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ABSTRACT
Exploring demographics and social networks of Internet users are
widely used for many applications such as recommendation sys-
tems. The popularity of mobile devices (e.g., smartphones) and
location-based Internet services (e.g., Google Maps) facilitates the
collection of users’ locations over time. Despite recent efforts to
predict users’ attributes (e.g., age and gender) and social networks
based on utilizing the rich location context knowledge (e.g., name,
type, and description) of places of interest (e.g., restaurants and ho-
tels) they checked-in on location-based online social networks such
as Foursqure and Gowalla, little attention has been given to infer-
ring attributes and social networks of mobile device users based
on their spatiotemporal trajectories with less/no location context
knowledge. In this paper we collect logs of thousands of mobile
devices’ network connections to wireless access points (APs) of
two campuses, and investigate whether one can infer mobile device
users’ demographic attributes and social networks solely from their
spatiotemporal AP-trajectories. We develop a tensor factorization
based method Dinfer to infer mobile device users’ demographic at-
tributes from their AP-trajectories by leveraging prior knowledge,
such as users’ social networks. We also propose a novel method
Sinfer to learn social networks between mobile device users by ex-
ploring patterns of their AP-trajectories, such as fine-grained co-
occurrence events (e.g., co-coming, co-leaving, and co-presenting
duration). Experimental results on real-word datasets demonstrate
the effectiveness of our methods.
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1. INTRODUCTION
In today’s digital big data era, human activities on a variety of

domains have been collected and monitored. For example, people’s
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webpage browsing, shopping, video viewing, and music listening
behaviors on the Internet can be easily collected by providers of
web services such as webpage search engines, e-commerce, video,
and music websites. These collected user activities facilitate service
providers to better understand/profile their users, which is crucial
for many applications such as target advertising, business recom-
mendation, and counter-criminal/terrorists. It has revealed that ser-
vice providers can infer their users’ demographic attributes such as
age and gender from the users’ Internet browsing history [22], lin-
guistics writing [11], mobile call/message records [8,9], music lis-
tening history [18], purchase data [27], and available demographic
attributes of their friends on online social networks (OSNs) such as
Facebook and LinkedIn [21], even though the users do not intend
to reveal their attributes to the service providers.

Recently, mining people’s locations over time attracts a lot of at-
tention due to the popularity of mobile devices (e.g., smartphones)
and location-based Internet services such as navigation applications
(e.g., Google Maps and Uber) and location-based online social net-
works (in short, location-based OSNs, e.g., Instagram and Fou-
rsquare). For example, mobile devices such as smartphones and
smartwatches can be precisely located outside/inside buildings by
current/near-future positioning techniques, which precisely infer the
locations of mobile devices using multiple information such as built-
in sensors (e.g., GPS and barometers) of mobile devices and the
location and signal strength of connected wireless access points
(APs)/cell-phone towers. This leads to mobile device users’ spa-
tiotemporal trajectories explicitly or implicitly exposed to third par-
ties. For example, people may enable map services to retrieve their
GPS locations automatically, and may also explicitly distribute geo-
tagged posts (e.g., tweets and photos) or check-in places of interest
(POIs) on OSNs. In addition, users’ trajectories may also be ex-
posed implicitly even though users do not intend to reveal their lo-
cations. For example, banks and mobile phone service providers
can learn users’ spatiotemporal trajectories from collected credit-
card and telecommunication transactions respectively. The collec-
tion of a large number of users’ spatiotemporal trajectories facili-
tates the study of research topics such as urban planning, congestion
prediction, and point-of-interest recommendation in smart cities.

In this paper, we are interested in testing whether one can infer
mobile device users’ demographic attributes and social networks
from their spatiotemporal trajectories. Existing work [30] learns
users’ attributes from their check-in POIs on location-based OSNs
such as Facebook, Foursquare, Yelp. The method relies on POIs’
rich semantic features such as categories, user reviews, and descrip-
tions. However, in practice the semantic features of locations may
not be publicly available. For example, daily activities of most col-
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lege students and faculties may be centered in campuses. Third par-
ties now or in the near future may be able to collect fine-grained in-
door spatiotemporal trajectories of persons on campus but fail to get
the fine-grained context (e.g., library and gym) of a place on cam-
pus, because a building may have different functional areas (e.g.,
research lab and restaurant) and the context of each building/place
on campus may not be publicly available on the Internet. In ad-
dition to demographic attributes, we also study the problem of pre-
dicting mobile device users’ close friends from their spatiotemporal
trajectories. Existing methods [4–6,24,26,29] mine friendships and
infer social strengths mainly from co-coming events between users,
e.g., check-in records on OSNs, because most location-based OSNs
record the time of users’ check-ins but not check-outs (In practice,
users check-in at POIs on location-based OSNs but never check-
out).

To the best of our knowledge, our work is the first attempt to infer
users’ attributes by utilizing AP-trajectories without location con-
text knowledge. Moreover, we study three types of fine-grained co-
occurrence events: co-coming, co-leaving, and co-presenting dura-
tion, and observe that these fine-grained events are effective and
complementary to each other for predicting friendships between
mobile device users. Our contributions are summarized as:
• We conduct an in-depth measurement study on spatiotemporal
trajectories of 52 thousand mobile devices on two campuses, which
are revealed by their network connections to wireless APs.
• We develop a tensor factorization based learning method Dinfer
to infer mobile device users’ attributes from their AP-trajectories
by leveraging user social networks, which could be learned from
users’ spatiotemporal trajectories.
•We use pointwise mutual information (PMI) to evaluate whether a
fine-grained co-occurrence happens by chance or it is a social event,
and propose an effective method Sinfer to learn social networks of
mobile device users by exploring their fine-grained co-occurrence
events.

