
Top-K Entity Units Retrieval Over Big Data

Da Zhang
University Of Miami

Coral Gables,Florida,33146
zhang.1855@miami.edu

Mansur R. Kabuka
University Of Miami

Coral Gables,Florida,33146
m.kabuka@miami.edu

ABSTRACT
During the past several years, data size has increased explo-
sively. This data explosion tendency has impacted various
fields ranging from biomedical engineering, business consult-
ing to social media and mobile application. Big Data is a
two sided sword. While it provides incredibly treasured in-
sights in commercial scope and innovative discovery in the
scientific field, Big Data also has many challenges, such as
complication in data storage, data processing, data analysis
and data visualization. Among all these challenges, keyword
searching over a large volume of data prevails as one of the
four tasks defined by Bizer et al. at the year of 2012. Key-
word searching refers to retrieving the objects relevant to
the entities of concern using scientific computational meth-
ods. Consequently, efficiently solving the problem of key-
word searching can contribute as a foundation to diverse
Big Data applications.

Keywords
Big Data; Information Retrieval; Keyword Searching

1. INTRODUCTION
The volume of data size has increased significantly in re-

cent years due to large amounts of data generated by vari-
ous organizations, social networks, devices and applications.
DBLP1 has over 1,200,000 objects and more than 2,480,000
links, and the YAGO 2 data set includes 10 million triples
about the facts and entities. Data.gov 3, which maintains
the largest open-government and machine-readable data, has
more than a 194,708 datasets up to date, having impact from
improved civic services, informed policy to research and sci-
entific disciplines. Consequently, the ever growing data size
exceeds any single computer’s capability to manipulate and

1http://dblp.uni-trier.de/
2https://datahub.io/dataset/yago
3https://www.data.gov/

c©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW’17 Companion, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4914-7/17/04.
http://dx.doi.org/10.1145/3041021.3053063

.

analyze. Additionally, current trend shows that the solu-
tion to the Big Data challenge is gradually changing from
accelerating hardware capability to establishing software so-
lutions infrastructure [1]. Along with other dilemmas, key-
word searching task emerges as the essential basis for numer-
ous applications: recommender system, Big Scholar citation
system, etc. According to the definition of keyword search
[2] ”The objective of keyword research is to generate, with
good precision and recall, large number of terms that are
highly relevant yet non-obvious to the given input keyword.”
Therefore, accomplishing this keyword searching task can
be a challenging and time-consuming target that requires
enormous computing framework to guarantee efficient and
reliable data storage, processing and analysis. Additionally,
keyword searching over a large volume of data remains as
one of the four tasks defined by Bizer et al.[3]. at the year
of 2012.

2. RELATED WORK
Traditional keyword searching approaches have always uti-

lized the inverted index method[4][5][6] to process keyword
queries, which is effective for unstructured data but not for
structured data[7] such as data in .ttl or .rdf formats[8].
Due to the nature of the internal relation between objects
in the web, next generation web search engines will require
link information, or more commonly, the capability of inte-
grating correlative entities that connected through associa-
tions[9]. Endeavor has already been invested in this research
area[8][10][11][12][13]. However, most of the keyword search-
ing methods require users be familiar with SPARQL[14] query
language, which is a specific language with capabilities for
querying graph patterns. The results returned by SPARQL
queries can be result list sets or subgraphs. Leal et al. pro-
poses a kSP method of searching Top-K relevant seman-
tic places given a place keywords set, which integrates key-
word search with location-based retrieval. Different from
SPARQL-based keyword searching methodology,this method
[8] does not require proficiency in SPARQL query language,
which makes the method easy to use for common users. As
stated in[8], given a set of keywords, by measuring the graph
distance between the place and the occurrence of the cov-
ered keywords at the nodes of the tree data structure, the
algorithm[8] returns the Top-K places with the most rel-
evant places to the query location based on the aggregate
ranking function. However, this method is limited by scala-
bility since it can not be deployed distributively. Thus, it is
necessary to design a system integrating software tools sup-

1269



ported by hardware back-end to provide a reliable, efficient
and distributed solution to keyword searching problem.

