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ABSTRACT
Modeling disease spread and distribution using social me-
dia data has become an increasingly popular research area.
While Twitter data has recently been investigated for esti-
mating disease spread, the extent to which it is representa-
tive of disease spread and distribution in a macro perspective
is still an open question. In this paper, we focus on macro-
scale modeling of influenza-like illnesses (ILI) using a large
dataset containing 8,961,932 tweets from Australia collected
in 2015. We first propose modifications of the state-of-the-
art ILI-related tweet detection approaches to acquire a more
refined dataset. We normalize the number of detected ILI-
related tweets with Internet access and Twitter penetration
rates in each state. Then, we establish a state-level linear
regression model between the number of ILI-related tweets
and the number of real influenza notifications. The Pear-
son correlation coefficient of the model is 0.93. Our results
indicate that: 1) a strong positive linear correlation exists
between the number of ILI-related tweets and the number
of recorded influenza notifications at state scale; 2) Twit-
ter data has promising ability in helping detect influenza
outbreaks; 3) taking into account the population, Internet
access and Twitter penetration rates in each state enhances
the prevalence modeling analysis.
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1. INTRODUCTION
Public health surveillance is an essential mission of ev-

ery government. In the current era of big data, data-driven
epidemics modeling and surveillance system has drawn un-
precedented attention.
In Australia, epidemics of seasonal influenza are one of

the major public health concerns. Seasonal influenza strains
circulate at peak during each winter. During the first half of
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2015, there were more than 30,000 influenza cases notified [5]
when the number of flu notifications reached the highest in
history during the same time period. Besides, public health
data are traditionally collected via surveys and by aggregat-
ing statistics obtained from healthcare institutions. Such
data collection processes are usually costly, slow, and retro-
spective.

Recently, analyzing data collected from Twitter, a micro-
blogging social network, has shown promise in assessing the
prevalence of flu [9]. However, modeling disease spread and
distribution with Twitter data involves several challenging
tasks. First of all, detecting tweets that contain expres-
sion of disease symptoms requires natural language process-
ing (NLP), which is an active research field with plenty of
open challenges [12]. Moreover, health-related tweets are
relatively scarce [9] making their detection within a large
corpus of tweets a highly unbalanced classification problem.
Zuccon et al. [21] investigated the suitability of statistical
machine learning approaches in detecting ILI-related tweets
automatically. Their results show that the optimal f-score,
which is the harmonic mean of precision and recall, is only
up to 0.736 among most of the state-of-the-art approaches.
Considering the limited likelihood of users mentioning their
health condition in Twitter, only relying on classification
techniques for obtaining ILI-related tweets can induce large
errors and lead to a biased epidemic model.

In this paper, we analyze a large database of 8,961,932
tweets from Australia collected in 2015 for studying the
disease spread and distribution of influenza-like illness epi-
demics. We propose modifications to the algorithm pro-
posed in [16] to improve the ILI-related tweets classification
performance. We also take into account the Internet and
Twitter penetration rates at each state to normalize the re-
sults. Afterwards, we establish a state-level model between
the Twitter data and the true influenza notification data and
also perform temporal and spatial analysis for exploring how
well can Twitter data capture the feature of disease spread
and distribution. Furthermore, we identify the limitations
of our study as well as the opportunity for further study on
utilizing Twitter data for public health surveillance.

The remainder of the paper is organized as follows. Sec-
tion 2 presents related work. Section 3 gives some general
statistics about the dataset we use and provides the method-
ology of the experiment design. Section 4 presents the ex-
periment results and discussions. Section 5 elaborates on
the limitations of the work. Section 6 provides conclusions
and ideas for future work.
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2. RELATED WORK
In the area of social media data mining, Twitter data have

been used in many studies and provided valuable insights
into various research fields including demographics estima-
tion, public opinion reflection, real-time event monitoring,
and public health surveillance. For example, Sakaki et al.
proposed an algorithm to monitor earthquakes on the ba-
sis of tweet text features [17]. Tumasjan et al. showed the
feasibility of tracking public political opinion and predicting
the election results by analyzing the relevant tweets [20].
Culotta et al.’s work identifies similar correlation in Twit-

