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ABSTRACT
Various kinds of data such as social media can be repre-
sented as a network or graph. Latent variable models using
Bayesian statistical inference are powerful tools to repre-
sent such networks. One such latent variable network model
is a Mixed Membership Stochastic Blockmodel (MMSB),
which can discover overlapping communities in a network
and has high predictive power. Previous inference meth-
ods estimate the latent variables and unknown parameters
of the MMSB on the basis of the whole observed network.
Therefore, dynamic changes in network structure over time
are hard to track. Thus, we present a particle filter based
on node activities with various term lengths for online se-
quential estimation of the MMSB. For instance, in an e-mail
communication network, each particle only considers e-mail
accounts that sent or received a message within a specific
term length, where the length may be different from those
of other particles. We show through experiments that our
proposed methods achieve both high prediction performance
and computational efficiency.

Keywords
Network analysis, latent variable models, sequential infer-
ence, and particle filter.

1. INTRODUCTION
Many kinds of data can be represented as a network or

a graph, which is sometimes dynamic and large in scale.
Typical examples of such dynamic, large-scale networks are
social networks. By modeling such networks, we can dis-
cover communities that have a shared property, so as to
avoid high-dimensional difficulties and to visualize complex
networks, and can also uncover temporal dynamics in such
communities. Moreover, we can predict links or relation-
ships that do exist but have not been observed or do not
exist but may appear in the near future. Latent variable
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models using Bayesian statistical inference are a powerful
tool to analyze such networks [4].

In latent variable models for networks, latent random vari-
ables are used to represent communities or groups underly-
ing a network, and observed random variables are used to
represent the nodes. In this paper, we focus on a Mixed
Membership Stochastic Blockmodel (MMSB) [1] as a typi-
cal latent variable model that provides overlapping commu-
nities. In the MMSB, each node is represented by a mixture
of latent groups, where each group is represented by a multi-
nomial distribution over nodes. The MMSB is effective for
community discovery and link prediction.

The latent variables and unknown parameters of MMSB
can be estimated by using variational Bayesian inference [1]
or collapsed Gibbs sampling [9]. The MMSB is usually es-
timated on the basis of a whole observed network. This is
called the batch estimation method. However, this method
is not suitable in realistic situations, such as when the ob-
servations of links are given sequentially. Online estimation
methods are promising for addressing these problems; how-
ever, previous online estimation methods [9] have room for
improvement. The structure of a real-world complex net-
work often changes over time, so old observations of links
do not help and can even harm the estimation accuracy. In
this paper, we address online estimation problems in such
dynamic settings.

We present a particle filter based on node activities with
various term lengths. In an e-mail communication network,
each particle only considers e-mail accounts that sent or re-
ceived a message in a specific term length, where the length
may be different from those of other particles. Through ex-
periments with a university community site dataset and an
e-mail communication dataset, we show that our proposed
particle filter can achieve both high prediction performance
and computational efficiency.

2. RELATED WORK
A number of statistical network models were explored in

previous studies, for example, to discover social roles in
social network data and predict missing links in biologi-
cal networks [4].Latent variable models with Bayesian sta-
tistical inference are a powerful tool to analyze such net-
works [13, 11, 7, 1, 10]. Nowicki and Snijders [13, 11] devel-
oped a stochastic blockmodel where each node is assigned to
a cluster drawn from a multinomial over a fixed, finite num-
ber of clusters. Kemp et al. [7] extended stochastic block-
models to an Infinite Relational Model (IRM) that assumes
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Figure 1: Graphical model of MMSB.

an infinite number of clusters. These models are based on
the assumption that every node is assigned to a single clus-
ter. In contrast, another line of research is based on the as-
sumption that every node is assigned to multiple groups or
communities, resulting in overlapping communities [1, 10].
The Mixed Membership Stochastic Blockmodel (MMSB) [1]
is a typical approach for such overlapping community mod-
els, where each node is represented by a mixture of latent
groups, and each latent group is represented by a multino-
mial distribution over nodes.

As for the previous work on sequential inference, Gopalan
et al. [5] developed an efficient estimation for overlapping
community models, where only random samples of observed
links are used for the inference. They focused on efficiency
in estimating the latent variables and unknown parameters
of overlapping community models, not temporal dynamics
in network structure. Kobayashi and Eguchi [9] explored
sequential inference with overlapping community models in
online settings. However, they did not consider dynamic
phenomena when the structure of a real-world complex net-
work often changes over time and therefore old observations
of links do not help and can even harm the inference. This
paper presents sequential inference based on a particle filter
that uses node activities for capturing temporal dynamics
in modeling overlapping communities, which has not been
explored in previous studies.