The rest of this paper is organized as follows. Section 2 describes
our datasets. Section 3 presents our measurement study of micro-
and macro-statistics of mobile devices’ AP-trajectories. Sections 4
and 5 present our methods Dinfer and Sinfer for learning demo-
graphic attributes and social networks of mobile device users from
their spatiotemporal AP-trajectories. Section 6 presents the perfor-
mance evaluation and testing results. Section 7 summarizes related
work. Concluding remarks then follow.

2. DATASETS
In this section, we introduce the datasets used in this paper. Our

work strictly follows the ethical guidelines. To avoid ethical con-
cerns, we have anonymized mobile users’ identity information such
as netIDs and mobile devices’ MAC (Media Access Control) ad-
dresses in the datasets. We will make the datasets publicly avail-
able.

2.1 Spatiotemporal Data: AP-Trajectories
From May 03 to July 15, 2015, we poll all APs in Campuses

A and B regularly (every 5 minute) and collect information (e.g.,
MAC addresses) of their connected mobile devices via SNMP (Sim-
ple Network Management Protocol). Based on this dataset, we can
determine whether a mobile device connected to an AP during a
time interval. Campus A with a gross floor area of 0.4 km2 and
Campus B with a gross floor area of 0.07 km2 have 2,283 and 362
APs respectively. For both campuses, each AP covers an area of
about 100 m2 in buildings. During the 74 days, there exist 29,618
and 22,285 active mobile devices on the Internet for Campuses A

and B respectively. On average, a mobile was 21 (20) days active,
and connected to 54 (38) APs in Campus A (B) respectively.

2.2 Ground Truth I: Device-NetID Networks
In our dataset, we observe that a NetID (user’s token) may ap-

pear on multiple mobile devices, and also more than one NetID
may appear on a mobile device. This happens because a person
may have more than one mobile device, and may also release its
NetID to its close friends for sharing its network usage quota. We
observe that 40% and 37% of NetIDs are used in more than one
mobile device, and 42% and 39% of mobile devices have more
than one NetID used. In this paper, we define two NetIDs are
“ID_sharing_friends" when they both appeared on at least one
same mobile device. We use ID_sharing_friends as a ground truth
to evaluate the performance of our method (i.e., Sinfer in Section 4)
for close friendship inference.

2.3 Ground Truth II: Demographics
We obtain a dataset of NetIDs’ genders and social roles (i.e., un-

dergraduate student, graduate student, and faculty) from the infor-
mation center of Campuses A and B, and use the dataset as the
ground truth to evaluate the accuracy of our method for inferring
demographic attributes of mobile network users. When more than
one NetID appeared on a mobile device, we select the NetID most
frequently used on the mobile device, and then retrieve the NetID’s
demographic attributes as the mobile device’s user attributes. A
summary of persons’ demographics is shown in Table 1.

Table 1: Statistics of persons on Campus A (B).
#devices #NetIDs

Male 9,364 (5,095) 4,797 (3,212)
Female 20,254 (17,190) 12,038 (10,307)

Undergraduate 21,136 (18,663) 12,982 (11,328)
Graduate 3,630 (1,237) 2,409 (987)
Faculty 4,852 (2,385) 1,444 (1,214)

Total 29,618 (22,285) 16,835 (13,529)

2.4 Ground Truth III: Affiliation Information
Persons on campus with following relationships tend to have

strong social connections: 1) students in the same class; 2) stu-
dents enrolled at school at the same year and affiliated to the same
department; 3) faculties in the same department. Based on these
observations, we collect the affiliation information of all NetIDs
appeared in our datasets. This data is used as another ground truth
for evaluating the accuracy of our method (i.e., Sinfer in Section 4)
for learning social networks of mobile device users. Mobile devices
collected on Campus A belong to users (or, NetIDs) from 21 depart-
ments and 812 undergraduate classes. On average, a department of
Campus A has 618 undergraduate students, 115 graduate students,
and 69 faculties, and an undergraduate class has 16 students. Mo-
bile devices collected on Campus B belong to users from 21 depart-
ments and 804 undergraduate classes. On average, a department of
Campus B has 539 undergraduate students, 47 graduate students,
and 58 faculties, and an undergraduate class has 14 students.

3. MEASUREMENT STUDIES
In this section, we study macro- and micro-statistics of mobile

devices’ AP-trajectories. Intuitively, persons on campus with the
same demographic attributes (such as gender, major, and social
role) tend to exhibit similar macroscopic events such as visiting
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Figure 1: (Campus A) A single user’s average login counts for
each day/hour in the week/day.

places in common. In addition, microscopic behaviors such as co-
coming, co-leaving, and co-presenting at a place are strong indica-
tors of close relationships between people. Next, we describe our
observations in detail.

