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ABSTRACT

Interval patterns, or inter-event time distributions that oc-
cur in human activity, have long been an interest of many
researchers studying human dynamics. While previous stud-
ies have mostly focused on characterizing the aggregated
inter-arrival patterns or finding universal patterns across all
individuals, we focus on the diversity among the patterns of
different individuals; the goal of this paper is to understand
how persistent an individual’s interval pattern is and how
distinctive it is from those of the others. We use Wikipedia,
me2DAY, Twitter, and Enron email data to study the inter-
val patterns of online human behavior. Our analysis reveals
that individuals have robust and unique interval signatures.
The interval pattern of a user tends to persist over years,
even after coming back from a long hiatus of inactivity,
despite considerable change in circadian rhythms. Further-
more, the interval patterns of individuals are highly distinct
from that of others. We put our new findings in practical
use of identifying users.
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INTRODUCTION

Vibrant human dynamics manifests in rich patterns and
leads to complex inter-event times of individual human ac-
tions. We access numerous online services of this 21st cen-
tury countless times a day and leave traces of our activities
online. Let us take Facebook as an example. An individ-
ual may update Facebook status very frequently, say, every
other minute, or only daily and weekly, or only after a long
hiatus of a few months. If we capture the inter-event time
of a user’s activities in a distribution, what does the distri-
bution tell us?

Previous studies have mostly focused on analyzing aggre-
gated inter-arrival patterns from the perspective of a service
provider [1, 2, 10, 20, 42], or finding universal patterns across
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all individuals in order to explicate or model the human be-
havior [3, 13, 17, 25, 26, 36, 41]. On the contrary, we take
another angle and examine the diversity in individual distri-
butions of inter-event times, which we call interval pattern in
this work. How does an individual’s interval pattern change
over time? Does it remain consistent or fluctuate from time
to time? If the pattern is persistent, is it distinctive enough
to characterize one from the others?

In this work we use four online datasets—Wikipedia edit
history, me2DAY, Twitter, and Enron email—to study the
interval patterns of users across different platforms. In par-
ticular, we have the entire history of Wikipedia and me2DAY,
which enables us to study longitudinal changes over the years
in individuals’ interval patterns.

Our analysis reveals that individuals have persistent and
distinct interval patterns in all four platforms. For a given
user, the interval pattern persists over years, even after com-
ing back from a long hiatus of inactivity or despite consid-
erable change in circadian rhythms. Even more, the interval
pattern of an individual is highly distinct from those of oth-
ers. Also, we show that abrupt changes in interval patterns
are mostly due to instant bursts rather than changes in per-
sisting trends. This result implies that the interval pattern
is a coherent personal characteristic.

Based on our findings, we use interval patterns in user
identification and linking an individual’s accounts. Our pro-
totype implementation demonstrates that the interval pat-
tern is a good behavior feature distinguishing one from the
others. In this era of digital footprints, our findings from
this work have far-reaching consequences. We show that an
interval pattern is representative of a person, distinguishing
one from the rest, and adds a new dimension in capturing
one’s personality or preference.

2. DEFINING TERMS WITH SAMPLES

Figure 1 displays Twitter timelines and the longitudinal
inter-tweeting time distributions for three famous computa-
tional social scientists, Lada Adamic, Albert-Laszlo Barabasi,
and Nicolas Christakis. In addition, on our project web page’
we uploaded more samples from many other researchers and
10 celebrities who actually run their own Twitter accounts
[11]. In this section, we introduce the terms we use through-
out this paper, using these samples.

2.1 Intervals, Windows, and the Patterns

An interval or inter-event time, T, is the time gap between
two consecutive actions by the same individual on a single

"https://jlwan.github.io/interval-signature,/
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Figure 1: Longitudinal changes in tweeting interval patterns for famous computational social scientists: (a)
Lada Adamic, (b) Albert-Laszlo Barabasi, and (c) Nicolas Christakis.

online service. In timelines in Figure 1, each vertical line
represents when the tweet was created, and a length between
two neighboring vertical lines represents an interval.