3. MIXED MEMBERSHIP STOCHASTIC
BLOCKMODEL

A Mixed Membership Stochastic Blockmodel (MMSB) [1]
is an overlapping community model for network data. In
this section, we first outline the modeling of the MMSB and
then review the inference methods in both batch and online
settings [9].

3.1 Modeling
First, we give the definitions used in this paper. We rep-

resent a graph as G = (N,Y)1, where N is a set of nodes or
vertices, and (p, q) element in adjacency matrix Y indicates
whether a link or arc is absent or present from node p to node
q as Y (p, q) ∈ {0, 1}. Each node is associated with a multi-
nomial Mult(πp) over latent groups or communities (here-
inafter, just “groups”), assuming a Dirichlet prior Dir(α)
1In this paper, we assume a directed graph for representing
the network structure, but the network structure can also
be easily applied to an undirected graph.

over multinomial parameters πp = {πp,g : g ∈ {1, · · · ,K}}.
Here, πp,g indicates node p’s multinomial parameter for any
group g ∈ {1, · · · ,K}, representing the probability that
node p falls into group g. Relationships between each pair of
groups are defined by matrix BK×K where each element rep-
resents a Bernoulli parameter with a Beta prior Beta(ψ).
Here, B(g, h) indicates the probability of generating a link
from an arbitrary node in group g to another arbitrary node
in group h. Given a link from p to q, indicator vector zp→q

represents a group assigned to p, and zp←q represents a
group assigned to q. These indicator vectors are denoted
by Z→ = {zp→q : p, q ∈ N} and Z← = {zp←q : p, q ∈ N}.
In accordance with the definitions above, the generative pro-
cess of MMSB can be described as follows.

1. For each node p:

• Draw a K-dimensional vector of multinomial pa-
rameters, πp ∼ Dir(α)

2. For each pair of groups (g, h):

• Draw a Bernoulli parameter, B(g, h) ∼ Beta(ψ(g, h))

3. For each pair of nodes (p, q):

• Draw an indicator vector for the initiator’s group
assignment, zp→q ∼ Mult(πp)

• Draw an indicator vector for the receiver’s group
assignment, zp←q ∼ Mult(πq)

• Sample a binary value that represents the pres-
ence or absence of a link, Y (p, q) ∼ Bern(zT

p→qBzp←q)

The joint distribution with all the random variables (full
joint distribution) is given as follows:

P (Y,π1:N ,Z→,Z←,B|α,Ψ)

= P (B|Ψ)
∏

p,q:p̸=q

P (Y (p, q)|zp→q, zp←q,B)P (zp→q|πp)

P (zp←q|πq)
∏

p

P (πp|α) (1)

A graphical model representation of the MMSB is shown in
Fig. 1.

3.2 Batch Gibbs Sampler
Next, we describe a batch Gibbs sampler for estimating

the latent variables and unknown parameters of an MMSB.
For an observed link from node p to node q, the full condi-
tional probability of assigning groups g and h to p and q,
respectively, is given by:

P (zp→q = g, zp←q = h|Y,Z¬(p,q)
→ ,Z¬(p,q)

← ,α,ψ)
∝ (n(p, g) − 1 + ∆(g′ ̸= g) + αg)(n(q, h) − 1 + ∆(h′ ̸= h)

+αh)
n(g, h, δ) − 1 + ∆(g′ ̸= g ∧ h′ ̸= h) + ψδ

n(g, h, 0) + n(g, h, 1) − 1 + ∆(g′ ̸= g ∧ h′ ̸= h) + ψ0 + ψ1

=
{
π
¬(p,q)
p,g π

¬(p,q)
q,h B(g, h)¬(p,q) (if δ = 1)

π
¬(p,q)
p,g π

¬(p,q)
q,h (1 −B(g, h)¬(p,q)) (if δ = 0)

(2)

where zp→q and zp←q are the latent random variable2 rep-
resenting group assignments to initiator node p and receiver
2In Section 3.1, we used an indicator vector zp→q where a
specific component is one, corresponding to the group indi-
cated by zp→q, and all the others are zero, for convenience.
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node q, respectively, as mentioned in the previous section.
n(p, g) indicates the count of g assigned to p. n(g, h, δ)(δ ∈
{0, 1}) indicates the count of presence (δ = 1) or absence
(δ = 0) of links, where any initiator node is assigned to g
and any receiver node is assigned to h. Moreover, αg indi-
cates g-th component of K-dimensional vector of Dirichlet
hyperparameter α. ψ1 and ψ0 indicate Beta hyperparam-
eters corresponding to the presence and absence of links,
respectively. “¬(p, q)” indicates ignoring the current group
assignment to the link from p to q. The indicator function
∆(·) takes one when the designated event occurs and zero if
otherwise. g′ and h′ indicate the groups currently assigned
to p and q, respectively.

