
SpiderX: Fast XML Exploration System

Chunbin Lin, Jianguo Wang
Computer Science and Engineering, California, San Diego

La Jolla, California, USA
chunbinlin@cs.ucsd.edu, csjgwang@cs.ucsd.edu

ABSTRACT
Keyword search in XML has gained popularity as it enables
users to easily access XML data without the need of learn-
ing query languages and studying complex data schemas. In
XML keyword search, query semantics is based on the con-
cept of Lowest Common Ancestor (LCA), e.g., SLCA and
ELCA. However, LCA-based search methods depend heavily
on hierarchical structures of XML data, which may result in
meaningless answers. To obtain desired answers, a success-
ful system should be able to (i) match a semantic entity for
each keyword, (ii) discover the relationships of the matched
entities, (iii) support efficient query processing, (iv) release
users from having the knowledge of the XML content, and
(v) visualize the search results. None of the existing XML
keyword search systems completely meet the above require-
ments.
In this paper, we design a system called SpiderXto com-

pletely solves the above challenges. We propose a query se-
mantics Entity-Relationship Graph (ERG), which adopts the
RDF subject-predicate-object semantics to capture the in-
formation of search entities along with associated attributes
and the relationships between entities. SpiderX proposes a
novel index structure, which has small space cost by com-
bining the optimizations of column databases and the data
compression schemes. In addition, SpiderX processes queries
in a bottom-up way to achieve high performance, which is
about 100× faster than the state-of-the-art algorithms. To
demonstrate the high performance of SpiderX, we imple-
ment an online demo for SpiderX, which operating on three
real-life datasets. The demo also provides (1) query auto-
completion to guide users to formulate queries; and (2) visu-
alization panel to display the query answers, which interacts
with users by providing zoom-in and zoom-out exploration
features. Demo link: http://chunbinlin.com/spiderx.

1. INTRODUCTION
Keyword Search provides a user-friendly information ex-

ploration mechanism for users to easily access XML data

c©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW 2017 Companion, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4914-7/17/04.
http://dx.doi.org/10.1145/3041021.3054727

.

league
0 (0)

name
0.0

founded
0.1

team
0.2 (0.0)

team
0.3 (0.1)

name
0.2.0

NBA
0.0.0

1946
0.1.0

area
0.2.1

founded
0.2.2 players

0.2.3

player
0.2.3.0 (0.0.0)

name
0.2.3.0.0

position
0.2.3.0.1

Julius Randle
0.2.3.0.0

Forward
0.2.3.0.1.0

player
0.2.3.1 (0.0.1)

name
0.2.3.1.0

position
0.2.3.1.1

Nick Young
0.2.3.1.0.0

Forward
0.2.3.1.1.0

Los
Angeles
Lakers
0.2.0.0

1960
0.2.2.0

Los
Angeles
0.2.1.0

name
0.3.0

area
0.3.1

founded
0.3.2 players

0.3.3

player
0.3.3.0 (0.1.2)

name
0.3.3.0.0

position
0.3.3.0.1

Thaddeus Young
0.3.3.0.0

Forward
0.3.3.0.1.0

player
0.3.3.1 (0.1.3)

name
0.3.3.1.0

position
0.3.3.1.1

Myles Turner
0.3.3.1.0.0

Center
0.3.3.1.1.0

Indiana
Pacers
0.3.0.0

1976
0.3.2.0Indianapolis

0.3.1.0

Figure 1: An example of NBA XML data. Each
node is associated with a label (in black fonts) in
existing systems. The nodes in red rectangles are
entity nodes. SpiderX only assigns labels for entity
nodes (in red fonts).

without the need of learning query languages (such as X-
Path and XQuery) or studying complex data schemas [3,
4, 15, 12, 13, 1]. However, due to the lack of expressivi-
ty and inherent ambiguity, it is challenging to capture the
semantics on keyword queries.
Existing XML keyword search systems use an LCA (Low-

est Common Ancestor) node, or its variants such as SLCA [15],
ELCA [4], of keyword match nodes as an answer to a key-
word query. However, the LCA-based approaches only rely
on the hierarchical structure of the XML tree and ignore the
semantics of queries, which results in returning incomplete
answers, overwhelming answers or meaningless answers [11].
For example, the returned answer of query “Julius” on Fig-
ure 1 is the node “Julius Randle (0.2.3.0.0)”1, which is an
LCA node. However, it is meaningless to users since the an-
swer does not contain more knowledge than the query. The
answer of the same query generated by SpiderX (our sys-
tem) is shown in Figure 2(a), which is more meaningful as it
captures the relevant entity and attributes. More precisely,
the “player” is an entity and the “name” and “position” are
two attributes of the entity. The answer is organized using
the “subject, predicate, object” RDF triple semantics. The