A window is a time period containing a set of consecutive
intervals. We refer to the number of intervals in a window as
the size and the time duration as the length. For example,
in Figure 1, we set each window, from W; to Wy, to have
[(n — 1)/4] intervals where n is the total number of tweets
written by each user. Their lengths in time differ from one
another. In the sample figures, we split the windows to have
an equal number of intervals rather than an equal length in
time. That is, we fix the size of the windows constant. If we
set the windows to be of fixed length in time, some windows
would contain zero or only a few intervals during the period
of low activity. We want all the windows to have a sufficient
number of samples.

The interval pattern of a window is its inter-event time
distribution in log-scale. We transform the discrete time in-
tervals to a continuous probability density function using
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Gaussian kernel density estimation with Sheather and Jones’
bandwidth selector [15, 31]. (See Appendix A.1 for detail.)
With providing evidence that each individual’s interval pat-
tern is persistent and distinctive, we will call the shape as
interval signature.

2.2 Distances between Patterns and Users

A noteworthy observation in the samples is the consis-
tency in each individual’s interval patterns. Throughout years
of time, the shape of interval patterns of a single user re-
mains consistent over windows, while the shapes are quite
different from each other. Then, how can we quantify the
self-consistency and cross-individual diversity?

We begin by measuring the distance between two interval
patterns. Given any two windows, we calculate the distance
between those interval patterns using Jensen-Shannon dis-
tance [7, 19, 21]. (See Appendix A.2 for detail.)

Then, we call the distance between a user’s two different
windows as self-distance, d**. The smaller the self-distance



is, the more consistent the individual’s interval pattern is.

In Figure 1, each user has 4 windows, thus we have (3) = 6

self-distances for each user; the average self-distance, (dse“>,
is 0.13 + 0.02, 0.11 + 0.03, and 0.12 £ 0.04 for Adamic,
Barabasi, and Christakis, respectively. For the comparison,
we refer the distance between different users’ windows as
reference distance, d™'. In Figure 1, each pair of users has
4 x 4 = 16 reference distances, and the average of them,
(d™), is 0.36£0.04, 0.39+0.05, and 0.57£0.03 for each pair
of Adamic-Barabasi, Barabasi-Christakis, and Christakis-
Adamic, respectively. As the self-distances are conspicuously
less than the reference distances, we distinguish a user’s in-
terval pattern from the others?.

So far, we look at the individual-level interval patterns
for dozens of sample users. Now we conduct analysis on
more datasets to study longitudinal interval patterns at a
population-level.

3. DATASET DESCRIPTION

To study interval patterns in various types of online be-
havior, we use the following datasets: Wikipedia revision
history, me2DAY, Twitter, and Enron email. In particular,
Wikipedia and me2DAY datasets contain the complete up-
dates that occurred since the service launch, enabling longi-
tudinal studies of each and every user. Table 1 summarizes
the datasets, and the following subsections briefly describe
each dataset.

Number of users Wiki me2DAY Twitter Enron
with >25 actions 521K 587K 921K 937
with >50 actions 297K 356K 768K 542
with >100 actions 165K 203K 624K 298
with >500 actions 47K 43K 334K 65

Table 1: Dataset Statistics. Here, the action means
platform-specified activity: article editing, posting,
tweeting, and email sending for each platform.

3.1 Wikipedia

Wikipedia is an ideal dataset for this study as it has long
history spanning 15 years, and provides the entire edit his-
tory dump. We use the English Wikipedia revision logs® up
to 2015. As our study focuses on human behavior, we ex-
clude all bots [37] and blocked accounts [38] that are offi-
cially listed by Wikipedia. We assume all the other accounts
as personal accounts, as Wikipedia’s policy [39, 40] prohibits
sharing an account between more than one individual.

3.2 me2DAY

A Korean microblogging and social networking service,
me2DAY, was launched in February 2007 and closed in June
2014. It had a 150-character of length limitation per post
as in Twitter and allows to write comments and click ‘me-
too’ to a post as in Facebook. In May 2014, on the news
of its impending closure, we crawled the entire history of
me2DAY, thanks to me2DAY imposing no limit on third-
party crawling. We could crawl the entire posts of each and
every individual.