ter data with Google Flu Trend after experiments of tweet
keywords generation, selection, document filtering methods,
and regression method comparison [9]. Prieto el al.’s work
focuses on using Spanish and Portuguese tweets to estimate
the community health with various maladies such as flu,
depression, and eating disorders [14]. Moreover, Paul and
Dredze apply an Ailment Topic Aspect Model (ATAM) over
a large number of tweets to discover the mentions of various
ailments, such as allergies, depression, cancer, etc. to model
syndromic surveillance [13].
Sadilek et al. model disease epidemics by analyzing the

interactions of online user activity and human mobility pat-
terns using geo-tagged tweets [16]. They propose a semi-
supervised cascade-based approach for detecting ILI-related
tweets. Then they model the spread of influenza by analyz-
ing the co-location of “sick” post users and his or her sur-
rounding Twitter users. Our work proposes modifications
to the ILI-related tweets detecting part of Sadilek et al.’s
work, which is an iterative labeling and training approach
along with classification result validation, to improve the
performance of the classification algorithm.
In Jurdak et al.’s work [15], the authors demonstrate that

the Twitter data can be considered as a reliable source for
studying the human mobility patterns. Their research also
provides insights into the potential of using the Twitter data
for public health studies.

3. METHODOLOGY
In this section, we first describe the dataset we use. Then,

we discuss how we modify the classification approach to
achieve a better performance. In addition, the methodol-
ogy of temporal and spatial mapping of ILI-related tweets
in Australia and regression model for estimating the flu no-
tifications from ILI-related tweets are further illustrated.

3.1 The Data
Twitter posts, also known as tweets, which can be up to

140 characters long, form the basis of our work. Within each
tweet, users can add the hash-tag symbol (#) before a rel-
evant keyword or phrase to categorize their tweets and use
emojis to express their emotions. According to recent Twit-
ter statistics, there are approximately 320 million Twitter
users all over the world [7], 2.8 million of them being from
Australia [6].
A collection of tweets obtained by CSIRO is our major

data source. With the help of Twitter Streaming API1, a
large dataset of geo-tagged tweets within Australia for the
entire year of 2015 has been generated by a year long col-
lecting process. The data is stored in MongoDB [2], a cross-
platform document-oriented NoSQL database. MongoDB

1https://dev.twitter.com/streaming/public

Table 1: Tweet JSON Fields
Fields Format Description
text “I’m so freaking sick :(” Tweet mes-

sage
created at “Fri Apr 13 11:56:04

+0000 2012”
Time of post-
ing

user.id “id”:552638416 User Id
coordinates {“type”: “Point”, “co-

ordinates”: [-33.927753,
150.899351]}

Geo-location
of device
when tweet-
ing

place.full name “full name”: “Sydney,
New South Wales”

Place in-
formation
associated
with Tweet

features include the characters of big data storage, index
support, straightforward queries and higher speed than tra-
ditional relational databases [11], which make interaction
with data easier and more efficient.

All collected tweets are represented is JSON format. In
our work, we only consider five particular fields as listed in
Table 1. Table 1 provides a more concise description of the
required JSON fields using a real tweet example.

After some basic data cleaning, the database contains
8,961,932 tweets posted by 225,641 unique Twitter users.
Among all tweets, 3,469,190 of them are posted with pre-
cise location coordinates. Nearly every tweet is associated
with a “place” field, which is location information that al-
ready existing on the Twitter server database. This field, as
a coarse location information, can either be automatically
assigned or manually allocated by the users. Our work con-
siders this data field as a complement of the geo-enabled
tweet database.

3.2 Detecting Illness-Related Tweets
Our primary task is to identify tweets that indicate the

authors are infected at the time of posting. Based on the
findings from related works [9], [16], the problem of detecting
illness-related tweets is expected to be an unbalanced clas-
sification problem with scarce data points. In our work, we
propose modifications to the classification algorithm in [16]
and apply a semi-supervised cascade learning approach to
learning Support Vector Machine (SVM) [8] classifiers with a
large area under the precision-recall (PR) curve. It is worth
to mention that the area under the PR curve is a more valu-
able evaluation method in our scenario, as the imbalance of
the problem will generate a constant large area under the
receiver operating characteristic (ROC) curve. The clas-
sifiers are trained to distinguish “sick” tweets (ILI-related
tweets) and “other” tweets (non-ILI-related tweets) in the
tweet database.