3.1 Macroscopic observations
Observation 1. Macroscopic features are useful for demographic
inference. To some extent, a user’s login count (i.e, the number of
logins) reflects whether it moves frequently or not in campus, be-
cause Campuses A and B allow mobile devices to automatically
connect and login to APs near to their current locations. Fig. 1
plots the average login counts of users on Campus A for each day
in the week and each hour in the day. We observe: 1) woman
moves more frequently than man; 2) undergraduate students move
more frequently than graduate students and faculties; 3) compared
to graduate students, faculties move more frequently on weekdays
but less frequently on weekends. Here we omit the similar results
for Campus B. This observation indicates that macro-statistics of
AP-trajectories are useful features for predicting user attributes.
Observation 2. ID_sharing_friends tend to have the same de-
mographics. We study the homophily between ID_sharing_friends’
attributes such as gender, social role, department, grade, and class,
where we say two friends are homophily when they have the same
attribute of interest. Among all friend pairs of campus A (B), we
observe that 81% (96%) are gender homophily, 91% (95%) are so-
cial role homophily, 84% (85%) are department homophily, 77%
(85%) are grade homophily, and 57% (69%) are class homophily.
This observation indicates that social networks of mobile device
users are helpful for predicting user attributes.
Observation 3. Macroscopic features of AP trajectories are
not sufficient for identifying friendship relationships. We test
whether it is accurate to identify friendship relationships by directly
comparing similarities between macroscopic features of mobile de-
vices’ AP-trajectories. We define a macro-trajectory matrix, where
the matrix’s element (i, j) records the average number of times the
device connected the j-th AP during the i-th hour in the week,
where 1 ≤ i ≤ 7 × 24. We concatenate the elements in each mo-
bile device’s macro-trajectory matrix into a one-dimensional fea-
ture vector. To evaluate the similarity between two mobile de-

Table 2: (Campus A, undergraduate students) Fraction of
friends among Top-20 most similar mobile device users identi-
fied based on macroscopic features. Sinfer is our method based
on microscopic features, which will be introduced in Section 5.

feathures&method ID_sharing_friends classmates

macroscopic&cosine 19.35% 29.07%
macroscopic&Jaccard 17.69% 23.59%
microscopic&Sinfer 27.48% 58.93%

vices’ macro-trajectories, we use two similarity metrics: cosine
similarity and Jaccard similarity, which are defined as v1·v2

∥v1∥∥v2∥
and v1·v2

∥v1∥2+∥v2∥2−v1·v2
respectively. For mobile devices belong-

ing to undergraduate students, we compute their Top-20 most sim-
ilar mobile devices. Table 2 shows the distribution of these Top-
20 mobile device users. On average, two similarity metric based
methods identify only 18.52% of ID_sharing_friends and 26.33%
of classmates for each user. In contrary, our microscopic features
based method Sinfer, which will be introduced in Section 5, is more
effective for close friendship inference.

3.2 Microscopic observations
In this subsection, we study AP trajectories’ microscopic fea-

tures, including co-coming, co-leaving, and co-presenting events,
and observe that these fine-grained co-occurrence events are effec-
tive for identifying close relationships between mobile device users.
Existing studies [5,24,26] focus on inferring friendships between
users based on their check-in records on location-based OSNs. For
example, a check-in record (u, x, t) indicates that a user u checked
in at POI x at time t. However, the exact leaving time of u at POI
x is not clear for location-based OSNs, which provides important
information for friendship inference.
Observation 4. Co-coming, co-leaving, and co-presenting du-
ration are all strong close relationship indicators. For birthday
parties, as an example, friends may not come to or leave prear-
ranged places simultaneously. For this case, all of co-coming, co-
leaving, and co-presenting events are strong close relationship indi-
cators. Fig. 2 plots the fraction of user pairs having at least one co-
occurrence event and the average number of co-occurrence events.
We observe that: 1) the pairs of users with stronger relationships
(e.g., ID_sharing_friends and classmates) tend to have more occur-
rence events. For example, ID_sharing_friends and classmates have
more occurrence events than pairs of users selected randomly. 2) all
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Figure 2: (Campus A) Statistics of co-occurrences for pairs
of users selected from different sets (e.g., ID_sharing_friends,
classmates, and persons in the same department), where abbre-
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co-presenting respectively.
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of co-coming, co-leaving, and co-presenting duration are helpful
for predicting users’ close relationships.
Observation 5. Co-coming, co-leaving, and co-presenting are
complementary to each other for indicating close relationships
between mobile device users. Among 153 thousand friend pairs
(including ID_sharing_friends and classmates) having co-presenting
events in Campus A, 64.3% have co-coming events, 65.2% have co-
leaving events, and 23.8% have neither co-coming nor co-leaving
events. Among friend pairs having co-coming events, 17.2% have
no co-leaving events. In contrary, among friend pairs having co-
leaving events, 18.4% have no co-coming events. The results of
Campus B are similar. The above results indicate that co-coming,
co-leaving, and co-presenting are complementary to each other for
friendship inference.

4. DINFER: LEARN DEMOGRAPHICS
Formally, we formulate the demographic inference problem as:

Given AP-trajectories of all mobile devices u1, . . . , um and user
demographics (such as gender and social role) of a set of train-
ing mobile devices {ui : i ∈ Ωtrain}, our goal is to automatically
infer user demographics of remaining mobile devices {ui : i ∈
{1, . . . ,m} \Ωtrain}. In this section, we introduce a method Dinfer
to solve this problem. The framework of Dinfer is shown in Fig. 3.
The center part of Fig. 3 represents the modeling of macro-statistics
of AP-trajectories, where we use a tensor X to model spatial and
temporal distributions of all mobile devices’ AP-trajectories, and
factorize tensor X into three matrices U, V, and T, which are low-
rank latent representations of mobile devices, APs, and time slots
respectively. As shown in the lower part of Fig. 3, we pose a con-
straint on U, which is a Laplacian regularization L that is learned
from social networks GMD of mobile devices. GMD is learned from
micro-statistics of mobile devices’ AP-trajectories by Sinfer in Sec-
tion 5, where two mobile devices belong to close friends or the
same person are connected in GMD. Finally, mobile device users’
demographics are learned from their latent representations U via a
supervised classifier.