2The method that comparing self-distance and reference dis-
tance is developed upon the social signature work [30].
3http://dumps.wikimedia.org/enwiki/
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For our previous work [12], we cleaned the me2DAY data
and labeled spam-suspicious accounts analyzing the con-
tents. We excluded these accounts from our main analysis.

3.3 Twitter

Twitter, with its openness, has become probably the most
popular dataset of this decade in social media studies. Using
the Twitter API, we took a subset of users from Twitter and
collected the tweets they have written. We used snowball
sampling with two Korean celebrities as the seed set. Due
to Twitter API rate limits, we collected up to 3,200 most
recent tweets per user up until March, 2014.

3.4 Enron

For interval patterns in email behavior, we use Enron
dataset [18]. The dataset contains emails from September
1998 to September 2002. We remove duplicates, and group
the emails by senders. Also, we exclude non-individual senders
such as announce@enron.com or support@enron.com.

4. LONGITUDINAL INTERVAL PATTERNS

In section 2, we split each user’s timeline into 4 windows
for visualization. In this section, however, we split each user’s
timeline into smaller pieces to observe the longitudinal in-
terval pattern changes.

In order to make each user have enough windows and ac-
tivities for longitudinal study, we only consider the users
with more than 500 actions and split each user’s timeline
into 10 windows; each user has 10 windows having 50 or
more intervals®. The number of those users in each platform
is shown in Table 1.

We first split each user’s activity history into 10 consecu-
tive windows, Wi, Wa, ..., Wio, so that each window contains
exactly | (n—1)/10] intervals where n is the total number of
actions. This window setting has the following advantages.
First, in an online service, individuals have different lifes-
pans; some users abandon a service only a few days after
joining, while others remain active for several years. Seg-
menting the lifespans of users into equal number of windows
allows us to compare individuals’ longitudinal interval pat-
terns in a single framework, even when the users have differ-
ent lifespans [6]. Second, having 10 windows per each users,
we can compare 45 window pairs evenly covering each users
lifespan with various time gap. Using the enough number
of window pairs, we can compare the self-distances under
various conditions.

In this setting, each user has 45 self-distances and each
pair of users generates 100 reference distances. We plot the
distribution of all the distances in Figures 2(a-d) vertically
aligned. These plots serve as a ruler for the distances pre-
sented in the following subsections.

4.1 Over user lifespan

How individuals’ interval patterns change from their join-
ing to abandoning the community? To see how the users’
interval patterns change over their lifespans, we display the
self distance between two consecutive windows W; and W41,
in Figures 2(e-h). In all four platforms, Wikipedia, me2DAY,

4We also conducted same analysis with all the users with
more than 100 actions splitting each timeline into 4 windows.
In addition, we conducted analysis with fixed window sizes.
In all cases, the results were consistent. (For the window size
effect, see Appendix B.)
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Figure 2: Distribution of self-distances and reference distances, where the lower and upper bars denote 10 and
90 percentiles, respectively. (a-d) Distribution of self-distances and reference distances between every pair
of windows for all users. (e-h) Distribution of self-distances between two consecutive windows W, and W;4;.
(i-1) Distribution of self-distances grouped by the time gap between two windows W, and Wj, calculated
as Zi<k<j ZTEWk, 7. (m-p) Distribution of self-distances grouped by longest inactivity period between two
windows W; and Wj, calculated as max,cw,,i<k<j T- (q) Distribution of self-distances of interval patterns

grouped by distance between circadian rhythms.

Twitter, and Enron email, the self-distance between consec-
utive windows over user lifespans remain very stable, except
at the beginning and end of the service membership. That
is, the boxplots between W3 and W2 and between Wy and
Wio have higher median and wider percentile values than
the rest. These phases roughly correspond to a new user de-
veloping a unique activity pattern and an experienced user
losing interest, respectively.

