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ABSTRACT

Unusually high correlation in activities among users in social media
is an indicator of bot behavior. We have developed a system, called
DeBot, that identifies such bots in Twitter network. Our system re-
ports and archives thousands of bot accounts every day. DeBot is an
unsupervised method capable of detecting bots in a parameter-free
fashion. In February 2017, DeBot has collected over 710K unique
bots since August 2015. Since we are detecting and archiving Twit-
ter bots on a daily basis, we have the ability to offer two different
services based on our bot detection system. The first one is a bot
archive API that makes it easy for researchers to query the DeBot’s
archive. This API can be used to answer various queries: Is a given
Twitter account a bot? When was this bot active in the past? Which
twitter accounts were detected as bots on a specific date? The se-
cond service that we offer is an on-demand bot detection platform
which can detect bots that are related to a given topic or geographi-
cal location, and report them to the user in few hours. This paper
explains all the details of the services we offer on top of the DeBot’s
bot detection engine.
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1. INTRODUCTION

Automated accounts, a.k.a bots, are tweeting/re-tweeting all the
time in different parts of the world. Bots are accounts that are con-
trolled by computer programs. Posting spam content, advertising
products and services, supporting/opposing Twitter trends, and par-
ticipating in sponsored campaigns are all examples of activities
that bot accounts are interested in. They can get visibility and im-
prove their follower network by doing the above activities. The-
re may exist automated accounts which are not harmful such as
@count forever, but most of them pretend to be human and en-
tice people to follow them. To the best of our knowledge, the only
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available tool to check whether or not a Twitter account is a bot, is
BotorNot? [2]. BotorNot? is a supervised technique that evaluates
a given Twitter account based on different features, and estimates
the probability of botness.

We have developed a parameter-free unsupervised system, cal-
led DeBot [7], that constantly collects data from Twitter and detects
bots based on their synchronicity. DeBot is a novel near real-time
technique which uses the activity correlation across users as an in-
dicator of bot behavior. Millions of users interact in social media at
any time. Even at this large scale, human users are not expected to
have highly correlated activities. We have mathematically analyzed
the significance of correlated bots and proved that the false positive
of our system is almost zero [8].

DeBot’s bot detection engine has four different steps. First, it starts
collecting tweets by listening to a set of keywords using Twitter
streaming API [5]. Since we want to detect bots in different hot
topics, we use top Twitter trends as the keywords for collecting
tweets. In the second step, DeBot uses hashing techniques to filter
out those users which are not highly correlated and report a set of
suspicious users to the next step. In the third step, we listen to the
previously detected suspicious users for a certain duration. Finally
in the last step, DeBot calculates the correlation among the suspi-
cious users of step three, and reports the highly correlated ones as
bot accounts. Further details of DeBot can be found in our publis-
hed papers [7, 8] which discuss the logic behind our method and
the empirical evaluations.

DeBot enables us to offer two different sets of services to help
others find social bots:

1. Bot Archive API: We have developed a REST API with a
Python wrapper which makes it possible for users to query
our archive to get the list of bots that DeBot has detected so
far. Since we store useful meta data for each detected bot,
users can retrieve the information they like based on diffe-
rent criteria. This is a synchronous service which responds
to requests immediately. The left part of Figure 1 shows the
components of this service.

2. On-Demand Bot Detection Platform: DeBot is always wor-
king to detect and add new bots to the archive. In case a user
does not find the bots that match his criteria, he can sub-
mit a request to our system to instantiate a new bot detection
process specifically based on his criteria. The results will be
reported to the user in few hours once the process is finis-
hed and the list of bots is ready. The right section of Figure 1
shows the details of this service.

A video screen capture explaining how to use all these services
in practice is available at [1].
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Figure 1: How we offer different services. (left) The blue section of the figure shows how the DeBot’s archive API works. (right) The
red section of the figure shows how our asynchronous on-demand bot detection platform operates.

2. DEBOT ARCHIVE

DeBot has been up and running since August 2015. It is working
24/7 to detect bots in Twitter. At the end of each day, we insert the
list of all detected bots in to the DeBot’s archive. 1500 new bots
are added to the DeBot’s archive on average every day. We keep
different pieces of information for each bot in our archive. This
meta data can later be used to serve users’ queries more accurately.
Here is a list of attributes we store for each bot in our archive:

e User ID: This is the unique ID assigned to each account by
Twitter. The ID can not be changed during the lifetime of an
account.

o Twitter screen-name: This is a string picked by the user for
the account. The Twitter screen-name (handle) of each ac-
count specifies the URL to its Twitter page. Although the
screen-name of each account is unique in the whole net-
work at a given time, users are allowed to change it to any
non-taken string. [14] explains how Twitter users hand over
their screen-names to the other accounts. Therefore, a given
screen-name may belong to different accounts during the ti-
me. We use User ID in our archive to specify an account.