10.2.3.0.0 is a Dewey label [15]. Each node in XML is labeled
by a Dewey label, as shown in Figure 1 (in black fonts).

237

Name

Position

(a) Result of query “Julius”

player

Julius
Randle

Forward

Name

Position

player

Julius
Randle

Forward

founded

team

1960

name

area

Los
Angeles
Lakes

Los
Angeles

player

(b) Result of query “Julius, Lakes”

Figure 2: Query Results in SpiderX. Entities are in rectangles, attributes are in the ovals. The predicates in
(b) are omitted.

subject-predicate-object triples in Figure 2(a) are (1) player-
hasAttribute-name, (2) name-hasValue-JuliusRandle, (3) player-
hasAttribute-position, and (4) position-hasValue-Forward.
To identify semantics on queries, several recent attempt-

s have been made, such as XRank [4], XKeyword [7] and
XSeek [13]. They are able to return entity nodes instead
of meaningless nodes, but they are weak in expressing the
meaningful answers. Note that, a single entity node is far
from enough to be a complete and meaningful answer. To
return answers, they either use the whole subtrees rooted at
LCA nodes as answers, called Subtree Return [3, 4, 15], or
return the paths in the XML tree from each LCA node to its
descendants that match an input keyword as answers, called
Path Return [7]. However, The Subtree Return method out-
puts overwhelming answers, while the Path Return approach
yields incomplete answers. For example, the matched enti-
ty node of the query “Julius, Lakers” is “term (0.2)”. Nei-
ther subtree return nor path return gives the compact and
complete answer. SpiderX returns the answer for the same
query in Figure 2(b), which captures the entities matching
keywords, and attributes of the entities and also the relation-
ship between two entities. Compared with subtree return,
it omits the other player nodes from the answer to make the
answer compact. Compared with the path return, it gathers
the attributes of the entities to make the answer complete.

Contributions. The contributions of this paper can be
summarized as follows:

• We design an entity-relationship exploration system
SpiderX for XML databases, which supports keyword
search and organizes answers as Entity-Relationship
Graphs (ERGs), which uses the RDF subject-predicate-
object semantics.

• We propose a new index by combining the optimiza-
tions of column databases and the data compression
schemes, which is theoretically smaller than existing
Dewey-based indexes.

• We propose a bottom-up algorithm to efficiently an-
swer queries by using the index, which is about 100×
faster than the state-of-the-art methods.

• We implement a demonstration system of SpiderX op-
erating on three real life XML datasets.

Paper Organization. The rest of paper is organized as
follows. Section 2 gives an overview of SpiderX. We illustrate
all the technical details of SpiderX in Section 3. Finally, we
provide the demo scenarios in Section 4.

Client Server

Index
Builder

XML
Database

SLCAE
Searcher

Autocompletion

Manager
Query

Generator

Internet

(AJAX)

Visual Space
Explorer

prefix/query prefix

candidates

query

resultsresults

candidates

Index

Figure 3: Architecture of SpiderX.

2. OVERVIEW OF SPIDERX

2.1 System Architecture
The system architecture of SpiderX is presented in Fig-

ure 3. On the server side, the Index Builder creates in-
memory indices, i.e., (i) a trie tree for query autocompletion,
and (ii) an inverted index for query processing. On the clien-
t side, a query is created by the Query Generator with the
help of the Autocompletion Manager, which provides a list
of candidate queries. Once a complete query is submitted
from the client, the LCAE Searcher is triggered to obtain
the query results. Those results are then organized as ERGs
and sent to the Visual Space Explorer for visualization.