In general, many kinds of real-world networks are sparse,
as can often be seen in social networks. Therefore, there are
often zero elements in the adjacency matrix Y. To avoid
bias due to this nature of networks, a sparsity parameter ρ
is sometimes introduced into Eq. (2), as in the work of [1]:

P (zp→q = g, zp←q = h|Y,Z¬(p,q)
→ ,Z¬(p,q)

← ,α,ψ)

∝
{

(1 − ρ)π¬(p,q)
p,g π

¬(p,q)
q,h B(g, h)¬(p,q) (if δ = 1)

(1 − ρ)π¬(p,q)
p,g π

¬(p,q)
q,h (1 −B(g, h)¬(p,q)) + ρ (if δ = 0)

(3)

where ρ is given by:

ρ = 1 −
∑
p,q

Y (p, q)
N(N − 1) (4)

By using the full conditional probability in Eq. (3), a col-
lapsed Gibbs sampler [6, 9] estimates latent variables and
unknown parameters of MMSB.

3.3 Particle Filter
Particle filters, also known as sequential Monte Carlo meth-

ods, are based on the weighted average of multiple parti-
cles [3, 2, 9]. Each particle estimates group assignments for
observed node pairs differently from the other particles in
accordance with the steps of the incremental Gibbs sam-
pler described in [9].The weight of each particle represents
its importance, which is updated by using the likelihood
of generating the observed link. When the variance of the
weight is larger than a predefined threshold referred to as ef-
fective sample size (ESS) threshold, resampling is performed
to make a new set of particles where the particles with negli-
gibly low weights are replaced by new particles copied from
those with higher weights. The simplest resampling scheme
draws particles from the multinomial specified by the nor-
malized weights [3]. After the resampling, the weights are
reset to P−1, where P indicates the number of particles.

The particle filter gives a posterior as:

Pparticle =
∑

k

(P (k) × ω(k)) (5)

where P (k) indicates the posterior given by k-th particle in
accordance with Eq. (3). ω(k) indicates the weight of the
k-th particle, which is proportional to the likelihood of gen-
erating observed links by using the particle. The incremental
Gibbs sampler [9] can be considered as a special case when
the number of particles is one.

4. ONLINE INFERENCE USING NODE AC-
TIVITIES

The structure of a real-world complex network often changes
over time, so old observations of links do not help and can
even harm the estimation accuracy. The previous online es-
timation methods in Section 3 have some drawbacks in such
dynamic settings. When a link from/to an unseen node is
observed, the previous online estimation methods assume
the absence of links between the unseen node and the other
nodes that were observed previously, except for the node
that is currently linked to/from the unseen node. Thus, they
assign groups to not only the pair of nodes that form the
observed link but also all the other nodes that were observed
previously. However, groups are sometimes inappropriately
assigned on the basis of this assumption since some of the
node pairs potentially have links that have no chance to be
observed. We take into account node activities to address
this problem, as detailed below.

4.1 Definition of Node Activities
We first define active nodes as those that were observed

to be linked to/from others during a period of observing
the most recent ℓ links, while all the other already observed
nodes are defined as inactive. We then assign groups on
the assumption that, when a link from/to an unseen node is
observed, the absence of links is also observed only to/from
the active nodes. Fig. 2 illustrates the flow of estimating
the group assignments by using the previous and proposed
methods. In this figure, a, b, · · · , d represents the links that
are observed in alphabetical order. When the presence of
a link is observed between a new node D and an already
observed node B at time t = 1, the previous methods assign
groups to the pair of nodes (D,B) and also to (D,A) and
(D,C), assuming that A and C had already been observed
by that time and that the absence of links is observed for
(D,A) and (D,C) at that time. On the other hand, in the
same situation, the proposed method assign groups to the
pair of nodes (D,B) and (D,C) but not (D,A) when C is
active (observed to have a link closely by that time) but A
is inactive (not observed to have had a link for a while).
When t = 2, groups are assigned on the same assumption.
In this way, the proposed methods assign groups only to
active nodes when a new node is observed, while the previous
methods assign groups to all the already observed nodes
in the same situation, regardless of whether the new node
is linked to/from the already observed nodes. Thus, the
proposed methods may work to avoid inappropriate group
assignments that are caused by the frequent observations of
absence of links, making model estimation more accurate.
In addition, since estimation of group assignments for non-
active nodes (treated as missing values) are not performed,
the computational cost can be expected to be reduced.