e Date: This is the date that DeBot detects a bot. DeBot may
detect an account as a bot in different days.

e Cluster ID: DeBot detects bots based on the high correlation
between Twitter users’ activities. At the final step of DeBot,
bots are clustered based on their pairwise correlation. There-
fore, DeBot groups similar bots together. This attribute is a
globally unique ID which shows the group ID of a bot.

e Topic: DeBot collects tweets based on the trending topics of
each day. At the end of the bot detection process, each bot
is related to zero, one, or more than one trending topics. We
also keep the list of topics related to each bot in our archive.

ARE THEY REALLY BOTS?

In this section, we briefly provide empirical evaluations to calcu-
late the relative support from other methods to the bots detected by
DeBot. We have run DeBot in every 4 hours for sixteen days and
have picked a subset of detected bots to create a base set. The same
dataset is used in all of evaluation experiments. You can find details
of these experiments and how we selected the base set in [7].

In the first experiment, we compare our method with Twitter’s
suspension process and check how many bots that we detect are la-
ter suspended by Twitter? If Twitter suspends them, we are certain
that the bots were bad ones. We probed Twitter every few weeks to
update the number of suspended accounts. After 12 weeks, roughly
45% of the bots were suspended by Twitter.

3.
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As mentioned in section 1, one of the existing bot detection me-
thod is Bot or Not?. It is a supervised method that uses account
features to train a model and estimate the probability of an account
being bot [10]. We used a same base set to compare our method
with Bot or Not?. We set a threshold of 50% or more to classify an
account as bot and found that 59% of the bots in our dataset we-
re also flagged by Bot or Not?. We probed Bot or Not? two more
times and noticed no significant change in detection performance.

Most of existing methods, consider accounts independently. x>
test is one of these methods [18] which we compare DeBot to it. Ha-
ving activity timestamps of an account, this per-user method tests

the independence of minute-of-an-hour and second-of-a-minute using

the %2 test. It declares an account bot if these two quantities are de-
pendent. The method fails for users whose activities are distributed
uniformly over time and there is no dependency among these two
quantities, while DeBot can detect them. We calculate the relative
support from this method and identify 76% of the bots from base
set are supported by the x? test.

We also evaluate the bots from our base set using contextual in-
formation such as tweet content and cross-user features. We investi-
gate whether the synchronously aligned tweets have identical texts
and/or authors. The experiment shows that 78% of tweets match in
text and/or original authors of the tweets. Simply put, the aligned
tweets have identical text and authors 78% of the time.

Finally, we use Amazon Mechanical Turk to evaluate DeBot. We
ask the judges to determine whether fifty random pairs of accounts
are showing similar text, URLs, authors and languages. Based on
judges answers, 94% of tweets are not only synchronized in time,
but also share the same information.

4. BOT ARCHIVE API

To make our archive publicly accessible, we have developed a
REST APIL. When the user sends a data request, DeBot responds
in XML format. A Python library is also provided to make data
retrieval even simpler for developers. The library is available at [3].
Users should register in our system in order to use the services.
The registration process is for managing requests through an API
key. The API key is a 40 character string which is sent to the user’s
email after filling out the registration form. Each service requires
different input parameters. If the parameters are not set properly,
an error XML object will be sent to the user. It contains a message
with a brief description of the error.

There is a daily limit rate for each user in using the APL. If a user
exceeds the maximum rate, an error message is returned. A sample
of the error object is shown in XML Object 1.



XML Object 1: Example of error message
1 <?xml version="1.0"7>

> <response status="err">

3 <error>

4 <error_code>

5 101

6 </error _code>

7 <error_msg>

s  You have exceeded your daily
9 </error_msg>

0 </error>

limit .

n </response>

In the following sub-sections, we introduce different functions
of our APIL. Specifically, we explain how to call the function and
the fields in the XML response.

4.1 API Functions

Pick a date and press the button:

| See Report|
January 5% 2017

Figure 2: A screen-shot of the DeBot daily report GUI. Each
connected component represents a bot cluster and each node is
a bot. Clicking on each node would take the user to the bot’s
Twitter page.