The prerequisite of learning such classifiers is to obtain a
high-quality set of labeled training data. We employ an iter-
ative process to achieve this. The training process is shown
in Figure 1 and the classification process is shown in Figure
2. Within the mechanism, two different SVM classifiers, de-
noted by Cs and Co, are trained using scikit-learn Python
library2, which label the tweets as either belonging to the
class “sick” or the class “other”. The classifier Cs is highly

2http://scikit-learn.org
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Figure 1: Training the SVM classifiers

penalized for including false positives (mistakenly labeling
an “other” tweet as a “sick” one) and the classifier Co is
highly penalized for including false negatives (classifying a
“sick” tweet as “other”).

In each training iteration, two parameters, class weight
and the C parameters, which influence the performance of
the classifiers, are carefully selected through experiments.
We fix one parameter and vary the other within a wide
range of values to observe the changes in precision, recall,
false-positive error rate, and false-negative error rate. The
parameters leading to the highest precision and lowest false-
positive error rate are chosen for Cs while the parameters
that give the highest recall and the lowest false-negative er-
ror rate are chosen for Co. Meanwhile, manual checking
validations are included in both training stage and classifi-
cation stage because those are essential steps for classifying
the ILI-related tweets accurately. Step by step instructions
for the training and classification processes are discussed in
the next paragraph and shown in Figures 1 and 2.
Initially, a small portion of tweets, which is around 2000,

has been labeled manually resulting in 36 ILI-related tweets
and 1974 non-ILI-related tweets (1). With the labeled dataset,
Cs and Co are trained (2) and examined with a various
range of values for the parameters. Parameters that re-
sult in the best classification performance are selected (3).
Then, a larger tweet corpus is introduced and labeled us-
ing Cs and Co (4). The trained classifiers assign labels to
the tweets. We further manually check the tweets and add
them to the previous labeled tweets corpus as reforming the
basis of training data for next round of classifier training
(5). After finalizing the training of Cs and Co, both classi-
fiers are used for labeling the entire tweet database (6). Any
tweet may be labeled as “sick” or “other” by both classifiers
or either one of them. Therefore, in the final step (7), we
manually check those tweets labeled with different labels by
the two classifiers, which is represented by the “not known”
part in Figure 2.

Figure 2: Classification stage

For features, all unigram, bigram, and trigram word to-
kens are considered in our work. For instance, a tweet mes-
sage “I got the flu” is represented by the following feature
vector:

(i, get, flu, i get, get flu, i get flu)

Before tokenization, all texts are converted into lower-
case and punctuations and stopwords are stripped. How-
ever, hash-tags and emojis are retained as they may stand
for authors health condition. We use the term frequency-
inverse document frequency (TF-IDF) [18] features to rep-
resent tweet data with the help of the tokenization package3

from the CMU and the scikit-learn library. The TF-IDF
numerically represents all terms, which counts word appear-
ances offset by the frequency of words in the corpus.

Our approach employs SVMs with the linear kernel to
solve the associated high-dimensional feature space problem,
which has been shown to perform well under such circum-
stances [13]. To overcome the class imbalance problem,
where the ILI-related tweets are much fewer than the non-
ILI-related tweets, the experiments are designed to optimize
the area under the PR curve, which is demonstrated to be
more meaningful when dealing with such unbalanced scenar-
ios [10] compared to ROC curve.

3.3 Analysis
Before modeling, we aim to understand to what extent

Twitter data can capture the key features of state-level in-
fluenza prevalence both on spatial and temporal dimensions.
With this objective, we design some experiments with the
true influenza notifications data, which is obtained from In-
fluenza Specialist Group (ISG) [1] and Queensland govern-
ment health department websites [3], as a benchmark.

3https://github.com/brendano/ark-tweet-nl
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Figure 3: A heatmap of the ILI-related tweets in
Australia. Most ILI-related tweets are located at the
coastal areas and around the capital in each state.

Figure 4: Hospital and health service (HHS) regions
in Queensland (QLD) [3]

3.3.1 Spatial Analysis
In the spatial analysis, we first assign all ILI-related tweets

to their respective locations with respect to the “geo” and
“place”fields obtained from JSON-format tweets using geopy
Python library4. A heat map generated by all ILI-related
tweets in Australia is shown in Figure 3. It is evident that
most of the sick users are located in those areas along the
east coast with high population density. Meanwhile, the
number of those target users located in capital of states,
such as Perth and Adelaide, is much more than those in
other areas. In the state-level analysis, we sort the “sick”
tweet numbers and the number of flu notifications in each
state according to the population and calculate the asso-
ciated Pearson correlation coefficient to evaluate the linear
relationship between the two examined values, “sick” tweet
numbers and true notification numbers.