3. DEFINITION

Definition 1. Keywords Searching problem: Given a set
of keywords V = {v1, v2 . . . vm}, identify and extract the
subgraphs that cover all or the maximum portion of the
keywords from original large information graph.

In other words, different from a traditional method which
returns a list of separated entities, a set of entities which we
identify as Entity Unit associated with the internal relation-
ship will be returned to the user.

Definition 2. Searching Match: Given a keyword set V =
{v1, v2 . . . vm} consisting of m distinct keywords, a search-
ing match is satisfied if an Entity Unit represented by a
subgraph G′ =< V ′, E′ > where V ′ = {v′1, v′2 . . . v′n} and
E′ = {e1, e2 . . . en} satisfies all the following conditions:

1. V ′ = {v′1, v′2 . . . v′n} covers all the keywords V = {v1, v2
. . . vm}. In other words, V ⊂ V ′.

2. If there is an edge ei connecting given keywords vi →
vj , in the Entity Unit subgraph, there should also be
an edge from v′i → v′j connected by edge ei in G′.

3. If no Entity Units subgraph covers all the keywords set
V , we return Entity Units that cover the most number
of keywords.

Definition 3. Ranking Function is a function adopted to
evaluate the relatedness of candidate matches. Given pa-
rameter K which is the number of results the user wishes
to retrieve, the algorithm finds Q searching matches where
K < Q. The ranking function F is responsible for calculat-
ing their ranking scores and selecting the K most significant
results among the Q candidates.

4. ARCHITECTURE
The emergence of Hadoop[15], Spark[16], Graph Databases

[17][18][19] and many other distributed data storage and pro-
cessing tools and technologies provide us an opportunity of
processing a large volume of data distributed efficiently at
a large scale. In Figure 1, we propose a conceptual key-
word searching infrastructure which integrates Data Storage
Module, Data Analyzing Module and Data Pre-processing
Module. An application layer on the top presents to the
end user a unified and easy to use interface without worry-
ing about query language. As a consequence, the internal
software framework, hardware infrastructure, and data com-
munication are transparent to end users.

As Fig.1 describes, the infrastructure includes three main
modules which can communicate with each other to accom-
plish data filtering, data loading, and data analyzing tasks.

1. Data Pre-processing Module is responsible for trans-
forming the data such that the data is structured and
can be loaded into back-end storage through Titan
API4.

2. Data Storage Module optimizes data repository and
stores data distributed across multiple clusters.

4http://titan.thinkaurelius.com/

Figure 1: Distributed Key Word Search Infrastructure

3. Data Analyzing Module incorporates with ranking func-
tion and algorithms to discover the internal pattern
and generate Top-K relevant results and return them
to users.

5. HARDWARE IMPLEMENTATION
In this section, we demonstrate the concrete hardware im-

plementation of building the Data Storage Module. Here,
we choose Apache HBase[17], which is an open sourced,
distributed and non-relational data storage as our back-
end database. Based on that, we use Titan as our graph
traversing tool which is also an open-sourced and optimized
interface for querying graphs containing hundreds of bil-
lions of vertices and edges distributed and stored across the
multi-machine environment[20]. Finally, based on HBase,
we use an open-source cluster-computing framework Apache
Spark[16] to distributively store the data into the back-end
database.We present in Figure 2 how Spark and HBase in-
tercorrelate and communicate with each other to accomplish
distributive data storage task. According to Figure 2, since
HBase is built based on HDFS[21] file system which is a dis-
tributed storage system, it can serve as sources for reading
Spark Resilient Distributed Datasets(RDDs) and the des-
tination for writing RDDs. Therefore, the original dataset
can be first partitioned in memory using Spark and later
distributively loaded into HBase to be saved on disks.

