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ABSTRACT
Clustering by fast search and find of density peaks (DP)
is a method in which density peaks are used to select the
number of cluster centers. The DP has two input parame-
ters: 1) the cutoff distance and 2) cluster centers. Also in
DP, different methods are used to measure the density of
underlying datasets. To overcome the limitations of DP, an
Adaptive-DP method is proposed. In Adaptive-DP method,
heat-diffusion is used to estimate density, cutoff distance is
simplified, and novel method is used to discover exact num-
ber of cluster centers, adaptively. To validate the proposed
method, we tested it on synthetic and real datasets, and
comparison are done with the state of the art clustering
methods. The experimental results validate the robustness
and effectiveness of proposed method.

Keywords
Clustering; Kernel density estimation; Heat equation; Deci-
sion graph

1. INTRODUCTION
Clustering is a technique to organize data points in a way

that data points from the same class are more related to
one another than the data points in other classes. Cluster-
ing is done using different statistical techniques and is widely
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used in data mining[1, 2, 3], machine learning[4, 5], pattern
recognition[6], image analysis[7, 8], cyber security[9], social
networks[10, 11], astronomy[12], health care[13], and bioin-
formatics[14, 15, 16, 17, 18] etc.

Data can be cluster by utilizing different clustering algo-
rithms however; they may differ significantly in what make
a cluster and how efficiently clusters are identified. For ex-
ample, k-means [19] partitions the n points into k classes
where each point goes to the class with the minimum mean
value, serving as an exemplar of the cluster. However, the
k-means has some limitations: the parameter k is hard to as-
sess without external constraints, it is not sensible to noise,
and could not detect arbitrary form of clusters.

In density-based methods, clusters are identified as the
highest dense regions in the underlying dataset. Data in the
sparse regions is mostly considered as noise or border points.

DBSCAN is a basic density-based clustering method [20].
As compared with many other methods, it features the density-
reachability cluster model. Like the linkage-based clustering,
it finds connecting points within the given radius distance.
However, the points were connected based on a certain cri-
teria of connectivity. Also it drops some density points at
border regions. Moreover, it could not organize the clusters
with overlapping densities[21].

In data mining and statistics, affinity propagation (AP)
[22] organizes clusters based on the concept of ”message pass-
ing” between data points. Different from other clustering
algorithms like k-medoids or k-means [23], AP does not re-
quired the knowledge of clusters in the data. Similar to
k-medoids, AP finds ”exemplars” that are representative of
clusters.

Clustering by fast search-and-find of density peaks (D-
P) was proposed by Alex, et al.[24]. The DP is based on
the assumptions that a cluster center is high dense point as
compared with its neighbors and located comparatively at
higher distance from other cluster centers. For every giv-
en data point i, DP estimates it’s density ρi and distance
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δi. The effectiveness of DP algorithm highly depends on the
evaluation of ρ and cutoff distance dc. The essential param-
eter dc is utilized to estimate the densities, define border
points and noise. To identify cluster centers, DP uses the
heuristic approach of a decision graph. Users are prompt-
ed to identify cluster centers with the paradigm of decision
graph. However, organization of clusters created by DP is
highly dependent on the dc, density estimation method, and
number of cluster centers selected over the decision graph.
The selection of the density estimation method, dc, and the
number of cluster centers are potential barriers to adaptive
and effective analysis of data.
To overcome the aforementioned problems, we propose a

new method called Adaptive-DP. The Adaptive-DP algo-
rithm uses a heat-diffusion method to estimate density, the
selection of dc is improved, and an adaptive method of se-
lecting cluster centers is introduced. The rest of this paper
is organized as follow. Background knowledge is given in
Section 2. Section 3 describes the proposed Adaptive-DP in
detail. Detailed experimental results and comparisons are
given and discussed in Section 4, and finally, the concluding
remarks are presented in Section 5.