Meanwhile, we also perform a regional level analysis. We
choose the Twitter data and true notifications data from the
state of Queensland (QLD) and locate each tweet within its
corresponding hospital and health service regions (HHS), as
shown in Figure 4. Similar to the state-level case, we are
interested in discovering the correlation between the tweet
data and the true flu notification data by sorting them with
regards to population and calculate the Pearson correlation
coefficient.

3.3.2 Temporal Analysis
Temporal analysis is conducted by comparing the number

of ILI-relate tweets and true notifications in a monthly level.
A bout of flu typically lasts one to two weeks, and flu

symptoms usually start within one to four days after infec-
tion [19]. In order to identify the infected individuals pre-
cisely, multiple sick tweets posted by the same user within
one week are seen as duplicate tweets and only counted once
in the analysis.

Internet access and social media usage rate are different
among the states and territories. For example, residents of
Australian Capital Territory and Victoria are more likely
to have access to the Internet compared to those living in
Northern Territory or Queensland. In order to reduce the
potential bias induced by these disparities, we modify our
“sick” tweet numbers by weighting them according to the
Internet access rate as well as Twitter penetration rate at
different states and territories. We obtain the usage rate
information from Australian Sensis Social Media Report [4].

3.4 Modeling Influenza-Like Illness Prevalence
In order to establish a state-level model, a linear regres-

sion model is fitted with the number of annual ILI-related
tweets as the independent variable and the true illness labo-
ratory notifications as the dependent variable. The number
of influenza notifications in each state is estimated by:

ŷ = B0 +B1x

where B0 is the intercept, B1 is the regression slope coef-
ficient, x is the number of ILI-related tweets, and ŷ is the
estimated number of influenza patients.

Internet access and Twitter penetration rate parameters
are then introduced to eliminate the bias that caused by
different Internet and social media usage rate in each state.
Accordingly, the independent variable x is calculated by:

4https://pypi.python.org/pypi/geopy/1.11.0
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Table 2: Classifier Performance

accu-
racy

prec-
ision

recall f-
score

fp-
rate

fn-
rate

PR
area

Cs 98.3% 82.2% 77.3% 79.6% 0.2% 27.9% 82%
Co 96.2% 78.3% 88.5% 83.0% 2.9% 11.4% 84%
Cf 91.5% 74.3% 95.2% 83.5% 9.6% 4.8% 81%

x = N
i∗t

where i is the Internet access rate and t is the Twitter pen-
etration rate.
To better evaluate the regression model, the Pearson cor-

relation coefficient analysis and t-test are carried out. The
t-test conducts a hypothesis test to determine whether there
is a linear relationship between the independent variable and
the dependent variable. In the t-test, the null hypothesis is
that the slope is equivalent to zero (H0), and the alternative
hypothesis states that the slope is not equal to zero (H1):

H0 : B1 = 0
H1 : B1 ̸= 0

The associated p-value tests the null hypothesis. If the
generated p-value is lower than a given significance level
(normally 0.05), the null hypothesis can be rejected with
high confidence.
We also carry out a confidence interval analysis, which can

help identify the probable area where the best-fit regression
line lies.

4. PERFORMANCE EVALUATION
In this section, experimental results for each stage of our

work are displayed and elaborated along with analysis and
discussions.

4.1 Classification Results
In the training stage, we fix the parameters of the clas-

sifiers after five training iterations with 1,585,918 tweets as
the classifiers do not perform better with more training iter-
ations. The average of 10-fold cross-validation performance
of the SVM classifiers ,Cs and Co as well as Cf, are presented
in detail in Table 2.
In our work, the number of the ILI-related tweets is ex-

pected to be limited. Therefore, a 74% precision for classifier
Cf can induce a large error in the dataset. From Table 2 we
can observe that the accuracy is high for all three classifiers
because of the existence of a large amount of non-health-
related tweet (true negative). However, in our experiments
the accuracy and precision of Cf decline while the recall im-
proves. A relatively large false positive rate shows that Cf
has mistakenly labeled many non-health-related tweets as
“sick” tweets. In order to obtain a more precise ILI-related
tweet dataset, we employ both classifiers Cs and Co for
tweet labeling and manually check the correctness of labels
of tweets that are given different labels by the two classifiers.
After labeling and manual checking, 1167 tweets posted

by 896 unique users are found to be ILI-related. We then
remove the duplicate tweets posted within a week by the
same user. This leaves us with 1027 ILI-related tweets from
Australia.