5.1 Data Source
In the following experiments, we use a small portion dataset

comprising of 1 million facts of YAGO[22] knowledge base as
our testing benchmark. We measure the data loading time
by tuning the number of machines in the cluster. YAGO[22]
is the semantic representation of Wikipedia[23], WordNet[24]
and GeoNames[25] comprised of 120,000,000 triples. The
accuracy of YAGO was evaluated to be above 95% using
a sample of facts. Figure 3[26] is a graph representation
provided by the YAGO official website about all the facts
related to the search term ”Elvis Presley”. In Table 1, we

1270



Figure 2: Apache Spark and Apache HBase Intercorrelation

list the sample facts from YAGO[22]. All the fact state-
ments follow the formats of < Subject, Predicate,Object >
(< S,P,O >). From the graph representation in Figure 3,
it is not hard to see that < S,P,O > triples in YAGO are
represented by vertex-edge-vertex format in the graph rep-
resentation. Here, S and O are represented by vertices and
P is the edge connecting the two vertices, which is quite
applicable for storing in the graph database.

Table 1: Sample Facts from YAGO

Subject Predicate Object
Lachy Hulme actedIn Macbeth (2006 film)

Arenberg isLocatedIn Central Europe
Neal Kenyon hasGender male

Neal Shusterman created Downsiders
Boyatt Wood isLocatedIn Borough of Eastleigh

John Steinbeck wasBornIn Salinas, California
Lisa Moretti wasBornIn Los Angeles

Stavisky isLocatedIn France
Elvis Presley influences Jack Ketchum
Elvis Presley linksTo Audi

Figure 3: YAGO Demo

5.2 Testing Environment
We deploy our Data Storage Module on Amazon AWS

cloud service and choose t2.xlarge EC2 as our instances. As
depicted in Figure 4, we set up the multi-machine environ-
ment with one master and numerous slave nodes. In the sub-
sequent experiments, we construct single master and starts
from two slave nodes as our initial configuration. Then we
gradually increase the number of slaves by two until we reach
10 slaves to record the i million data loading time.

Figure 4: Master and Slave Architecture

5.3 Experimental Results
The experiments results are shown in Figure 5. We mea-

sure the data loading time in seconds for 1 million YAGO
triples using a different number of machines. From Figure
5, we can identify that increasing number of machines de-
creases the loading time decreases significantly from 35.1s
down to 13.74s. This implication is actually promising for
our further research since it provides a scalable and unified
way for loading and processing large dataset distributively.

Figure 5: Number of Machines and Loading Time

1271



6. CONCLUSIONS
Keyword searching over Big Data acts as a vital role and

basis for multiple applications. The ever increasing data
size, data complexity and data heterogeneity provides both
challenge and opportunity for industries as well as academic
disciplines. In this paper, we propose a software infras-
tructure supported by the distributed back-end hardware
clusters to address the problem of keyword searching over
Big Data. In the future, we plan to establish and integrate
the framework collectively and finally provide end users on-
demand service. Our project is still under progress. In this
paper we particularly focus on the hardware implementa-
tion part. We will leave the rest for future research. Further
work needs to be done to establish an efficient algorithm to
perform keyword searching over large amount of data. Al-
though the current study is based on a small sample of the
dataset , the findings suggest that by tuning the number of
machines and the configurations of each machine, we can
decrease the loading time and searching time substantially.
In the future, based on the hardware foundation we build
an Entity-Unit keyword searching algorithm using the same
experimental setup.

7. REFERENCES
[1] C. Lynch, “Big data: How do your data grow,” Nature,

vol. 455, no. 7209, pp. 28–29, 2008.

[2] P. Joshi, I. Pathan, and A. Khan, “Keyword
Generation for Search Engine Advertising,”
International Journal of Computer Science and Mobile
Computing, vol. 3, no. 6, pp. 367–373, 2014.

[3] C. Bizer, P. Boncz, M. L. Brodie, and O. Erling, “The
meaningful use of big data: Four perspectives – four
challenges,” SIGMOD Rec., vol. 40, pp. 56–60, Jan.
2012.

[4] G. Adomavicius and A. Tuzhilin, “Toward the next
generation of recommender systems: A survey of the
state-of-the-art and possible extensions,” IEEE
Transactions on Knowledge and Data Engineering,
vol. 17, no. 6, pp. 734–749, 2005.