4.2 Over time

We have shown that a user’s interval pattern stays persis-
tent along the lifespan. In this section, we measure how long
each user’s interval pattern stays persistent, and whether the
interval pattern persists if there is a long inactivity period
between the two activity windows.

We first define the time gap between two activity win-
dows W; and W; of a user as the time between the last post
of W; and the first post of Wj. In other words, the time
gap between the two activity windows is equal to the sum
of all inter-event time 7 caught between the two windows,
D ick<j 2urew, T- Next, we define the longest inactivity pe-
riod as the maximum inter-event time caught between the
two windows, max,ew, i<k<; 7- Finally, we flatten the user
dimension and plot the self-distance distribution between all
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pairs of activity windows, with respect to the length of tem-
poral gap and the longest inactivity period between them,
respectively.

As shown in Figures 2(i-1), each individual’s interval pat-
tern is robust over years. Even the time gap between two
windows exceeds 3 years, the self-distances are much smaller
than the reference distances. Also, even after coming back
from long-term inactivity, the self-distance is visibly less
than the reference distances in Figures 2(m-p). Note that
we limit the longitudinal analysis on Twitter only up to 1-
year span due to the Twitter API restriction.

4.3 Through changing daily routine

Why is an individual’s interval pattern persistent over
time? Ome possible explanation is that each person’s cir-
cadian rhythm influences behavior dynamics, resulting in
a unique interval pattern for every individual. Recent re-
search has derived and modeled inter-event time distribu-
tions of human activities as the consequence of their circa-
dian rhythms [14, 26].

If a circadian rhythm affects online human behavior, fluc-
tuation in an individual’s circadian rhythm should result in
fluctuations in interval patterns as well. In this section, we



examine if the change in a user’s circadian rhythm is related
to the change in the interval pattern.

We extract the circadian rhythms, or circadian distribu-
tions, of users through the similar approach used to extract
interval patterns. We measure at what time on a 24-hour
cycle a user engages in the online activity, and plot the prob-
ability distribution on the 24-hour time scale. We extracted
the distributions using von Mises kernel density estimation
for each window of every user. (See Appendix A.3 for de-
tail.) Thus for each user, we have 10 circadian distributions
corresponding to 10 windows.

Then, we calculate the distance between the circadian dis-
tributions, d, for every pair of activity windows of a user. We
define this as circadian distance. We use Jensen—Shannon
distance, as we did in computing self distances of interval
patterns. Greater circadian distance indicates greater fluc-
tuations in his circadian rhythm over time.

On Figure 2(q), we plot the distribution of self distance
between all pairs of activity windows with respect to cir-
cadian distance of me2DAY users. We present the results
for me2DAY dataset only, because me2DAY provides local
time information for every post, while other platforms pro-
vide only server time. On the contrary to the expectation,
we observe that the users’ interval patterns are robust to se-
vere changes in circadian rhythms. This indicates that users’
online behavior remains persistent even when individuals’ bi-
ological clocks go out of sync due to shifts in sleep schedules
or rearrangement of working hours.

5. CHANGE IN INTERVAL PATTERNS

In the previous section, we have presented multiple evi-
dences that suggest persistence in individuals’ interval pat-
terns. Overall, an individual’s interval pattern is persistent,
but at times, we observe distinct changes in the interval
pattern. This raises the following question: when do these
changes occur and why? In this section, using me2DAY data,
we focus on the such changes in the interval patterns over
time.

5.1 Clustering the Interval Patterns

Before examining the transitions in the interval patterns
of users, we first group the interval patterns into clusters.
We perform k-means clustering [23] with k& = 12 over all
empirical windows observed in me2DAY in the previous sec-
tion. The algorithm identifies 12 most representative clus-
ter centroids, and maps every interval pattern into one of
the twelve clusters. With these mappings, changes in inter-
val patterns are abstracted as transitions between clusters,
which enhances the interpretability of the analysis results.