Figure 5: Monthly temporal analysis

Figure 6: State-level spatial analysis

Compared to the size of entire 2015 tweet database, the
number of sick tweet authors is relatively small. Assuming
that the data obtained from ISG can cover all individuals
in Australia, considering 100,586 laboratory-confirmed in-
fluenza cases in 2015 with the Australian population of 24
million, the ratio of influenza infected population within a
year is around 0.0042. If we apply this ratio to 225,641, the
number of unique users in entire tweet database, the result
is around 944, which is close to the detected number of sick
users.

4.2 Temporal and Spatial Analysis

4.2.1 Influenza Outbreak
From temporal analysis, Figure 5 shows that both ILI-

related tweet data and true influenza notification data reach
the peak in August, which is during high flu season in Aus-
tralia. This indicates that Twitter data can potentially help
detect an influenza outbreak in the time series. However,
despite a rapid increase in the number of flu notifications
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Figure 7: Regional spatial analysis

from June to August, the sick tweet number increases mod-
erately within the same period. It is evident that there are
around 40,000 notifications in August and less than 5,000
notifications in May. However, the Twitter data shows 150
ILI-related tweets in August and around 100 in May. Con-
sidering true notifications as a benchmark, we would expect
the number of tweets in August to be around 8 times of
that in May rather than only 0.5 times more. The discrep-
ancies between ILI-related tweets data and true influenza
notification data may result from the limited prevalence of
mentioning health conditions and this result also shows that
it is hard to reveal the severity of the influenza spread in a
temporal dimension.

4.2.2 State-Level Linear Correlation
We sort the “sick” tweets and true notifications accord-

ing to the populations of the states and normalize the tweet
data with Internet access and Twitter penetration rates as
shown in Figure 6. Twitter data appears to have similar
variation trends to true notification data. For instance, al-
though there is a high population density, Internet access
rate, and Twitter penetration rate in Victoria compared to
Queensland, the Twitter data correctly identifies more in-
fluenza infections in Queensland. Statistically, there is also
a high correlation coefficient between Twitter data and true
notification data, which is around 0.94. This indicates that
the Twitter data can capture the key features of state-level
influenza prevalence on an annual level with a linear rela-
tionship.

4.2.3 Regional Analysis
At the regional level, we allocate tweets to each encapsu-

lated hospital and health service (HHS) region in Queens-
land and sort the number of ILI-related tweet and true no-
tification data in each HHS area by population, as shown
in Figure 7 (a). As the region names from left to right are
in ascending population order, we can see that there are no
ILI-related tweets posts in Central West, Torres and Cape

South West, and North West. This stands for the popula-
tion size in those areas being quite small, and the number
of Twitter users who constantly tweet is also less. However,
there is a relatively large number of ILI-related tweets in
Wide Bay and Darling Downs given a small number of true
influenza notifications. After further analysis, we find that,
as there is a limited number of ILI-related tweets in those re-
gions, Twitter data can be easily influenced by some unwell
Twitter users that post frequently.

Interestingly, in regions with higher populations such as
Cairns, Sunshine Coast, Gold Coast, Townsville, and Bris-
bane Metro, Twitter data shows some similar variation trends
to the influenza notifications. Based on these observations,
we limit our study to the regions around Brisbane city, as
shown in Figure 7 (b). The number of ILI-related tweets
and true influenza notifications shows a reasonable linear
relationship with a correlation coefficient of 0.835. How-
ever, Twitter data in Gold Coast seem to overestimate the
influenza cases. This may be because Gold Coast is a famous
tourist destination and has more younger people which en-
hances the Twitter usage.

These analysis shows that, we may need to take the nature
of cities into account regarding the Twitter usage behavior
when studying regional disease distribution. However, ow-
ing to the limited Twitter usage and low likelihood of men-
tioning health conditions in tweets, the number of detected
ILI-related tweets may not be sufficient to support regional
analysis in Australia.