2.2 User Interface
The interface for SpiderX is shown in Figure 5, which con-

sists of three parts: the query generator (Figure 5 1©), auto-
completion manager (Figure 5 2©), and visual space explorer
(Figure 5 3© and 4©).

Query Generator. A query generated by the SpiderX
query generator consists of two parts: (1) a drop-down list
choosing an XML data source; and (2) a list of keywords
input by the user, which can either be typed directly or
chosen from a list of candidate queries provided by SpiderX’s
autocompletion manager.

Autocompletion Manager. Query autocompletion [8]
helps users to identify candidate queries when only prefixes
are input. It significantly improves the efficiency of query
generation since users are only required to input a few char-
acters. In SpiderX, the server maintains a trie tree for all
distinct tokens in the main memory. Every time a new char-
acter is entered, an Ajax request is sent to the server which
looks up the trie and returns a list of candidate tokens with
a matching prefix.

Visual Space Explorer The visual space explorer visual-
izes the search results of the query within the visual space.

238

(a) Traditional Inverted Index

name angeles……

(b) Our Inverted Index

0 0

0 2 0

0 2 3 0 0

0 2 3 1 0

0 3 3 0 0

0 3 3 1 0

0 2 0

0 2 1 0
0 0
0 0 0
0 2 1
0 1 2
0 1 3

encoded segment

name angeles……

0 0

JDeweyDewey

Figure 4: Traditional Inverted Index vs. Our In-
verted Index.

Each result is displayed as either a list of (attribute: val-
ue) pairs or an entity-relationship graph (ERG), which will
be formally defined in the next section. Users can explore
this visual space by zooming in/out and dragging the visual
space explorer.

3. TECHNICAL DETAILS

3.1 Index Structure
Labeling Scheme. An XML is a rooted and labeled tree.
In existing XML keyword search systems, each node (even it
is not an entity node) in the XML tree is assigned a Dewey
label/ID [15] as a unique ID. (For example, the labels in
black fonts in Figure 1 are Dewey labels.) Instead of labeling
all the nodes, SpiderX only labels entity nodes. It employs
the JDewey label [2], which is an extension of Dewey label.
Let ju be the JDewey of the node u. Let v be a child node
of u and it is the j-th nodes from left to right in its current
level, then jv = ju.(j − 1). The JDewey labels for the XML
in Figure 1 are shown in red fonts. Note that, SpiderX only
stores the labels in red fonts.
Inverted Index. To support efficient XML keyword query
processing, inverted indexes are widely built for XML trees.
For each distinct value v, there is an inverted list �v asso-
ciated with it. �v contains all the Dewey IDs of the nodes
in document order whose names match v. For example,
�angeles = {0.2.0, 0.2.1} as shown in Figure 4(a).

Recall that SpiderX only labels entity nodes with JDewey
labels. For each distinct value v, the associated inverted list
�v’ contains all the JDewey labels of the lowest ancestor en-
tity node of the nodes whose names match v. For example,
�angeles’={0.0} as shown in Figure 4(b), since the entity n-
ode “team” with JDewey label (0.0) is the lowest ancestor
entity node of nodes “Los Angeles Lakers (0.2.0.0)” and“Los
Angeles (0.2.1.0)”. All the inverted lists are organized in a
hashmap with keywords as keys and inverted lists as val-
ues. Compared with the traditional inverted indexes such
as Dewey-based index, the index of SpiderX has smaller s-
pace cost.
To further reduce the space cost, we combine the opti-

mizations in column databases and the data compression
schemes. More precisely, the JDewey labels in each inverted
list are stored vertically, i.e., the i-th JDewey numbers are
stored in the i-th column. We call each column a segmen-
t. Each segment is compressed by a compression method

(see Figure 4(b)) [9, 10]. In particular, SpiderX compress-
es each column with a word-aligned bitmap scheme VAL-
WAH (Variable-Aligned Length WAH) [5]. Note that, VAL-
WAH supports intersection (AND) and union (OR) directly
on compressed bitmaps without decompression.

3.2 Search Algorithm

3.2.1 Entity-Relationship Graph (ERG)
. We follow the definition in [12] to define entity nodes in

XML. A node is an entity node if it has siblings of the same
name 2. For example, the player nodes in Figure 1 are entity
nodes. All the entity nodes are shown in dotted rectangles
in Figure 1. SpiderX only labels entity nodes with JDewey
label [2], which will be discussed later.