2. BACKGROUND
Our proposed technique is an extension of DP clustering

algorithm. Unlike other clustering strategies, the DP al-
gorithm can define anomalous clusters. Related algorithms
such as k-means assume that the clusters are ”balls” in giv-
en space. The DP algorithm assumes that the center of a
cluster has always-higher density as compared to its neigh-
boring points and that the cluster center is comparatively
at far distance from other cluster centers. Based on this
assumption, the DP computes two quantities for each da-
ta point: its local density, and the distance to its nearest
high density point. The Algorithm 1 is used to measure the
density.

Algorithm 1 Density estimation

Require: dc, the cutoff distance
D,n ∗ n distance matrix

Ensure: ρ, n length density vector
for i← 1:n do

ρ(i)← Count(D(i, otherObjects) < dc)
end for

According to the algorithm 1, local density ρi can be ob-
tained easily, with this quantity and the all-pair distance
matrix D as input parameters, the following algorithm 2 is
used to get another essential quantity δi.
The high dense data points have maximum values of δ.

In this way, the data points with higher ρ and higher δ in
contrast with other points in the dataset are identified as
cluster centers. After computing the two quantities for each
data point, the DP plots the calculated values of ρ and δ on
a decision graph as shown in Fig.1. Figure 1(a) shows the 28
data points embedded in 2D space in decreasing density or-
der. It is clear that points 1 and 10 are the density maxima;
they are thus identified as cluster centers. Figure 1(b) plots
the corresponding decision graph using calculated values of
ρ and δ. From this representation, it is clear that point 1
and point 10 have higher values of ρ and δ than the other
points. The isolated points in Figure 1(a), points 26, 27 and

Algorithm 2 Distance from higher local density points (δi)

Require: D, n∗n Distance matrix; ρ, n size density vector
Ensure: δ,NNdistance vector of n objects from nearest

higher density; NNneighbor, index vector of nearest
neighbor of each element i
for i← 2:n do

δ(sorted ρ(i))← max(D)
for j ← 1:n− 1 do

if D(sorted ρ(i),sorted ρ(j))<δ(sorted ρ(i)) then
δ(sorted ρ(i))← D(sorted ρ(i), sorted ρ(j))
NNneighbor(sorted ρ(i))← sorted ρ(j)

end if
end for

end for

28, can be found in Figure 1(b) with low ρ and high ρ are
treated as noise or outliers. According to the decision graph,
the cluster center is the point with high ρ and high δ. After
successfully identifying the cluster centers, each remaining
data item gets the cluster label based on their δ values in a
single round. Algorithm 3 is used to assign points to cluster
centers and also to detect noise.

Algorithm 3 Cluster assignment algorithm

Require: X, Cluster centers; sorted ρ, density vector of
point i, sorted in descending order

Ensure: C, Organized clusters
for i← 1:size(X) do

C(i)← X(i)
end for
for j ← 1:n do

if C(sorted ρ(j)) >=′ label not assigned′ then
C(sorted ρ(j))← C(NNneighbor(sorted ρ(j)))

end if
end for

3. PROPOSED TECHNIQUE
DP detects density peaks to find the cluster centers. Algo-

rithm 2 or density estimation methods [25, 26] are proposed
to estimate the density of underlying datasets [24]. The s-
election of an appropriate method is purely based on the
nature of the underlying dataset. In the proposed method,
heat diffusion is used to estimate density in a robust way.
Heat diffusion proved to be robust to estimate the density
[27, 28, 29]. The densities using the heat diffusion process
can be presented by the Eq.1.

f̂ (d; t) =
1

n

n∑
j=1

∝∑
k=−∝

e−k2π2t/2cos(kπd) cos(kπdj) ,

(1)
Equation 1 can be express as

f̂ (d; t) ≈
n−1∑
k=0

ake
−k2π2t/2cos(kπd) , (2)

where n is a positive large interger and ak is

ak =

{
1 k = 0

1
n

∑n
i=1 cos(kπdi ) k = 1, 2, ..., n− 1

for more detail of density estimation via heat diffusion see
[27, 29, 28]. The Eq.2 is a alternative and adaptive form of
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Figure 1: Decision graph representation of DP-clustering [24]

kernel density estimation (KDE) and also accounts both for
optimal band width selection and boundary correction. The
computational complexity of Eq.2 is O(n log2 n)[27, 29] by
utilizing fast Fourier transform. The Algorithm 4 is used to
estimate the density of underlying datasets, adaptively.