4.1 Modeling Information of Locations
We use a tensor X ∈ Rm×n×h to denote the information of

users’ AP-trajectories, where tensor element X (i, j, k) is defined
as the total time of the i-th mobile device connected to the j-th AP
during the k-th time slot, 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ h.
As alluded, X is very sparse. Inspired by previous work on topic
modeling [1], we observe that a mobile user may focus on a few
topics, which results in X very sparse and low-rank. To solve this
problem, we model mobile devices’ trajectory information from the
latent topic level. Inspired by the non-negative matrix factorization
(NMF) model [3,14], we propose a non-negative tensor factoriza-
tion (NTF) model to factor X into three lower-dimension matrices
U, V, and T in order to get a more compact but accurate latent rep-
resentation of mobile devices by solving the following optimization
problem:

min
U,V,T≥0

OTRA = ∥X − X̂∥2 (1)

with X̂ = JU,V,TK ≡∑r
j=1 u:j ◦ v:j ◦ t:j , where U ∈ Rm×r ,

V ∈ Rn×r , and T ∈ Rh×r are non-negative factor matrices to be
learned, J·K is a short-hand notation of the sum of rank-one tensors,
◦ represents the vector outer product, and u:j , v:j , and t:j are the
j-th columns of matrices U, V, and T respectively. U, V, and T
are representations of mobile devices, APs, and time slots in a latent
space. The flexibility of NTF model allows us to incorporate prior
knowledge such as social networks of mobile device users into this
model, which will be introduced in later subsections.
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Figure 3: Overview of our method for learning social networks
and demographics of mobile users. Social networks are learned
by our method Sinfer in Section 5.

4.2 Modeling Social Network Information
We build a graph GMD to model social networks of mobile de-

vices u1, . . . , um. Each node in GMD represents a mobile device,
and there exists an edge (ui, uj) in GMD when two different mobile
devices ui and uj are friends, 1 ≤ i, j ≤ m. Let A ∈ Rm×m

denote the adjacency matrix of GMD, i.e., A(i, j) = 1 when ui and
uj are connected, and A(i, j) = 0 otherwise. We let A(i, i) = 0.
Denote ui (i.e., the i-th row of matrix U) as the representation of
ui, 1 ≤ i ≤ m. In reality, close friends tend to have same attributes
such as ages and genders. It indicates that connected nodes in GMD

also tend to have the same labels (e.g., gender and social role) of
interest. To model this knowledge, we use graph Laplacian, which
produces similar representations ui and uj for two connected mo-
bile devices ui and uj . Formally, we formulate it as minimizing the
following loss function:

OGMD =
1

2

m∑
i=1

m∑
j=1

∥ui − uj∥2A(i, j). (2)

The above loss function OGMD incurs a penalty ∥ui − uj∥2 when
two connected ui and uj have different representations ui and uj .

Let D ∈ Rm×m denote a diagonal matrix, and its diagonal el-
ement is the degree of a mobile device in the adjacency matrix A,
i.e., D(i, i) =

∑m
j=1 A(i, j). Let L = D−A, and then we rewrite

eq. (2) as

OGMD =

m∑
i=1

m∑
j=1

(uiA(i, j)uT
i − uiA(i, j)uT

j ) = Tr(UTLU).

4.3 Learning User Representation
By considering both of the above two types of information, we

formulate the task of learning latent representations of mobile de-
vice users as the following optimization problem:

min
U,V,T≥0

O = ∥X − JU,V,TK∥2︸ ︷︷ ︸
OTRA

+αTr(UTLU)︸ ︷︷ ︸
OGMD

(3)

+γ (∥U∥2 + ∥V∥2)︸ ︷︷ ︸
regularization

,
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where the first term is to introduce AP-trajectories’ macro-statistics,
the second term is to consider social networks of mobile device
users, and the third term is for regularization to avoid overfitting. α
and γ are the trade-off parameters that control the effects of social
networks and regularization terms respectively.

There is no close-form solution for the optimization problem (3).
To solve this problem, we propose a multiplicative update algorithm
to find optimal solutions for variables U, V, and T based on Oja’s
iterative learning rule [23,28]. The basic idea behind the multiplica-
tive update algorithm is to optimize the objective O with respective
to one variable while fixing the other. We keep updating the vari-
ables U, V, and T until convergence or reaching the number of
maximum iterations. Next, we introduce the algorithm in detail.
Let Φ ∈ Rm×r , Ψ ∈ Rn×r , and Υ ∈ Rh×r be the Lagrange
multipliers for constraints U ≥ 0, V ≥ 0, and T ≥ 0 respectively.
The Lagrange function J is defined as

min
U,V,T≥0

J =∥X − JU,V,TK∥2 + αTr(UTLU)

+ γ(∥U∥2 + ∥V∥2 + ∥T∥2)

− Tr(ΦUT)− Tr(ΨVT)− Tr(ΥTT).

1) Computation of U. For a third-order tensor X of size m ×
n×h, the mode-1, mode-2, and mode-3 matricizations turn X into
matrices X(1) of size m×(nh), X(2) of size n×(mh), and X(3) of
size h×(mn), by mapping tensor elementX (i1, i2, i3) to elements
(i1, j1), (i2, j2), and (i3, j3) in X(1), X(2), and X(3) respectively,
where

j1 = 1 + (i3 − 1)n, j2 = 1 + (i3 − 1)m, j3 = 1 + (i2 − 1)m.