Figure 3 shows the twelve clusters from k-means clustering
for our me2DAY data as an example. Clusters C to Ci2 are
sorted based on the expected value of logarithmic inter-event
time, F [log, 7]. In other words, clusters with smaller index
values correspond to burstier interval patterns in which ac-
tivities repeatedly take place within a short span of time.
Likewise, clusters with bigger index values resemble users
who updates posts less frequently.

5.2 Interpreting Inter-cluster Transitions

Now that we have mapped the interval patterns into clus-
ters, we analyze the transition between the interval patterns
in this section. The transition between the interval patterns
P; and P11 of two consecutive windows W; and W41 is
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Figure 3: The 12 centroids for clusters Ci,...,Ci2
from k-means clustering with £k = 12 on all empir-
ical interval patterns in me2DAY. The clusters are
sorted by the expected value of logarithmized inter-
val, FE [log, 7]. Low index represents bursty posting
behavior, and high index represents infrequent be-
havior.

defined as follows:

(P; — Pit1) — (sre, dst, d, 1) (1)
where src is the cluster that P; belongs to, dst is the cluster
that P;+1 belongs to, d is the distance between two interval
patterns P; and P;y1, and 4 is the index of the prior window.

Figure 4(a) illustrates the extent to which the transition
between two clusters occur. We measure the proportion of
transitions from cluster x to cluster y over all transitions,
formally denoted as Pr(src = =z,dst = y), and plot the
probabilities. Note that the cells along the diagonal of the
matrix, i.e. C; — C}, signify those cases in which no transi-
tion occurs between two consecutive interval patterns. The
figure serves as another evidence showing that activity pat-
terns tend to be persistent in a large majority of cases, in
accordance with our findings from the previous section.

A closer inspection of the transition between clusters showed
a number of boundary data points moving in and out of
neighboring clusters. To better focus on the more meaning-
ful transitions, we only account for transitions with signif-
icant changes, by applying a self-distance threshold of 0.4,
corresponding to the top 10% highest self-distances in Fig-
ure 2(b), to Figure 4(a). Each cell in Figure 4(b) represents
Pr(src = z,dst = y|d > 0.4), the ratio of C; — Cy given
consecutive window transitions with distance greater than
0.4.

We observe two notable characteristics from Figure 4(b).
First, significant transitions mostly occur between Ci/Cs
and the other clusters. As established in the beginning of
this section, C; and C2 marks bursty updates with second-
to minute-scale centroid modes. Second, the likelihood of
bidirectional cluster transitions are symmetric, i.e. a person
is just as likely to make transition C, — Cy as he/she is
likely to make transition Cy — C;. To recap, a transient,
bursty behavior of a user triggers significant cluster transi-
tions, and such transition is equally likely to be reversed.
Manually inspecting several significant cluster transitions
confirmed that the causes of such bursty behavior include
posting along to a live event such as a sporting event or a
television program, and writing down lyrics to a song.
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Pr(dst = y|src = x,i = 9).

The transition matrix is also useful in discovering accounts
whose abandonment is imminent. To understand how users
behave before leaving the service, we plot the transition
probabilities just for the last pair of windows, Wy and Wio.
In other words, we compute Pr(dst = y|src = z,i = 9) for
all me2DAY users and display the results on Figure 4(c).
Once again, probabilities are high along the diagonal, indi-
cating that in most cases no transition occurs. Meanwhile,
when transitions do occur, they are made from clusters of
smaller index to greater index, as the upper-left half of the
matrix is covered in lighter shades. It implies that the users’
activity patterns tend to slow down prior to leaving the ser-
vice.

6. APPLICATION: IDENTIFYING USERS

We have so far shown that individuals exhibit persistent
and distinctive interval patterns of activities online. In this
section, we exploit this insight to identify users only by ob-
serving the interval patterns. We formalize the user identi-
fication problem as the following. Given two windows each
containing 100 intervals, can we determine those are from
the same user or not?

For the task, we build a very simple threshold-based iden-
tifier. As input, the identifier takes two windows each con-
taining 100 intervals. If the distance between two interval
patterns is smaller than the threshold, it tells that those
are from the same user. Otherwise, it tells those are from
different users.