Algorithm 4 Local density estimation

Require: D, distance matrix
Ensure: ρ, n length density vector

ρ← esimated using Eq.2.

Unlike the density estimation methods introduced in D-
P, our proposed method is adaptive in nature to select an
appropriate cutoff distance and is also capable of expressing
true densities at border regions effectively.
Distance from higher local density points: In the

proposed method, Algorithm 2 is used to measure the dis-
tance from the nearest higher density point. δi is the dis-
tance between point i and the nearest higher density point.
Pruning of non-cluster center points: In DP, the

selection of cluster centers is a human intervention process
that utilizes a heuristic approach called a decision graph.
The decision graph is a main problem to automatic selection
of cluster centers. However, in the proposed method, we
introduce a pruning technique to remove non-cluster points
and noise from cluster centers in two steps.
Pruning technique to detect local densities: Ac-

cording to DP, cluster centers are points that have high
density and large distance compared to non-cluster centers.
By applying this rule, all local dense points can be efficient-
ly separated from cluster points. To detect all local dense
points, we take the standard deviation value of δ and then
subtract this value from the vector of distance (δ). Algo-
rithm 5 is proposed to separate expected cluster centers and
noise from non-cluster center points.
In Algorithm 5, parameter t is the time of the heat e-

quation and β is the scaling parameter; its default value is
2. The time complexity to find the index of the expected
density centers is O(n). In the next step, we remove the
noise from the expected density centers. In this step, the
noise is separated by utilizing the definition of noise given

Algorithm 5 Index of Expected Density Centers

Require: δ,NNdistance vector of n objects
Ensure: ExpC , indexes of expected density centers

for i← 1 : n do
δ(i)← δ(i)− π ∗ β ∗ t
if δ(i) >= σ(δ) then

ExpC(i)← i
end if

end for

in DP, the noise is characterized as high values of δ with
very low values of ρ, to remove noise, we take the mean of ρ
vector and then subtract ρ/1.5 value from all ExpC points.
After successfully removing noise from the expected cluster
centers, actual cluster centers are obtained.

Algorithm 6 Separation of noise from expected cluster cen-
ters
Require: ρ, n length density vector ; ExpC , expected clus-

ter centers
Ensure: C, indexes of cluster centers

for i← 1 : Size(ExpC) do
if ρ(ExpC(i)) > mean(ρ)/1.5 then

C(i)← ExpC(i))
end if

end for

The Algorithm 6 is used to filter noise from cluster center-
s. The time complexity depends on the number of expected
density centers and detected noise. From experiments, it is
shown that the noise and cluster centers are always much
less numerous than cluster points. After successfully iden-
tification of cluster centers Algorithm 3 is used to assigned
labels to cluster centers.

4. EXPERIMENTS
The robustness of the proposed method is evaluated on

15 synthetic and real world datasets, Table 1 shows the de-
tailed description about the datasets such as name, data
points in dataset, dimension of the dataset and the source
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Table 1: Description of tested datasets
Dataset Classes Objects Dimensions Source

Point Distibutions 4 2000 2 [24]
Wine 3 178 13 [30]

Aggregation 7 788 2 [31]
flame 2 240 2 [32]

Concave 2 2730 2 [33]
Path-based
spiral

2 312 2 [34]

R15 15 600 2 [35]
Two Diamond 2 800 2 [36]

D31 31 3100 2 [35]
Dim2 9 1650 2 [37]

Toys
problem

3 300 2 [38]

A1 20 3000 2 [39]
Diamond 9 3000 2 [40]