When V and T are fixed, we have

min
U≥0
∥X − JU,V,TK∥2 = min

U≥0
∥X(1) −U(T⊙V)T∥2,

where⊙ represents Khatri-Rao product. Then, the derivative ∂J
∂U

is
computed as

∂J
∂U

=− 2X(1)(T⊙V) + 2U(T⊙V)T(T⊙V)

+ 2αLU+ 2γU−Φ.

Based on the properties of Khatri-Rao product [25], we have (T⊙
V)T(T ⊙ V) = TTT ∗ VTV, where ∗ represents Hamamard
product. By setting the derivative ∂J

∂U
= 0, we then have

Φ = −2X(1)(T⊙V) + 2U(TTT ∗VTV) + 2αLU+ 2γU.

Based on the Karush-Kuhn-Tucker complementary condition [2]
for the nonnegativity constraint of U, we obtain

Φ(i, j)U(i, j) = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ z.

Thus, we have

[−X(1)(T⊙V)+U(TTT∗VTV)+αLU+γU](i, j)U(i, j) = 0.

The Laplacian matrix L may take any signs, so we decompose L
into the positive part L+ and the negative part L−, i.e., L = L+ −
L−. For any 1 ≤ i, j ≤ m, L+(i, j) equals L(i, j) when L(i, j) >
0, and 0 otherwise; L−(i, j) equals −L(i, j) when L(i, j) < 0,
and 0 otherwise. By the definition of L = D−A, we easily obtain
L+ = D and L− = A. Similar to [7], we have the following
multiplicative updating rule of U:

U(i, j)← U(i, j)

√
[X(1)(T⊙V) + αAU](i, j)

[U(TTT ∗VTV) + αDU+ γU](i, j)
.

2) Computation of V and T. Similarly, we have the following
multiplicative updating rules of V and T:

V(i, j)← V(i, j)

√
[X(2)(T⊙U)](i, j)

[V(TTT ∗UTU) + γV](i, j)
,

T(i, j)← T(i, j)

√
[X(3)(V ⊙U)](i, j)

[T(VTV ∗UTU) + γT](i, j)
.

We can easily find that the above three multiplicative update rules
maintain the nonnegativity of U, V, and T for initial nonnegative
matrices U, V, and T. Similar to [7], we observe: (I) U(i, j) in-
creases when [X(1)(T⊙V)+αAU](i, j) > [U(TTT∗VTV)+

αDU+γU](i, j), i.e., ∂O
∂U

(i, j) < 0, and decreases otherwise; (II)
V(i, j) increases when ∂O

∂V
(i, j) < 0, and decreases otherwise;

(III) T(i, j) increases when ∂O
∂T

(i, j) < 0, and decreases other-
wise. Therefore, there exist two kinds of stationary points in the
iterative use of the multiplicative updating rules of U, V, and T:
One satisfies ∂O

∂U
= 0, ∂O

∂V
= 0, and ∂O

∂T
= 0, which are the station-

ary points of the objective function O; The other is U(i, j) → 0,
V(i, j)→ 0, and T(i, j)→ 0, which yields sparsity in U, V, and
T respectively. Formally, the correctness and convergence of the
multiplicative updating rules of U, V, and T can be proven with the
standard auxiliary function approach [7,12,15]. The computational
complexity of Dinfer can be shown to be O(mnhr) per iteration.
One can use distributed computing systems such as GraphLab [19]
to accelerate the three multiplicative updating rules’ matrix mul-
tiplication operations. At last, we learn a supervised model (e.g.,
SVM or LR) based on labeled mobile device users and their latent
features learned, and use this model to predict unlabeled mobile
device users’ attributes.

5. SINFER: LEARN SOCIAL NETWORKS
In this section, we introduce a Pointwise Mutual Information

(PMI) based method Sinfer for learning social networks of mobile
devices. PMI has been widely used for measuring the semantic
similarity between words. For example, word2vector [20], an ef-
fective tool for embedding words into a low-dimensional space and
evaluating the similarity between words, is known to be equivalent
to factorizing a word-word PMI matrix [16]. Inspired by this, we
define the following three new PMI metrics to evaluate the close-
ness between mobile devices from their co-coming, co-leaving, and
co-presenting events:
PMI of Co-Coming Events. To formally describe our method,
we first introduce some notations. Let f (c)

v (u) be the number of
times a device u logins to AP v, and f (c)

v (ui, uj) be the number of
times devices ui and uj co-come at AP v, The probability that a
randomly picked co-coming event at AP v belongs to device u is

p(c)
v (u) =

f (c)
v (u)∑

x∈U f (c)
v (x)

, and the probability that a randomly picked

co-coming event at AP v belongs to the pair of devices ui and uj

is p(c)
v (ui, uj) =

2f (c)
v (ui,uj)∑

x,y∈U f (c)
v (x,y)

. To evaluate the closeness be-

tween devices ui and uj , we compute the PMI of their co-coming

events at AP v as pmi(c)
v (ui, uj) = log

p(c)
v (ui,uj)

p(c)
v (ui)p

(c)
v (uj)

. The value

of pmi(c)
v (ui, uj) reflects a co-coming event of ui and uj at AP v

happens by chance or it is a social event. For example, when ui and
uj both frequently appear at place v but have only one co-coming
event at place v, then pmi(c)

v (ui, uj) is small and it indicates that a
co-coming event of them at place v is probably a coincidence. In
contrary, when ui and uj seldom appear at place v but have a num-
ber of co-coming event at place v, then pmi(c)

v (ui, uj) is large and
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it indicates that a co-coming event of them at place v is probably a
social event.
PMI of Co-Leaving Events. Similarly, let f (l)

v (ui, uj) be the num-
ber of times devices ui and uj co-leave at AP v, and f (l)

v (u) be the
number of times a device u logouts of AP v. Denote by p(l)

v (ui, uj) =
2f (l)

v (ui,uj)∑
x,y∈U f (l)

v (x,y)
and p(l)

v (u) =
f (l)
v (u)∑

x∈U f (l)
v (x)

. We define the PMI of

co-leaving events of devices ui and uj at AP v as pmi(l)
v (ui, uj) =

log
p(l)
v (ui,uj)

p(l)
v (ui)p

(l)
v (uj)

.