Bots of a specific date: The get_bot_1ist function produ-
ces a report that contains a set of correlated accounts detected on a
given date. DeBot collects data everyday and inserts correlated ac-
counts into the archive at the end of the day. As mentioned before,
each account belongs to a group of users which we call a cluster.
Each cluster shows a set of users whose activities were correla-
ted with each other. The input of the function is a date and the
maximum number of bots the user wants to receive. The default
maximum number of reported bots is 5000. The bot clusters are
in descending order based on their number of bots. XML Object 2
shows a sample output of this function.
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1 import debot
> db = debot.DeBot(’your_api_key’)
3 db. get_bots_list(’2017—-01-08")

Bots may constantly change their temporal pattern of activities.
For example, a Twitter account may be correlated with a set of ac-
counts in Cluster A in the morning. Then it changes behavior and
becomes correlated with the users of Cluster B in the afternoon.
Therefore, DeBot may detect this account as a bot multiple times
in different bot clusters on a specific date.

XML Object 2: Output of get bot_list function

1 <?xml version="1.0"7>
> <response status="success">
3 <day date="2015—-12-04">

4 <cluster cluster_id="1" size="5">

5 <user>

6 <id>12359852135</id>

7 <screen_name>m_arrioja</screen_name>
8 </user>

9 <user>

10 <id>85642135261</id>

1" <screen_name>NapPerez</screen_name>
12 </user>

6 </cluster>
7 </day>
18 </response>

The list of detected bots, which we call daily report, also has a
web-based GUI available at the DeBot’s homepage [4]. Users can
specify a date and a set of connected components will be illustrated
(see Figure 2). Each connected component shows one of the bot
clusters, and each node is a bot account with a link to the bot’s
Twitter page.

Please insert a Twitter screen-name:

‘ @loveforll ‘

Dates detected:
2015-10-28
2015-12-04
2016-02-22
2016-04-06

User: @loveforll

Figure 3: A screen-shot of the DeBot check user GUI. Given a
screen-name, list of detection dates will be illustrated.

Check For a Specific Twitter Account: The check_user
function checks the existence of a Twitter account in the archive.
The input of the function is either a screen-name or a user ID of
a Twitter account. Given a Twitter account, the function checks all
the bots that DeBot has detected so far. Since an account may be
detected multiple times, the output of this function is a list of dates
on which DeBot has detected the given account as a bot. XML Ob-
ject 3 is an example of the output returned by the check_user



function. In this example the user loveforll has been totally detec-
ted 4 times under different Twitter account IDs. Note that a Twitter
screen-name may belong to different users during the time.

import debot
db = debot.DeBot(’your_api_key’)
db.check_user(’ @loveforll”)

W

XML Object 3: Output of check_user function

1 <?xml version="1.0"7>

> <response status="success">

3 <user>

4 <id>653257488494</id>

5 <screen_name>loveforlI</screen_name>
6 <dates>

7 <date count="1">2015—-10—28</date>

8 <date count="4">2015—-12—-04</date>
9 </dates>

0 </user>

n <user>

12 <1d>149873685443</id>

13 <screen_name>loveforll</screen_name>
14 <dates>

15 <date count="2">2016—02—22</date>
16 <date count="1">2016—04—06</date>
17 </dates>

18 </user>

v </response>

We also provide a web-based GUI for the check_user function.
Users need to give a screen-name or a user ID of an account and if
it exists in DeBot’s database, list of detection dates will be shown.
Figure 3 is an example of this GUL

Bots that are detected frequently: Bots may be detected by De-
Bot on different dates. Using the get _frequent_bots functi-
on, the user can get the list of bots which appear in our archive more
than a given number of times. The input of the function is the mi-
nimum number of times the bots are appeared in our archive. The
output is a list of bots with number of times each of them has been
detected. As discussed in section 2, a Twitter account can change
the screen-name. Therefore, we may have a single user ID that ap-
pears with multiple screen-names. The XML output of this function
is a list of user IDs, number of appearances, and the screen-names
associated with it. Note that if a user gets detected several times
on a day, we count it once in the result. The example of the output
XML is shown in XML object 4.

1 import debot
> db = debot.DeBot(’your_api_key’)
3 db.get_frequent_bots (100)

Bots and Topics: We explained in section 1 that the first step of
our method is listening to a set of topics which we pick from top
Twitter trends. Therefore, detected bots are usually associated with
few topics. We have a database of worldwide top Twitter trends
which contains more than 17000 unique topics with their associa-
ted bots. Based on this database, we provide another function, cal-
led get_related_bots. Given a topic, this function returns all
bots who were associated with that topic at some point in the past.
It also provides the corresponding dates. XML Object 5 shows the
example output of this function.