4.2 Particle Filter using node activities
By simply applying the node activities discussed in the

previous section, we can modify the particle filter described
in Section 3.3.

The node activities rely on a term length since the node is
deemed to be active if some activities are observed within the
term but inactive if otherwise. From this consideration, we
propose using a particle filter based on node activities with
various term lengths by setting a different term length for
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Figure 2: Illustration of how to estimate group assignments using previous non-activity-based methods (top)
and proposed activity-based methods (bottom) when ℓ = 1. Active nodes are shaded in this figure.

each particle. To calculate the final posterior for this particle
filter, we can use Eq. (5) in the same way of the particle filter
that is previously described in Section 3.3. Note that each
particle is now assumed to consider a different term length
to detect the node activities.

For instance, in an e-mail communication network, each
particle only considers e-mail accounts that sent or received
a message within a specific term length, where the length
may be different from those of other particles. This parti-
cle filter inference may be made more robust by considering
multiple terms for the node activities instead of uniformly
setting a fixed term length for every particle. We believe
that considering multiple terms for the node activities is
especially effective to track dynamical changes in network
structure over time. The node activities based on a long
term should work effectively when the network structure
is stable over time. When the network structure changes
drastically, the long-term node activities cause inappropri-
ate estimation, so the term should be shorter. Assuming a
realistic situation where we do not know the network dy-
namics in advance, this kind of diversity of particles should
work effectively for sequential (online) estimation. We as-
sume that a term length for each particle is sampled from a
Poisson distribution, as below:

ℓ ∼ Poisson(λ)

where λ is the Poisson mean parameter. A Gaussian can also
be used instead, but a Poisson is more appropriate since it
generates positive integers.

5. EXPERIMENTS
In this section, we evaluate our methods for the online

sequential estimation of a MMSB through experiments with
time-series network data. We then discuss both the predic-
tion performance and computational efficiency in time.

5.1 Settings

5.1.1 Datasets
We used two online communication datasets in our exper-

iments, since our ideas on node activities are expected to
work more effectively with such datasets.

Dataset A.
This dataset is extracted from an online community site

for students at the University of California, Irvine from April
to October 2004 [12]. A link is assumed to occur when a
message is sent from one user to another. The number of
nodes is 1,899.

Dataset B.
This dataset is extracted from the Enron e-mail commu-

nication archive [8] from December 1999 to March 2002 and
further cleaned so that only the users (i.e., e-mail addresses)
who sent and received at least seven e-mails are included [9].
Each node represents an e-mail address, and each link rep-
resents an e-mail communication from a sender to a receiver
with a time stamp. The number of nodes is 2,356.

Cross-validation settings.
To use five-fold cross-validation, we divided a set of obser-

vations (i.e., presence of links) in each dataset evenly into
five sets. We further divided each set into a test set and a
validation set and used the remaining four sets as training
sets Since we estimated a model in an online setting, we
used the observations sequentially within the training set.
We determined the number of groups and hyperparameters
by a grid search using the training and validation sets. We
then evaluated the estimation methods using the test set.
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Table 1: Average increase rate of test-set log-likelihood and its sample standard deviation for particle filters
with Datasets A and B.

Dataset Dataset A Dataset B
Activity-based (fixed-term) 0.0373 ± 0.0046 0.0321 ± 0.0055

Activity-based (Poisson) 0.0420 ± 0.0043 0.0326 ± 0.0037
Non-activity-based (baseline) (0.0000 ± 0.0000) (0.0000 ± 0.0000)

5.1.2 Number of groups and hyperparameters
Before detailing the online experiments, we describe how

we set the number of groups K and hyperparameters α,
ψ0 and ψ1. We determined the number of groups K by
using a grid search over {5, 10, 15, · · · , 40} in a batch setting,
resulting in K = 10 for Dataset A and K = 30 for Dataset
B. We also determined ψ0 and ψ1 in the manner above. For
α, we used the symmetric Dirichlet hyperparameter fixed at
0.1. For a fair comparison, these settings are determined in
the same manner used by [9].

For our proposed activity-based method, we determined
the term ℓ = 60 for Dataset A and ℓ = 30 for Dataset B
and the Poisson mean parameter λ = 70 for Dataset A and
λ = 60 for Dataset B by doing a grid search, but the details
are omitted due to limitations of space. In these experiments
with particle filters, we determined the ESS threshold by
doing a grid search over {4, 8, 12, 16, 20}, fixing the number
of particles to 24.