PMI of Co-Presenting Events. Let t(p)
v (ui, uj) and f (p)

v (ui, uj) be
the total duration and the number of times two devices ui and uj

co-present at AP v, and t(p)
v (u) be the total duration of a device u

presents at AP v. At a randomly picked time, the probability that

device u presents at AP v is p(p)
v (u) =

t(p)
v (u)∑

x∈U t
(p)
v (x)

, and the prob-

ability that devices ui and uj co-present at AP v is p(p)
v (ui, uj) =

2t(p)
v (ui,uj)∑

x,y∈U t
(p)
v (x,y)

. We define the PMI of co-presenting events of de-

vices ui and uj at AP v as pmi(p)
v (ui, uj) = log

p(p)
v (ui,uj)

p
(p)
v (ui)p

(p)
v (uj)

.

Based on the above PMI metrics, we use all three kinds of co-
coming, co-leaving, and co-presenting events, and compute the close-
ness between mobile devices ui and uj as

closeness(ui, uj) =
∑

f (c)
v (ui,uj)>0,v∈V

f (c)
v (ui, uj)pmi(c)

v (ui, uj)

+
∑

f (l)
v (ui,uj)>0,v∈V

f (l)
v (ui, uj)pmi(l)

v (ui, uj)

+
∑

t
(p)
v (ui,uj)>0,v∈V

f (p)
v (ui, uj)pmi(p)

v (ui, uj).

6. EXPERIMENTS

6.1 Experimental Settings
Data and Evaluation. We use the dataset of AP-trajectories of mo-
bile devices on Campuses A and B introduced in Section 2 to infer
mobile device users’ close friends and demographic attributes in-
cluding gender (i.e., male/female) and social roles (i.e., undergradu-
ate/graduate/faculty). To infer mobile device users’ social networks
and demographic attributes effectively and accurately, we only con-
sider active mobile devices who have at least fifty AP login records
in the 74 days we collected. Campuses A and B have 21,207 and
13,353 active mobile devices respectively. For learning mobile de-
vice users’ demographic attributes, similar to [9], we consider each
class in genders or social roles is as important as each other, and
use weighted Precision, Recall, and macro-F1 (in short, wPreci-
sion, wRecall, and wF1) as evaluation metrics. We repeat the ex-
periment 100 times and report the average performance in terms of
wPrecision, wRecall, and wF1.
Other State-of-The-Art Algorithms. For inferring mobile device
users’ social networks, we compare our method Sinfer with the
state-of-the-art method:
• EBM [24] is an entropy-based method for learning social strength
between users from check-in records on location-based OSNs. The
design of EBM is mainly inspired by two observations: 1) people
are more likely be friends when their co-occurrences happened at
diverse places. 2) co-occurrences at popular places happen more
likely by chance than those at private places.

For predicting mobile device users’ demographics, we compare
the performance of our method Dinfer with the state-of-the-art meth-
ods S and ST [30], which are described as follows:

• Spatiality-based method (S) only considers spatial information,
i.e., a mobile device’s features consist of the log of logins at dif-
ferent APs. Similar to Dinfer, S learns supervised classifiers using
extracted AP-trajectory features to predict unknown mobile device
users’ demographic attributes.
• Spatiality and Temporality-based method (ST) goes one step
further than S, i.e., it concatenates both spatial and temporal fea-
tures for prediction, where a mobile device’s temporal features con-
sist of the log of logins during different hours in the week.

Moreover, we also compare our method Dinfer with the follow-
ing two straightforward methods that learn mobile device represen-
tations U from the tensor of spatiotemporal AP-trajectories X in a
direct manner:
• NTF only considers X but not social networks of mobile device
users in comparison with Dinfer, i.e., NTF learns U by optimizing
OTRA in eq. (1).
• NMF learns U by applying the non-negative matrix factorization
method [3,14] to the mode-1 matricization X(1) of X .

By default, in our experiments we set the training/test ratio as
9:1, the number of latent dimensions as 512 (i.e., r = 512) for
methods Dinfer, NTF, and NMF, and set the social network factor
of Dinfer as α = 2.