4.3 Influenza Distribution Modeling

4.3.1 Regression Analysis
Finally, we fit a linear regression model to estimate in-

fluenza prevalence using the generated Twitter dataset. As
shown in Figure 8, the linear regression model is generated
with the slope of 83.88 with a Pearson correlation coefficient
of 0.875 and p-value of 0.011.
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Figure 8: Linear regression with original sick tweet
data amount

After taking Internet access and Twitter penetration rates
into consideration as weighting parameters, a better-fitted
model has been generated with a slope of 12.55. A higher
correlation coefficient of 0.93 and p-value of 0.017 suggest
a state-level linear relationship between the number of ILI-
related tweets and true influenza notifications, as seen in
Figure 9, which shows the promise of estimating influenza
prevalence using Twitter data.
In Figure 10, the confidence intervals generated by sample

data points indicate the area where there is a 95% proba-
bility that the true best-fit line for the regression lies. The
prediction interval indicates that for any specific value of
the number of ILI-related tweets (X), weighted by Internet
access and Twitter penetration rates, there is a 95% prob-
ability that the real value of Y (a number of true influenza
notifications) is within this interval where slope varies from
6.02 to 22.19. The positive slope interval indicates a strong
positive linear correlation between the two variables.

4.3.2 Influence of Population, Internet Access, and
Twitter Penetration Rates

The improvement between linear regression models de-
picted in Figures 8 and 9 shows that Internet access and
Twitter penetration rates are important factors during mod-
eling. During the experiments, we also discover that the
number of ILI-related tweets has a strong linear correlation
with the population of each state. Although the number of
tweets is limited, the Pearson correlation coefficient is 0.99.
We then present the data points of ratios between the num-
ber of ILI-related tweets and population in each state in
Figure 11. Excluding the data point representing Northern
Territory (NT) as an outlier, we find out that although each
state differs regarding the Twitter user behavior and the
population size, there are similar ratios between tweets data
and the population. The average ratio of those other seven
states is around 4.2∗10−5 times, which means when we know
the population in a state, the number of “sick”Twitter users
is around 4.2 ∗ 10−5 times of the population.

Figure 9: Linear regression after taking into account
Internet access rate and Twitter penetration rate in
each state

Figure 10: Confidence interval and prediction inter-
val area

Figure 11: Ratio between number of ILI-related
tweets and population in each state
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5. LIMITATIONS
This work is mainly limited by the scarcity of the tweets,

especially illness-related ones, which may have three main
causes. First, according to Sensis social media report 2015 [4],
only 17% of Australians are using Twitter, which ranked as
the 5th most use social media platform in Australia. Mean-
while, the likelihood of users commenting on health condi-
tion in social media is relatively low. Second, user’s online
behavior may change during an adverse health condition.
For example, some users may not want to tweet when they
are suffering from illness while others might. People may
be more interested in talking about politics, sports, and ev-
eryday life, etc. via Twitter. Third, the considered tweet
database only contains geo-tagged tweets, which is a small
portion of all tweets in Australia.
The laboratory confirmed influenza notifications are also

incomplete as many patients may not seek medical treat-
ment when they catch a cold. Meanwhile, the linear regres-
sion model is relatively simple in state-level influenza mod-
eling. However, based on the scale of our work, where there
are only two variables - Twitter data and true notification
data, linear regression is a suitable model in this study.
Meanwhile, our work assumes a similar likelihood and fre-

quency of tweeting by people of different ages and socio-
economic backgrounds. However, Twitter is currently more
popular among younger generations, which means the pre-
sented results and models are younger generation specified.
With respect to our approach to detecting the ILI-related

tweets, manual checking steps may restrict the scalability of
our learning method when applied to larger datasets.

6. CONCLUSIONS AND FUTURE WORK
Our work proposes effective modifications to the state-

of-art approach in detecting illness-related tweets with the
purpose of reducing the errors of its classifiers. Along with
iterative manual checking for validation, we introduce In-
ternet access and Twitter penetration rates in our modeling
to compensate for their discrepancies among the states. We
conduct the state-level and the regional-level analysis and
show that although the number of tweets is limited, Twit-
ter data is useful in spatial and temporal disease prevalence
modeling.
Our analysis results show that Twitter data is a reasonable

proxy for detecting disease outbreak and possesses strong
linear correlation with real-world influenza notification data.
Finally, a linear regression model is established with a cor-
relation coefficient of 0.93 and a p-value of 0.017. A strong
positive linear regression model strongly suggests that Twit-
ter data can capture the key features of state-level influenza
prevalence and has a good potential in disease spread mod-
eling.
In future work, we will consider introducing other data

sources such as public transportation data, Twitter follower
relationships, and tweet geo-location changes as features to
model influenza prevalence and spread. At the same time,
we will attempt to identify the effects of user connections and
human movement on disease spread using data from Twit-
ter and other social media. Meanwhile, we will also focus
on temporal modeling to identify data correlations during
various time spans such as different months and seasons.
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