186

XML Object 4: Output of get_frequent bots function

1 <?xml version="1.0"7>

2 <response status="success">

3 <user>

4 <id>12359852135</id>

5 <frequency>102</frequency>

6 <screen_names>

7 <screen_name>maFan</screen_name>

8 <screen_name>burgerFan</screen_name>
9 <screen_name>mama_mia</screen_name>
10 </screen_names>

n </user>

15 </response>

1 import debot
> db = debot.DeBot(’your_api_key’)
3 db. get_related_bots (’#election2016 )

XML Object 5: Output of get_related_bots function

1 <?xml version="1.0"7>

2 <response status="success">

3 <topic title="election2016">

4 <user>

5 <id>12359852135</id>

6 <screen_name>m_arrioja</screen_name>
7 <date>2016—10—-22</date>

8 </user>

o  <user>

10 <id>3562489511</id>

1" <screen_name>DNC_</screen_name>
12 <date>2016—10—22</date>

13 </user>

4 </topic>

15 </response>

S. ON-DEMAND BOT DETECTION

Our archive API makes it possible for interested individuals to
get the list of bots that DeBot has already detected using different
criteria. We also offer an on-demand bot detection platform that
makes it possible for the user to initiate a detection process (with
DeBot as the engine) for a specific topic, location, or a set of su-
spicious users and get the list of detected bots after few hours. For
example, a celebrity’s publicist that is willing to know the set of
bots talking about that celebrity can use this service. We explain
more details of the service in this section.

As we mentioned earlier, DeBot starts collecting the tweets that are
related to the trending topics in Twitter. All the other steps in De-
Bot are done based on the twitter accounts that are collected in the
first step. If someone is interested to find the bots that tweet about
a specific topic or from a specific location, we can customize our
tweet collecting filter in the first step of DeBot, and feed the collec-
ted twitter accounts to the next steps. This ensures that the final set
of detected bots are related to the given topic or location.

We also accept a set of suspicious twitter accounts as the input to
our on-demand bot detection platform. In this case we skip the first
two steps of DeBot and immediately start the third step of DeBot’s



engine. Since DeBot detects bots based on the high synchronicity
between them, it requires at least 2 twitter accounts as the input. To
run the third step of DeBot, a list of user IDs or user screen-names
is required.

In order to use our platform, the user has to register and create an
account in our system. Once the account is created, he can use the
key which is sent to his email to submit a topic, a location, or a set
of twitter accounts (at least two) to our system. We start processing
the request once it is received and verified. The list of detected bots
is sent to the user’s email address after at most 12 hours. Note that
we have to listen to Twitter’s API for few hours to detect bots with
almost zero false positive. Each API key can send one request to
our on-demand bot detection platform every day.

6. RELATED WORK

Detecting automated accounts in social media sites is a well-
researched topic. Authors in [9] introduce a publicly-available ser-
vice to check whether a given user is bot or not. A good characteri-
zation of spammers in Twitter is presented in [13]. Authors conclu-
ded that 92% of the accounts that Twitter suspends for spamming
activities are suspended within three days of the first post. Therefo-
re, if a spamming bot survives one week, it is very likely to survive
a long time. Our work identifies bots that are tweeting for months,
if not years. [16], authors characterize the spam detection strategies
very well. Detecting bots by correlating users is our novelty.

Users should have an account per social media site. Linking ac-
counts of the same person across different social media sites is use-
ful for social media studies. Authors in [17] propose a method to
aggregate multiple profiles of a user to improve recommendation
systems. Correlating user activity across sites (e.g. Yelp and Twit-
ter) can provide useful information about linked-accounts, and thus,
form a basis of privacy attack [12]. In [11], authors perform offli-
ne analysis to discover link-farming by which spammers acquire
a large number of followers.In [6], authors find temporally cohe-
rent collaborative Liking of Facebook pages. The authors in [15],
present a method to characterize groups of malicious users. They
consider three features such as individual information, and soci-
al relationships to provide deep understanding of these groups. As
opposed to most of these works, our focus is to correlate within the
same site to identify bot accounts that already are or will potentially
become spammers.

7. CONCLUSION

We have developed a real-time method to find correlated user

groups in social media stream that represent bot behavior. Our me-
thod can detect thousands of bot accounts in couple of hours and
incrementally find new bots. We offer two services for the inte-
rested individuals to find bots. Firstly, we provide an easy-to-use
archive API with a Python wrapper which can be used to query the
set of bots that we have already detected. Secondly, we can initiate
a bot detection process per user’s request to find bots that are related
to a topic or a location. These two services are available to public
for free. We believe that researchers, journalists, sociologists, and
others can benefit from these services.
Since DeBot is unsupervised and completely parameter-free, it can
detect more bots with stronger significance in comparison with per-
user methods. Our future goal is to extend this work to further un-
derstand the behavior of bots in social media to improve trustwor-
thiness and reliability. We also plan to use distributed computing
platform to make DeBot extremely scalable.
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