Definition 1 (Matching Entity). Given a keyword
w, an entity node u is a matching entity of w if and only if
(i) one of the descendants of u matches w, and (ii) u is not
an ancestor of any matching entities of w.

That is, the matching entity is the lowest ancestor entity
node of the node matching the keyword w. For example,
the matching entity of keyword “1960” is the entity node
“team” in Figure 1.

Given a keyword query q, an entity-relationship graph
(ERG) of q is a Steiner Tree [6] containing all the matching
entities as leaf-nodes. SpiderX always return ERGs as re-
sults for given queries, which ensures the meaningfulness of
the results.
In order to construct ERGs efficiently, for any two key-

words wi and wj , the lowest common ancestor entity (L-
CAE) should be obtained efficiently. Given two matching
entity nodes ui and uj , an entity node u is the lowest com-
mon ancestor entity (LCAE) of ui and uj if and only if (i)
ui and uj are descendants of u, and (ii) u is not an ancestor
of any LCAE of ui and uj . For example, the LCAE of t-
wo entity nodes “player (0.0.0)” and “player (0.0.1)” is team
“(0.0)” in Figure 1.

3.2.2 Search Algorithm.
Let ju and jv be the JDewey label of entity nodes u and v

respectively. The longest common prefix of ju and jv is the
LCAE of u and v. The challenge is to compute the longest
common prefix efficiently. Let ju(i) be the i-th JDewey num-
ber in the whole JDewey lable ju. For example, assume
ju = 0.1.5, then ju(1) = 0, ju(2) = 1 and ju(3) = 5. Let
ju[i : j] be the JDewey numbers of ju(i)...ju(j). Algorithm 1
shows the SpiderX search algorithm. It first computes the
integer i by performing intersection over the i-th column in
the inverted lists (lines 2-5). Then it returns LCAEs (lines
6-8).
To evaluate the performance of SpiderX search algorithm,

we compared it with the Stack-based algorithm [12] and the
Index-based algorithm [14] on DBLP dataset 3. We vary the
number of keywords from 2 to 5 while fixing the largest size
of inverted list to be 10K and 1M respectively. As shown
in Figure 6, SpiderX Join algorithm is around 100 times
faster than Stack-based and Index-based methods. The im-
provement of the performance comes from the following as-
pects: (1) SpiderX adopts a back-forward access method,

2Except the root node.
3http://dblp.uni-trier.de/xml/

239

1

2

3

4

Figure 5: A screenshot of SpiderX. 1© is the query generator with two components: I. drop-down list choosing
an XML data source; and II. keywords input text box. 2© is the autocompletion query suggestion list returned
by SpiderX. 3© is the results exhibitor. 4© is the visual space explorer with zoom-in/out, drag and rotation
features. Demo link: http://chunbinlin.com/spiderx.

Algorithm 1: SpiderX Search Algorithm

Input: Lw1 , ..., Lwk

Output: R
1 R = ∅;

// Let h be the height of the XML tree

2 for i = h → 1 do
// Let Lwi(j) be the j-th column in Lwi

3 I=Lw1(i) ∩ ... ∩ Lwk (i);
4 if I! = ∅ then
5 break;

6 for each row id r ∈ I do
7 R ← Lw1(r)[0 : i];

8 Return R;

SpiderX Index Stack

 1

 10

 100

 1000

2 3 4 5

Ti
m

e (
m

s)

Number of keywords
 1

 10

 100

 1000

 10000

2 3 4 5

Ti
m

e (
m

s)

Number of keywords

(a) 10K (b) 1M

Figure 6: Query performance (ms).

which avoids accessing all the labels; and (2) SpiderX uses
bitmaps to perform intersection directly on the compressed
data without decompressing the data.

4. DEMO SCENARIOS
In this section, we demonstrate different use cases and sce-

narios in three real-life XML datasets, i.e., DBLP dataset 4,

4http://dblp.uni-trier.de/xml/

REED dataset 5 and WSU dataset. Figure 5 shows a screen-
shot of SpiderX.