S1 15 5000 2 [41]
Leukemia 3 38 999 [42]

of dataset. The Rand indexing is used to measure the sim-
ilarity of clusters created by the proposed method and DP,
AP, k-medoids, and k-means.
To analyze the performance of the proposed Adaptive-DP

for small-size datasets, benchmark datasets such as flame,
toys problem, path-base spiral, and wine datasets are used.
In the flame dataset, the Adaptive-DP successfully orga-
nized clusters into two clusters. Compared to DP, the pro-
posed method automatically detected the cluster centers ef-
ficiently. In the flame dataset, the actual cluster centers are
very dense compared to non-cluster center density. Hence,
expected cluster centers are separated by utilizing Algorith-
m 5, and Algorithm 6 is utilized to differentiate between the
expected noise points and actual cluster centers. Figure 2(a)
shows the graphical representation of Adaptive-DP to sep-
arate cluster centers from non-cluster centers. Just for bet-
ter understanding and explanation of the proposed method,
noise and non-center points are set to zero distance to sep-
arate them from actual cluster centers. So simply detect
the non-zero distance points as cluster centers. Figure 2(b)
shows the final clusters created by the proposed method. As
with the flame dataset, the Adaptive-DP also successfully
organized the toys problem dataset into two clusters. Fig-
ure 2(c) shows the graphical representation of cluster center
and non-cluster center points. In Figure 2(c) the distance
of non-cluster centers is adjusted to zero and cluster centers
are shown as high distance points. Figure 2(d) shows the
separated clusters of the toys problem dataset created by
the proposed Adaptive-DP method. In the path-based spi-
ral dataset, Adaptive-DP successfully discovered the density
connected points and discovered three clusters as shown in
Figure 2(e). We utilized the wine dataset to benchmark the
Adaptive-DP method on multi-dimensional datasets. The
clusters that Adaptive-DP organized for the wine dataset
are shown in Figure 2(f). All of the experimental result-
s of the aforementioned datasets validate the robustness of
the Adaptive-DP method on small and multi-dimensional
datasets.
The aggregation synthetic dataset is utilized to evaluate

the performance of Adaptive-DP to merge local densities in-
to a single cluster. On the aggregation dataset, some clusters

consist of more than one local density peak. To merge the
peaks, only one scaling parameter (β) is used in Algorithm
5. The organized clusters can be refined by scaling β. At β
=2 , the number of clusters detected by Adaptive-DP is pre-
sented in Figure 3(a). In Figure 3(b) the organized clusters
of aggregation datasets are shown. However, the number-
s of clusters detected by scaling the value of are shown in
Figure 3(c). By default, the value of is adjusted to 2; how-
ever, it can be scaled to increase the number of clusters or
to decrease the number of desired clusters. To obtain the
minimum number of clusters, scaling toward a higher val-
ue is suggested, and to obtain more clusters, it is suggested
to decrease the value of . Figure 3(d) shows the exact final
organized clustering by the Adaptive-DP clustering method.

The performance of Adaptive-DP on the point distribu-
tion, diamond, and Dim-2 datasets was also evaluated. The
point distribution consisted of noise with 5 clusters. Hence,
it is proved that the Adaptive-DP method is also effective at
filtering noise from cluster center points. Figure 4(a) shows
the point distribution clusters organized by Adaptive-DP.
We utilize the diamond dataset to evaluate the method’s a-
bility to effectively separate the highly connected edges of
the clusters, as shown in Figure 4(b). The organized clusters
of Dim-2 created by Adaptive-DP are shown in Figure 4(c).

To benchmark the Adaptive-DP method on large dataset-
s, we utilized the S1, A1, D31, and concave datasets. In S1,
A1, and D31, each cluster consisted of a single density peak;
however, in Concave, different density peaks constituted a s-
ingle cluster. In both single density cluster and multi-density
peak clusters, the Adaptive-DP successfully identified the
exact number of clusters. These large-size datasets are evi-
dence that the Adaptive-DP method is equally effective for
small- and large-size datasets.