For the non-matching cases, we randomly select 10 win-
dow pairs for every pair of users. For the matching cases, (i)
we randomly select 100 consecutive window pairs for each
user, and (ii) we randomly select 100 window pairs with more
than 1 year gap for each user. We split the matching cases
into two groups to compare the identification performance
over time gap.

To evaluate the performance, we use metrics typically used
in biometric systems [22, 29, 35]. False match rate (FMR)
measures the proportion of window pairs from a single user
classified as from different users, and false non-match rate
(FNMR) measures the proportion of window pairs from dif-
ferent users classified as from a single user. If we increase
the threshold value, FNMR decreases but FMR increases.
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We refer the crossover point at which FMR equals FNMR
as equal error rate (ERR).

Figure 5 shows the performance of the identifier with the
detection error tradeoff (DET) curves. Considering that many
implementations of behavioral biometric systems using key
stroke dynamics, mouse dynamics, or gait recognitaion have
ERR around 10% [8, 16, 29, 35], the user identification per-
formance is remarkable. Only by observing the distance be-
tween interval pattern, we can match the same user’s inter-
val patterns with ERR around 20%, even there are long time
gap exceeding 1 year.
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Figure 5: Detection error tradeoff curves for the
user identification and the corresponding equal er-
ror rates. (a) Wikipedia. (b) me2DAY. (c) Twitter.
(d) Enron.



The performance of our prototype identifier suggest that
interval pattern can serve as a behavioral feature in user
identification. Only by comparing the interval patterns, we
can determine that those are from the same individual or
not, over time gap and across similar services.

Behavioral traces are hard to manipulate, while online
profiles can be easily copied. Thus, we expect that the inter-
val signature of online behavior can be used to detect online
identity theft such as account hijacking or doppelgénger at-
tack [5, 9].

7. RELATED WORK

The availability of time-stamped behavioral data has en-
abled researchers to study temporal human dynamics—often
captured by inter-event time distributions, that we call in-
terval pattern here. Aggregated inter-arrival time distribu-
tions matter greatly in system performance and service man-
agement. More specifically, inter-arrival time distributions
are used to characterize web services [1, 2, 42] or categorize
user sessions [10, 20].

Search for universality in natural phenomena including
human behavior has been the edict of scientists. Statistical
physicists have strived to mine a universal temporal pattern
across all individuals, and explicate or model the behavior [3,
13,17, 25, 26, 36, 41]. However, their observations sometimes
compete with each other [4, 13, 33], suggesting that it is
difficult to generalize interval patterns of individual human
actions with a single formula.

In light of this, we focus on the persistence and distinc-
tiveness of individuals’ interval patterns rather than on find-
ing a universal pattern. A previous study reported relative
stability of temporal email patterns [24]. Focusing more on
the longitudinal persistence of interval patterns in individual
human behavior, our work scrupulously confirmed multiple
datasets of various activities, spanning several years up to a
decade and a half of time.

8. CONCLUSION

Characterizing a person, in a way, is discovering the in-
dividual’s personal characteristics that are invariant over
time and different from others. Behavioral signatures, as
reflections of such persistent personal characteristics, have
been the key component for observing and defining person-
ality [27, 28, 32].

In this paper, we discover that each individual has a per-
sistent interval signature that stays resilient under changing
circumstances. We confirm this finding across different types
of online behavior—article editing, microblog posting, and
email. Our work demonstrates that the interval signature
qualifies as a form of personal characteristics.

Based on our finding, we have applied the interval patterns
in practical use of identifying users. Our prototype imple-
mentation demonstrates that the interval pattern is a good
behavior feature distinguishing one from the others. In addi-
tion, our finding opens up many more interesting follow-up
research questions: For a group of people having similar in-
terval signatures, what do they have in common? What can
be inferred about users by analyzing their interval patterns?
How can we interpret the shape of an interval signature in
terms of personality or other dimensions of personal char-
acteristics? We believe that the notion of interval pattern
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introduced in this work is a valuable new measure in per-
sonal identification and categorization of online behaviors.
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APPENDIX
A. METHODS