4.1 Query Autocompletion
Suppose Rachel is an EDBT attendee who wants to find

papers about “heterogeneous” in her phone. In other sys-
tems, e.g., DBLP search system 6, it is a challenge for her
to type the correct characters. Nevertheless, SpiderX pro-
vides query autocompletion feature to guide her to complete
her query. Once she inputs two letters “he”, SpiderX shows
“heterogeneous” on the query suggestion list (as shown in
Figure 5 2©). She can click on it, then “heterogeneous” ap-
pears on the input-box. By simply clicking on it, the query
is complete. In this scenario, she only inputs 2 letters, while
in other systems she needs to type 13 characters and may be
more if she deletes some wrong letters to refine the query.

4.2 Find Recent Papers
Assume Lucy is a PhD student who is interested in XML

query processing. She wants to read the most recent XML
papers. She chooses the “DBLP” dataset and issues a query
“XML 2016”, then SpiderX instantly returns top-30 articles
published in 2016 with titles containing the keyword“XML”.
All the answers are meaningful and complete. In addition,
she can visualize the results by a simply clicking. A pop-
up window with a visualization graph appears (similar to
Figure 5 4©), which allows zooming in/out and dragging.

4.3 Search for Courses
Suppose Angelina is a graduate student at Reed College.

She wants to take an art course starting at 09:00AM. She
uses SpiderX to first choose the “REED” dataset then enter
“art 09”. SpiderX shows four results instantly. Considering
both the title and the instructor of the courses, she finally
chooses one out of the four results. In addition, she clicks
on the selected one to visualize it and saves the visualization
result. The visualization result is convenient for her to post
on her social networks and share with her friends.

5http://www.cs.washington.edu/research/xmldatasets/
6http://dblp.org/search

240

5. REFERENCES
[1] Z. Bao, T. W. Ling, B. Chen, and J. Lu. Effective xml

keyword search with relevance oriented ranking. In
ICDE, pages 517–528, 2009.

[2] L. J. Chen and Y. Papakonstantinou. Supporting
top-k keyword search in xml databases. In ICDE,
pages 689–700, 2010.

[3] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv.
XSEarch: A semantic search engine for XML. In
VLDB, pages 45–56, 2003.

[4] L. Guo, F. Shao, C. Botev, and
J. Shanmugasundaram. XRANK: Ranked keyword
search over XML documents. In SIGMOD, pages
16–27, 2003.

[5] G. Guzun, G. Canahuate, D. Chiu, and J. Sawin. A
tunable compression framework for bitmap indices. In
ICDE, pages 484–495, 2014.

[6] V. Hristidis and Y. Papakonstantinou. Discover:
Keyword search in relational databases. In VLDB,
pages 670–681, 2002.

[7] V. Hristidis, Y. Papakonstantinou, and A. Balmin.
Keyword proximity search on XML graphs. In ICDE,
pages 367–378, 2003.

[8] C. Lin, J. Lu, T. W. Ling, and B. Cautis. Lotusx: a
position-aware xml graphical search system with
auto-completion. In ICDE, pages 1265–1268, 2012.

[9] C. Lin, B. Mandel, Y. Papakonstantinou, and
M. Springer. Fast in-memory SQL analytics on typed
graphs. PVLDB, 10(3):265–276, 2016.

[10] C. Lin, J. Wang, and Y. Papakonstantinou. Data
compression for analytics over large-scale in-memory
column databases (summary paper). CoRR,
abs/1606.09315, 2016.

[11] T. W. Ling, Z. Zeng, T. N. Le, and M. L. Lee.
ORA-semantics based keyword search in XML and
relational databases. In ICDEW, pages 157–160, 2016.

[12] Z. Liu and Y. Chen. Identifying meaningful return
information for xml keyword search. In SIGMOD,
pages 329–340, 2007.

[13] Z. Liu, J. Walker, and Y. Chen. XSeek: a semantic
XML search engine using keywords. In VLDB, pages
1330–1333, 2007.

[14] C. Sun, C.-Y. Chan, and A. K. Goenka. Multiway
slca-based keyword search in xml data. In WWW,
pages 1043–1052, 2007.

[15] Y. Xu and Y. Papakonstantinou. Efficient keyword
search for smallest LCAs in XML databases. In
SIGMOD, pages 527–538, 2005.

241