In addition, the effectiveness of Adaptive-DP on different
datasets (two-diamonds, R15) was evaluated. In the two-
diamond dataset, the proposed method successfully identi-
fied two clusters; in the R15 dataset, it found 15 clusters
datasets.

At last, we applied the approach on leukemia cancer, dataset,
to identify three distinct subtypes, AML, ALL, and B-lineage
ALL. The dataset possess serious challenges to various clus-
tering approaches because of the high dimensions with small
number of observations. Our approach successfully identify
distinct three cancer subtypes and organized into groups as
shown in Fig.5 (a). The visual representation of estimated
density are shown in Fig.5(b), which reveals three distinct
density regions exist in dataset. Most of clustering approach
could not find the distinct samples, exactly. The Rand in-
dex score of AP, Hierarchical, Spectral, Density Peaks, and
Adaptive-DP clustering are shown in Fig. 5(c).

4.1 Comparisons
To validate the performance of the Adaptive-DP method,

we conducted comprehensive comparison with state-of-the-
art methods. We used the Rand Index to measure the accu-
racy of formulated clusters. We evaluated and compared the
Rand Index of Adaptive-DP to that of other famous cluster-
ing methods on four different synthetic clustering datasets.

Rand measuring or Rand index in the field of clustering
is to measure the similarity between two data clusterings.
Actually, it is the ratio of data correctly clustered out of all
possible pairs. The Rand index uses a pairwise approach to
evaluate True Negatives (TN), True Positives (TP), False
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Figure 2: Evaluation of Adaptive-DP method on small multi-dimensional datasets.(a) Detection of exact
number of clusters without utilizing the decision graph,large distance points are cluster centers of flame
dataset.(b) flame clusters organized by proposed method.(c,d) The detection of exact cluster centers and
clusters organized by Adaptive-DP method of toys problem dataset, respectively. (e) Organized clusters of
path-based spiral dataset by using Adaptive-DP method.(f) clusters of wine dataset created by proposed
Adaptive-DP method.
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Figure 3: Organized clusters of aggregation dataset by proposed method at different values of β. (a) Eight
cluster centers are detected at the β=2 and in (b) the seven clusters are shown. (c) The organized clusters
are minimize by increasing the value β=4 and seven perfect clusters are shown in (d).
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Figure 4: Adaptive-DP organized clusters of (a) point distribution, (b) diamond, and (c) Dim-2 datasets.
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Figure 5: Analysis and comparison of clustering algorithms on leukemia dataset.(a) Resultant clusters sep-
arated by proposed method, we successfully identified and group dataset into three clusters consisted of 11
AML, 8 ALL, and 19 B-lineage ALL samples. (b) Visual representation of density estimated by proposed
method. (c) The rand index based comparison of our approach with AP, Hierarchal, Spectral, and DP
clustering methods.

Figure 6: Comparison of Rand index of proposed method with state of the art and famous clustering methods,
over 4 synthetic clustering datasets.
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Negatives (FN), and False Positives (FP. The Rand index
can be measured utilizing the following expression[42]:

R =
TP + TN

TP + FP + FN + TN

The comparison of the Rand index on four datasets with
dbscan, k-means, k-medoids, AP, DP-Clustering, and Adaptive-
DP is shown in Figure 6. Figure 6 expresses the effectiveness
of the given method compared with state of the art cluster-
ing methods.

5. CONCLUSION
In DP-clustering, the decision graph based approach is

used to manually select the exact number of clusters. In this
paper, we have presented a new method (Adaptive-DP) that
estimates the density by using a heat diffusion method and
an adaptive approach to select the exact number of cluster
centers. The limitations of DP-the difficulty of selecting an
appropriate method to estimate density, selection of cutoff
distance, and the human interpretation required to selec-
t the number of cluster centers-are improved in Adaptive-
DP. The experimental results on 14 datasets and compari-
son with state-of-the-art methods show the robustness and
effectiveness of the proposed method.
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