chrome as their browser, instead these
are replaced by how much percent on average they rewatch
video content. In Week 3, we see that Firefox usage indicates
Completion in students with 1 or no PC with more than 52
video play interactions and the total number of devices does
not matter.

Similar inferences can be drawn for Logistic Regression
models shown in Figure 2. At the model level, instead of
features values, the respective feature coefficients and inter-
cept term are of interest. The intercept term is the base-
line tendency of the linear model to predict a given class
in absence of any signal, which here for the first 3 weeks
points towards Dropout consistently. On the other hand,
the magnitude of coefficient values indicates their relative
importance and their sign (positive or negative) corresponds
directly with the predicted classes (Completers or Dropouts,
respectively). So, in the first week, Completers are likely to
be associated with a high number of PCs logged in through
and high number of video play interactions. Over time, the
signal from the number of times a student hits play in videos
intensifies in its effect on Completion tendencies, and the
number of PCs becomes less important. During Week 3,
a new signal becomes important in reinforcing Dropout be-
havior, i.e. the percentage of video content re-watched. This
signal at Week 3 is useful to MOOC researchers by being a
direct link to content consumption.
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(a) Week 1 (b) Week 2

(c) Week 3

Figure 8: Decision Trees over the first 3 weeks in the MOOC. Changes in the structure are a direct reflection of
dropouts and completions in the MOOC.

These extremely detailed insights from model inference
exhibit the power of using Decision Trees and Sparse Linear
Models. Their predictive performance from Figure 6 fur-
ther supports their predictive power. Other approaches like
Interpretable Decision Sets are designed with the primary
purpose of being interpretable [18], but may not always be
easy to integrate into existing pipelines.

Partially Interpretable.
A possible way to achieve partial interpretability in Ran-

dom Forests and other ensemble approaches is to visual-
ize each constituent classifier, or to characterize them in
terms of their feature importances. Typically, an ensem-
ble can have hundreds, if not thousands of classifiers and
as such make it tedious to interpret each component ev-
ery week, which makes feature importances a more conve-
nient choice. A compact metaphor to visualize feature im-
portances is shown in Figure 7 in the form of a colormap.
Though we cannot make granular inferences like we did from
Figure 8, we can still comment on the broad-stroke role the
features play in dropout prediction. This high-level treat-
ment still echoes lessons learned from Logistic Regression
(Figure 2) and Decision Trees (Figure 8). In both Logistic
Regression and Decision Trees, we see that the percentage
of rewatched videos starts gaining importance from Week 2
and 4 onwards.

Interpreting the uninterpretable.
Model-agnostic black-box approaches operate after-the-

fact on trained models. They approximate the behavior of
the original classifier using an interpretable classifier and
provide an interpretability layer, much the same as this pa-
per aims to do with dropout detection as a whole. Popular
approaches include decision-tree approximations [6], linear-
model approximations [21], and perturbation based model

inference [1]. In cases where it is impossible to swap out the
uninterpretable predictor, we recommend that these wrapper-
based approaches be used.

4.3 Instance Level Interpretability
The goal of instance level interpretability is to identify

key feature values which contributed towards a predicted
outcome for a given instance. Readily interpretable models
give rise to readily interpretable predictions. In the case of
Decision Trees, the path-to-leaf in a decision tree is the ex-
planation of an instance’s prediction and the terminal leaf
node is the predicted outcome label. Linear Models can be
interpreted by multiplying feature values with the learned
coefficients and adding the intercept. The highest magni-
tude of coefficient multiplied by feature value is the most
informative of an instance’s prediction. Other instance-level
interpretations are discussed in [9].

In the interest of being an interpretability layer, this pa-
per uses Locally Interpretable Model-Agnostic Explanations
(LIME) [21], which, as the name suggests is a model-agnostic
wrapper technique. LIME trains an interpretable linear ap-
proximation of the black-box classifier around the test in-
stance. It then returns the approximate linear model coef-
ficients, intercept and probability scores to offer an expla-
nation that is faithful to the black-box model for that given
instance. We use LIME at each stage of the dropout pre-
diction pipeline to provide explanations for any student’s
predicted outcome from any classifier model.

Using LIME on a given student’s dropout predictions over
time gives us probability scores for likelihood of dropout
and possible linear model explainers. Figure 9 shows how
we can extract a student-centric storyboard from these ex-
plained predictions. From the probability score, we see that
the student initially only shows leanings towards completion
and then exhibits stronger signs of completing the course.
Barring a minor hiccup in Week 2, this student’s comple-
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Figure 9: Longitudinal Explainers throughout the MOOC for a sample student with their predicted probabil-
ities of Completion. We see the various feature values specific to this student who persists through the MOOC till Week 5
and completes the course.

tion is largely owing to adherence to watching videos (the
high number of video play events points to this). This stu-
dent tends to watch a small portion of the video content
and hence rewatches a certain portion of those videos. This
nudges the probability score away from Completion, but not
enough to lower it enough to predict Dropout.

5. CONCLUSION
Our paper is a first-step in the direction of incorporating

interpretability in MOOC dropout prediction. We realize
that the problem of MOOC dropout has its roots in student
engagement and cannot be studied in isolation, spurring the
need to answer the much needed why? in student dropout.

How can MOOC dropout prediction pipelines be
made interpretable? An interpretable pipeline needs to
begin with interpretable features. Features which encom-
pass elements of student engagement need to be chosen such
that they are available for the entire set of students we wish
to predict on. Preprocessing steps like PCA which obfus-
cate interpretability should not be used. Given that student
dropout is an imbalanced class problem, resampling tech-
niques help alleviate its negative effect on prediction.

What machine learning techniques does one need
to consider? We show how model selection should be im-
plemented to select the best possible model at each stage.
We provide guidelines and metrics to identify the best mix of
interpretable and high-performance models. Interpretabil-
ity can be introduced using various approaches. We demon-
strate implementations ranging from intrinsically interpretable
to black-box model inference approaches to interpret models
and predictions.

Can this be generalized to other MOOCs? We show
how our analyses could be extended to MOOCs which dif-
fer from ours in format and platform (Coursera, Udacity,
Udemy, etc).

Our solution to interpretable dropout prediction pipelines
enables us to analyze both models and predictions longitu-
dinally. In the future, we aim to expand this research to
evaluating its effectiveness on intervention efforts in a live
MOOC.
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