[5] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker,
L. R. Gordon, and J. Riedl, “Grouplens: Applying
collaborative filtering to usenet news,” Commun.
ACM, vol. 40, pp. 77–87, Mar. 1997.

[6] J. B. Schafer, J. Konstan, and J. Riedl, “Recommender
systems in e-commerce,” in Proceedings of the 1st
ACM Conference on Electronic Commerce, EC ’99,
(New York, NY, USA), pp. 158–166, ACM, 1999.

[7] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou,
“Ease: an effective 3-in-1 keyword search method for
unstructured, semi-structured and structured data,” in
Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pp. 903–914,
ACM, 2008.

[8] J. Shi, D. Wu, and N. Mamoulis, “Top-k relevant
semantic place retrieval on spatial rdf data,” in
Proceedings of the 2016 International Conference on
Management of Data, SIGMOD ’16, (New York, NY,
USA), pp. 1977–1990, ACM, 2016.

[9] L. Bo, L. Xianglong, and W. Li, The Next-Generation
Search Engine: Challenges and Key Technologies,
pp. 239–248. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013.

[10] W. Dong, Z. Lei, and Z. Dongyan, “Top-k queries on
rdf graphs,” Information Sciences, vol. 316,
pp. 201–217, 2015.

[11] Y. T. Yu, L Chang, “Scalable keyword search on large
data streams,” IEEE 25th International Conference,
pp. 1199–1202, 2009.

[12] G. Piao, S. showkat Ara, and J. G. Breslin,
“Computing the semantic similarity of resources in
dbpedia for recommendation purposes,” in Joint
International Semantic Technology Conference,
pp. 185–200, Springer, 2015.

[13] J. P. Leal, V. Rodrigues, and R. Queirós, “Computing
semantic relatedness using dbpedia,” in
OASIcs-OpenAccess Series in Informatics, vol. 21,
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2012.

[14] L. U. Quilitz, Bastian, Querying Distributed RDF
Data Sources with SPARQL, pp. 524–538. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008.

[15] Apache Software Foundation, “Apache hadoop version
2.6.5,” 2016. https://hadoop.apache.org.

[16] Apache Software Foundation, “Aparche spark version
2.1.0,” 2016. http://spark.apache.org/.

[17] Apache Software Foundation, “Aparche hbase version
1.3.0,” 2017. https://hbase.apache.org/.

[18] Amazon, “Amazon dynamodb,” 2012.
https://aws.amazon.com/dynamodb/.

[19] Apache Software Foundation, “Aparche cassandra
version 3.10,” 2016. http://cassandra.apache.org/.

[20] Y. Mehta and S. Buch, “Semantic proximity with
linked open data: A concept for social media
analytics,” in 2016 International Conference on
Computing, Communication and Automation
(ICCCA), pp. 337–341, April 2016.

[21] Apache Software Foundation, “Aparche hadoop hdfs,”
2016. http://hortonworks.com/apache/hdfs/.

[22] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago:
a core of semantic knowledge,” in Proceedings of the
16th international conference on World Wide Web,
pp. 697–706, ACM, 2007.

[23] Wikimedia Foundation, “Wikipedia,” 2017.
https://en.wikipedia.org/wiki/Wikipedia.

[24] University of Princeton, “Wordnet version 2.1,” 2015.
https://wordnet.princeton.edu/.

[25] www.geonames.org, “Geonames,” 2017.
www.geonames.org.

[26] Max Planck Institute for Informatics, “Yago: A
high-quality knowledge base,” 2017. https://gate.
d5.mpi-inf.mpg.de/webyago3spotlx/SvgBrowser.

[27] U. S. Administration, “Data.gov,” 2017.
https://www.data.gov/.

[28] A. Passant, “Measuring semantic distance on linking
data and using it for resources recommendations.,” in
AAAI spring symposium: linked data meets artificial
intelligence, vol. 77, p. 123, 2010.

1272