6.2 Accuracy of Learning Social Networks
Results of friendship inference. Table 3 shows the distribution
of Top-10 and Top-20 closeness friends learned by our method
Sinfer. Among Top-10 and Top-20 closeness friends, 16%-27%,
16%-18%, and 9%-16% are ID_sharing_friends for undergradu-
ate students, graduate students, and faculties respectively. Among
Top-10 (Top-20) closeness friends of undergraduate students on
Campus A, on average, 76.40% (76.18%) are undergraduate stu-
dents who enrolled the same department in the same year, 61.47%
(58.93%) are their classmates, 5.20% (5.44%) are faculties in the
same department, and 4.40% (4.70%) are undergraduate students
who enrolled different departments in the same year. Among Top-
10 (Top-20) closeness friends of undergraduate students on Cam-
pus B, on average, 89.23% (87.96%) are also undergraduate stu-
dents who enrolled the same department in the same year, 83.87%
(80.28%) are their classmates, and 3.38% (3.87%) are undergrad-
uate students who enrolled different departments in the same year.
Similarly, among Top-10 and Top-20 closeness friends of graduate
students, 73%-77% come from the same department, 16%-21%,
34%-40%, and 16%-22% are undergraduate students, graduate stu-
dents, and faculties in the same department respectively. Among
Top-10 and Top-20 closeness friends of faculties, 73%-86% are
affiliated with the same department. From the above results, we
observe a strong homophily appeared in close friends learned by
Sinfer. These results are consistent to common sense: e.g., class-
mates and undergraduate students in the same department tend to
be close friends. Unlike Campus A, we notice that most learned
top closeness friends of faculties on Campus B are not faculties but
undergraduate students in the same department. We further inves-
tigate this phenomenon and find that faculties on Campus B spend
much more time on teaching and co-present with undergraduates
more frequently than faculties on Campus A.
Sinfer vs. Prior Art. We conduct experiments to evaluate the per-
formance of our method Sinfer in comparison with the state-of-the-
art method EBM [24]. The EBM uses Renyi entropy to evaluate the
diversity of two users’ co-occurrences at different places. Similarly,
it uses Shannon entropy to evaluate the popularity of a place, and
then uses this location entropy to reweigh co-occurrence counts at
the place. EBM is a linear combination of the co-occurrence di-
versity (in short, Diversity) and the weighted co-occurrence count
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Table 3: Distribution of Top-10 and Top-20 closeness friends learned by Sinfer. The number in the parentheses is the fraction of
friends enrolled at school at the same year.

social role Campus Top-K

distribution of learned friends (%)

ID_sharing_ same department different department

friends undergraduate graduate faculty undergraduate graduate faculty
classmate not classmate

A Top-10 25.41 61.47 16.67 (14.93) 2.27 5.20 10.40 (4.40) 1.07 2.93
under- Top-20 27.48 58.93 19.32 (17.25) 2.13 5.44 10.47 (4.70) 1.10 2.61

graduate B Top-10 15.98 83.87 6.43 (5.36) 1.74 0.21 7.45 (3.38) 0.57 0.94
Top-20 21.28 80.28 8.85 (7.68) 2.84 0.18 8.45 (3.87) 0.58 0.90

graduate
A Top-10 16.54 16.47 (2.94) 34.71 (12.94) 22.65 13.82 (0.59) 7.06 (4.12) 5.29

Top-20 16.87 16.71 (3.19) 34.15 (12.95) 22.34 14.79 (0.25) 7.60 (4.09) 4.41

B Top-10 17.43 21.63 (7.86) 40.15 (28.53) 17.71 14.99 (1.09) 1.83 (1.24) 3.69
Top-20 18.25 21.54 (7.78) 38.59 (28.04) 16.83 17.33 (1.19) 1.94 (1.13) 3.78

faculty
A Top-10 14.53 12.41 4.22 56.51 12.96 4.69 9.22

Top-20 15.70 12.61 4.48 55.79 13.04 4.65 9.45

B Top-10 9.65 61.22 3.46 21.14 9.59 0.76 3.82
Top-20 10.91 60.37 3.09 21.16 10.48 0.97 3.93
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Figure 4: Precision-Recall curve comparison of our friendship
inference method Sinfer, state-of-the-art method EBM, and
methods using Diversity, Weighted Count, and Co-occurrence
Count as metrics to evaluate the closeness between mobile de-
vice users.

(in short, Weighted Count). We set its parameters as used in the
original paper. Clearly, it is not easy to obtain the ground truth
of top closeness friends especially for graduate students and fac-
ulties in our dataset. In our experiment, we focus on undergrad-
uate students, and use their classmates and ID_sharing_friends as
the ground truth of their close friends. Fig. 4 shows the precision-
recall curves of Sinfer for learning the closeness friends in compar-
ison with EBM and methods using Diversity, Weighted Count, and
Co-occurrence Count as metrics to evaluate the closeness between
mobile devices in a direct manner. We can see that our method
Sinfer significantly outperforms other methods especially for Cam-
pus B. We notice that the precision ratio cannot reach 100% in
precision-recall curves. This is because in practice, undergradu-
ates’ top closeness friends may not be their ID_sharing_friends or
classmates, which are wrongly recognized as false friends by our
experimental settings.

6.3 Accuracy of Learning Demographics
Predictive performance. Tables 4 shows the performance of our
method Dinfer in comparison with state-of-the-art methods for learn-
ing mobile device users’ genders and social roles. Overall, Dinfer
outperforms the other methods in terms of wPrecision, wRecall,
and wF1. For gender inference, the wF1 of Dinfer is 0.69 and 0.72
for Campuses A and B respectively, and is up to 5% higher than
the other methods. For social role inference, the wF1 of Dinfer is

0.63 and 0.61 for Campuses A and B respectively, and is up to 10%
higher than the other methods. Compared to NTF, Dinfer uses so-
cial networks of mobile device users to learn more effective latent
representations from AP-trajectories, and raises the wF1 by 6%-
11%.
Training/test ratio. We study how the performance of demographic
inference methods changes with the increase of the training/test ra-
tio. As shown in Fig. 5, the performance of Dinfer and other meth-
ods improves as the percentage of labeled mobile device users in
training set increases. Moreover, we can see that Dinfer signifi-
cantly outperforms the other methods for gender inference when
more than 50% data are used for training. We omit similar results
for social role inference.
Classifier sensitivity. We study the performance of Dinfer with dif-
ferent classifiers. Fig. 6 presents the wF1 of three popular classifiers
SVM (linear kernel), logistic regression (LR), and linear regression
(LSR) for gender inference. We observe that LR and SVM slightly
outperform LSR when using Dinfer and other methods for learning
mobile device users’ latent representations. We omit similar results
for social role inference.
Parameter sensitivity. Next, we discuss the parameter sensitiv-
ity of Dinfer. Fig. 7 shows the impact of different choices of the
number of latent dimensions r and the social network factor α on
gender inference. Fig. 7(a) shows how the performance of Din-
fer changes with the increase of r. In general, large r provides a
better performance. However, the rate of the performance increase
becomes slower as we enlarge r ≥ 512. Considering the increas-
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Figure 5: (Gender inference) Performance w.r.t. ratio of train-
ing data for Dinfer and state-of-the-art methods.
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Table 4: Performance of learning demographics of mobile devices on Campus A | B.
gender inference social role inference