5.1.3 Inference Methods
First, for estimating MMSB in online settings, we compare

our activity-based method and non-activity-based method
as the number of particles is one. Then, we compare two
versions of the proposed activity-based particle filter.

5.1.4 Evaluation metrics
We evaluate the prediction performance using the aver-

age value of the rate of change of the test-set log-likelihood.
The likelihood of the test set stest indicates how effectively
the model predicts unseen data at time interval t using the
model estimated with observed data by t − 1 and is given
by:

p(s(t)
test) =∏

(p,q)∈s(t)
test

∑
g,h

[
(1 − ρ(t−1))π(t−1)

p,g π
(t−1)
q,h B(g, h)t−1

]δ(p,q)

[
(1 − ρ(t−1))π(t−1)

p,g π
(t−1)
q,h (1 −B(g, h)t−1 + ρ(t−1)

]1−δ(p,q)

(6)

where δ(p, q) ∈ {1, 0} represents the presence or absence of
a link from node p to node q. ρ is the sparsity parameter,
as defined in Eq. (4). Multinomial parameters πp,g and πq,h

and Bernoulli parameter B(g, h) are estimated using Eq. (3)
using the observations by time t− 1. Given a discrete-time
series network at t ∈ {1, ..., T}, the average increase rate of
test-set log-likelihood is

1
T

T∑
t=1

X(t) − I0(t)
|I0(t)| (7)

where X(t) represents test-set log-likelihood that has the
target inference algorithm at time interval t. I0(t) represents
test-set log-likelihood that is the baseline at t. Here, the
baseline is set to the particle filter with P = 1 at t in our
experiments. The larger the average increase rate of test-
set log-likelihood, the better the target method’s prediction
performance compared with the baseline.

5.1.5 Experimental environment
All the experiments in this paper were performed on a

server with 48 gigabytes of memory and 12 CPU cores(24
threads). Also, we used C++ for implementation.

5.2 Results
In this section, we show the experimental results using the

datasets described previously in terms of prediction perfor-
mance and computational efficiency in time.

5.2.1 Results of the estimation time using node ac-
tivities

We first evaluate the time required for the model estima-
tion with particle filter when P = 1. Fig. 3 demonstrates the
time for estimation with each method in time-series plots for
Datasets A and B. As shown in these graphs, the proposed
activity-based method needed less time for estimation than
the previous non-activity-based one. This indicates that
the proposed method improves computational efficiency in
time by considering the node activities. Furthermore, the
proposed method brought about a larger improvement for
Dataset B than for Dataset A. This is because the proposed
method works more efficiently when the number of observed
links is larger and so the number of newly observed nodes
is also larger, as in Dataset B. This indicates that the pro-
posed method can reduce the time for model estimation for
a larger-scale network.

5.2.2 Results of particle filter using node activities
Next, we evaluated the particle filter based on the node ac-

tivities with a fixed term length and that with various term
lengths. Table 1 shows the prediction performance results
of the proposed activity-based particle filters for Datasets A
and B. In this table, ‘Activity-based (Poisson)’ indicates the
particle filter described in Section 4.2 and ‘Activity-based
(fixed-term)’ indicates the particle filter using the fixed-term
node activities. The baseline is the previous non-activity-
based particle filter with P = 1 described in Section 3.3,
as mentioned previously. As can be seen in Tables 1, the
node activities are helpful for the particle filter inference.
Moreover, the particle filter using the node activities with
various term lengths works more effectively than that using
the fixed-term node activities. From these results, such di-
verse particles achieve robust sequential (online) estimation,
especially for dynamic networks.
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(a) Dataset A (b) Dataset B

Figure 3: Evaluation results on the time for estimation in time series plots for Datasets A and B.

From the two evaluations above, the proposed methods
are better than the previous methods in terms of both the
prediction performance and the estimation time.

6. CONCLUSIONS
In this paper, we proposed using a particle filter for an on-

line sequential estimation of MMSB by considering node ac-
tivities to track dynamical changes in network structure over
time. We used two datasets in our experiments and evalu-
ated the proposed activity-based methods in terms of pre-
diction performance and computational efficiency. In terms
of prediction performance, the proposed methods were bet-
ter than the previous non-activity-based methods. In terms
of computational efficiency, the proposed methods reduced
the cost in estimation time compared with the baselines.

Evaluation under more practical situations are left for fu-
ture work. Another direction for future work is to apply
our ideas to various types of statistical network models. We
are especially interested in online sequential estimation of
nonparametric relational models, such as a Latent Feature
Relational Model (LFRM) [10].
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