A.1 Estimating Interval Patterns

Our goal is to estimate the probability density function of the
inter-event interval 7, given consecutive intervals in an activity
window W = (11,72,...,7n). We estimate the probability den-
sity function of the logarithimized inter-event time, log, 7, by a
Gaussian kernel density estimator,

where ® is the standard normal density function, and h is the
smoothing parameter called bandwidth. For the bandwidth, we
basically follow Sheather and Jones’ bandwidth selector as it well
fits bimodal distributions [15, 31]. In addition, we set the upper
and lower bounds on bandwidth at 1.5 and 0.5 to prevent over-
and under-smoothing. We also tried other constant bandwidth of
1/2, 1/+/2, and Epanechnikov kernel instead of Gaussian, but in
all cases, the result was almost identical.

R 1
P:P(10g27)zﬁ

k3

logT — log7;
=1

h

A.2 Comparing Two Probability Densities

The Jensen—Shannon divergence (JSD) [21] is a popular mea-
sure of the difference between two probability density functions.
It is a symmetrized and smoothed version of Kullback—Leibler
divergence (KLD) [19]. JSD is defined by

ISD(PIIQ) = SKLD(PIIM) + SKID@IIM) ()

where M = (P + Q)/2, and KLD is calculated as

@dw

q(z)

Instead of directly using JSD, we use the square root of it
vV JSD—called Jensen—Shannon distance—since it satisfies metric
properties [7].

A.3 Estimating Circadian Rhythms

To estimate circadian rhythms—i.e. what time on a 24-hour
cycle a user engages in the activity—of online human behavior,
we use the von Mises kernel density estimation [34]. For a given set
of timestamps of posts in an activity window W = (¢1, t2, ..., tn),
the circadian rhythm C is defined as

1 ~ 2m(t — t;)
771(24)[0(1/) ZZ::I exp{v cos (724 ) [ )

KLD(P||Q) = / ~ p()n (4)

C=p4(t) =



where I;-(v) is the modified Bessel function of order r and the con-
centration parameter v is the inverse of the smoothing parameter
h. Large values of v lead to highly variable estimations whereas
small values provided over-smoothed circular densities. For the
concentration parameter, we use v = 48.

B. EXAMINING WINDOW SIZE EFFECT

The self-distances and reference distances are key metrics in
quantifying persistence and distinctiveness of interval patterns.
However, the window size is directly related to the resolution of
the interval pattern. If the window size is too small, the window
might be too limited in time. If the window size is too large, the
number of users who have more activities than the window size is
decreases and use of the reference distance is limited to those few.
Then, what size window is better in capturing both of persistence
and diversity? In Figure 6, we vary the window size and plot the
distribution of all self-distances and reference distances for all
users.
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Figure 6: The distributions of self-distance (gray)
and reference distance (white) compared at differ-
ent window sizes, where the lower and upper bars
denote 10 and 90 percentiles, respectively. The num-
bers at the top are the proportion of users who
punched more than n actions.

We use box-plots of 10 and 90 percentiles to summarize the
distributions. The z-axis represents the window size from 25 to
1600. For each window size n, we select all users with more than
2n actions in each platform. For each of these users, we calculate
100 self-distances by randomly choosing non-overlapping window
pairs, each of the same size n. The gray boxes represent the distri-
butions of self-distances. As the window size increases, we observe
that the self-distances decrease significantly.

The white boxes represent the distribution of reference dis-
tances. For each window size n, we select all users with more than
n actions in each dataset. Then, for each pair of users, we extract
100 pairs of windows randomly selected from each, and calcu-
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late the reference distances. The number at the top of a pair of
gray and white boxes indicates the proportion of users with more
than n actions on each platform. As the window size increases,
the cross-individual comparison is limited to a small number of
highly active users. Accordingly, the reference distances decrease
but the decrease in the range of percentiles is not as significant
as in gray boxes.

Moreover, the overlap between two distributions become smaller
as the window size increases. The result implies that each indi-
vidual has unique interval signature, and we can estimate them
more accurately as we observe more intervals.