wPrecision wRecall wF1 wPrecision wRecall wF1

S .645 | .655 .638 | .665 .641 | .660 .639 | .589 .644 | .549 .605 | .515
ST .645 | .667 .644 | .688 .644 | .676 .641 | .598 .645 | .552 .612 | .517

NMF .626 | .621 .625 | .653 .626 | .630 .612 | .531 .609 | .552 .565 | .471
NTF .627 | .635 .628 | .636 .628 | .635 .627 | .603 .617 | .551 .578 | .502

Dinfer .694 | .712 .690 | .722 .692 | .717 .654 | .621 .661 | .600 .633 | .614
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Method
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Figure 6: (Gender inference) wF1 of different classifiers com-
bined with different methods of learning mobile device users’
latent representations.
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Figure 7: (Gender inference) Parameter sensitivities w.r.t. the
number of latent dimensions r and the social network factor α.

ing computational complexity as r increases, we suggest r = 512
as a compromise. Fig. 7(b) shows how the performance of Dinfer
changes with the increase of α. We can see that the wF1 is low
when α = 0, i.e., when social networks of mobile device users are
not used. When α > 0, the performance significantly increases,
and fluctuates in a small range (less than 1.5%) for α = 1, . . . , 32.
We omit similar results for social role inference.

7. RELATED WORK
Our problem is closely related to research on learning user de-

mographics and social networks from spatiotemporal trajectories.
More specially,
Learning user demographics. Given demographic attributes (e.g.,
gender and affiliation) for a fraction of users on an OSN, Mislove et
al. [21] proposed a method to infer the attributes of the remaining
users when the OSN has significant homophily, which refers to the
tendency of people to connect to others with common attributes.
Similarly, [8,9] developed methods to learn users’ attributes from
mobile social networks, which are generated based on call and SMS
records. Zhong et al. [30] observed that users’ demographics can
also be inferred from their check-in POIs on location-based OSNs.
However, their method relies on POIs’ rich semantic features such

as categories, user reviews, and descriptions, which are not avail-
able for the problem in this paper.
Learning users’ social networks. There has been a considerable
effort to predict social relationships from human movement records
collected from GPS-enabled devices [6,10,17] and location-based
OSNs [4,5,24,26,29]. Li et al. [17] proposed a framework to mine
user similarities based on their spatial trajectories, which is use-
ful for friend and interest recommendation. Similarly, Zhang and
Pang [29] proposed a method to predict friendships based on com-
puting distances between users’ frequently movement areas. Com-
pared to these coarse-grained metrics, Eagle et al. [10] observed
that a fine-grained metric co-occurrence more strongly indicates
friendships, especially when it happens at non-working time and
locations. Crandall et al. [5] developed a probabilistic model of
spatiotemporal co-occurrences to evaluate whether a co-occurrence
happens by chance or it is a social event. However, their method
neglects the impact of the locations of co-occurrences on friend-
ship prediction. In reality, co-occurrences between strangers are
more likely to happen in crowded public places than in small pri-
vate places. Thus, the probability of friendships is strongly related
with co-occurrence places. To utilize this knowledge, Cranshaw
et al. [6] defined a metric location entropy to characterize the lo-
cation popularity. Furthermore, in addition to the friendship pre-
diction, Pham et al. [24] proposed another entropy-based model
to estimate the strength of friendships from co-occurrence events.
In addition to the location popularity, Wang et al. [26] proposed a
model also considering other factors such as users’ personal prefer-
ences to each place and time gaps between their co-occurrences.
Besides co-occurrences, Cheng et al. [4] observed that the time
interval between two users visiting the same place (not necessary
co-occurrences) is also useful for predicting their relationship. Ja-
yarajah et al. [13] utilize AP-trajectories to estimate the strength
of social events, but they neglect to solve the events happened by
chance. The above methods studied only one kind of co-occurrence
events, i.e., co-coming events. To the best of our knowledge, we
are the first to further study fine-grained co-occurrence events: co-
coming, co-leaving, and co-presenting duration. We observe these
three kinds of events are complementary to each other for predict-
ing social networks of mobile devices. and develop a method to
predict friendships by utilizing all co-occurrence events.

8. CONCLUSIONS
In this paper we investigate whether one can learn mobile device

users’ demographic attributes and social networks from their spa-
tiotemporal AP-trajectories. We propose a method Sinfer to learn
friendships between mobile device users by exploring fine-grained
co-occurrence events of AP-trajectories, such as co-coming, co-
leaving, and co-presenting events. Moreover, we develop a tensor
factorization based learning method Dinfer to infer mobile device
users’ attributes from their AP-trajectories by leveraging user social
networks learned by Sinfer. Experimental results on thousands of
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mobile device users demonstrate the effectiveness of our methods
Sinfer and Dinfer.
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