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ABSTRACT
Metabolic syndrome (MetS) is a combination of interrelated
risk factors associated with an increased risk of developing
type II diabetes Mellitus (T2DM), stroke and cardiovascular
diseases (CVD). The economic, social and medical burden
coupled with increased morbidity of the aforementioned dis-
eases makes their prevention an active research area. Cur-
rently, the traditional method of MetS diagnosis is based on
dichotomised definitions provided by various expert health
organisations. However, this method is laced with the in-
determination of MetS in individuals with borderline risk
factor values due to a binary diagnosis and the assumption
of equal weighting for all risk factors during diagnosis. The
purpose of this paper is to examine the use of the MetS
areal similarity degree risk analysis based on weighted radar
charts comprising of diagnostic thresholds and risk factor
results of an individual. We further enhance this risk quan-
tification method by applying quantum particle swarm opti-
mization to derive the weights. The proposed risk quantifi-
cation was carried out using a sample of 528 individuals from
an examination survey conducted between 2007 and 2014 in
Serbia. The results are evaluated with the traditional di-
chotomised method of MetS diagnosis, in this case the joint
interim statement (JIS). The results obtained showed that
the proposed risk quantification method outperformed the
dichotomised method at diagnosing MetS even in individuals
who present risk factor examination values at the threshold
borderlines.
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Table 1: JIS Defined Thresholds for Five Metabolic
Syndrome Risk Factors

Metabolic Syndrome Risk Factors Thresholds

Fasting Blood Glucose (FBG)
≥ 5.5 mmol/L
and/or medication treatment

Waist Circumference (WC)
Male: ≥ 94 cm
Female: ≥ 80 cm

HDL-Cholesterol (HDL-C)
Male: ≤ 1.0 mmol/L
Female: ≤ 1.3 mmol/L
and/or medication treatment

Triglyceride (TG) ≥ 1.7 mmol/L

Blood Pressure (BP)
Systolic: ≥ 130 mmHg
Dystolic: ≥ 80 mm Hg
and/or medication treatment

1. INTRODUCTION
Metabolic syndrome (MetS) is a combination of metabolic

abnormalities, i.e. hyperglycaemia, central obesity, dyslipi-
demia and hypertension, associated with an increased risk
of developing non communicable diseases (NCDs) such as
type II diabetes Mellitus (T2DM), stroke and cardiovascu-
lar diseases (CVD) [15, 10]. These metabolic abnormalities
are characterised by five MetS risk factors (MRFs): elevated
blood pressure (BP), decreased HDL-cholesterol (HDL-C),
elevated triglyceride (TG), elevated waist circumference (WC),
and elevated fasting blood glucose (FBG) [17].

NCDs arising from the presence of MetS are a global bur-
den constituting major health, social, and economic devel-
opment due to recent changes in dietary habit and lifestyle.
They account for about 52 % of the world’s mortality rate,
majority of which occurs in low- and middle-income coun-
tries [13].

Various expert health organisations such as WHO [14], the
National Cholesterol Education Program Adult Treatment
Panel III (NCEP ATP III) [9], the European Group for the
Study of Insulin Resistance (EGIR) [6], the International Di-
abetes Federation (IDF) [4], have come up with definitions
of MetS and have concluded that MetS can be diagnosed
by dichotomising its risk factors. In 2009, a new joint in-
terim statement (JIS) was developed in order to consolidate
multitude of different pre-existing definitions [3]. Clinical di-
agnosis of MetS defined by the JIS requires presence of any
three out of the five MRFs. Table 1 shows the thresholds
for the JIS definition.
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Figure 1: Metabolic syndrome hierarchy structure.

Invariably, these MRFs are defined as continuous vari-
ables with differing measurement metrics. Let us assume
that a middle-aged female presents with fasting blood glu-
cose of 5.4 mmol/L, waist circumference of 78 cm, HDL-
Cholesterol of 1.1 mmol/L, Triglyceride of 1.8 mmol/L and
blood pressure of 127/78 mm Hg, then according to the di-
chotomous definition of MetS, she will not be diagnosed as
having MetS. The dichotomous definition will recognise only
her triglyceride and HDL-cholesterol as having exceeded the
recommended threshold. In this regard, studies have shown
that dichotomising the continuous variables of the MRFs
based on cut-off points potentially leads to misclassification
especially when the MRF values are at the borderline of the
cut-off points [21]. The dichotomous definition also assumes
equal weighting for all the five risk factors during diagnosis
despite the different indications that the risk factors repre-
sent [22]. Again, if we revisit the MRF values, it can be
clearly seen that she was not diagnosed with MetS because
only two out of five MRFs were considered in her diagno-
sis. The dichotomous method excludes any MRF that does
not exceed or meet up to the threshold values e.g. HDL-
C in this case. For these aforementioned reasons, the di-
chotomous method incurs information loss in the its diag-
nosis. It has also been suggested that despite the growing
number of research on finding the definition of MetS, an
agreement of over a unified definition is yet to be appar-
ent [17]. Thus, it is crucial to evaluate and select efficient
MetS risk quantification methods to supplement the tradi-
tional binary/dichotomous method of MetS diagnosis.
Therefore, in response to the global burden of NCDs and

the MetS diagnosis problems associated with the current
MetS definitions, methods for early and accurate diagnosis
of MetS are required for the prevention of MetS and its as-
sociated diseases. Prevention methods are also necessary to
aid in providing solutions for health promotion and dietary
habits and lifestyle management.
Statistical and mathematical quantification methods have

been proposed to quantify the risk of MetS by including
all the MRFs in the diagnoses. However, the statistical
approach is mostly applied in the diagnosis of MetS risk
in children since the current dichotomous MetS definitions
are inconsistent with regards to diagnosing MetS in chil-
dren [12]. In this paper, we focus the quantification ap-
proach which can be applied to both children and adults.
One such method is the areal similarity degree (ASD) pro-
posed in [20]. ASD is a quantification method for diagnosis
the risk of MetS based on the weighted radar chart. The
weight values represent the prevalence of MRF in the popu-
lation. The radar chart is a visualisation tool used for com-
paring performances in multiple dimensions simultaneously.

It is used to depict medical outcomes and comparative data
in multiple relevant outcome dimensions [28]. Despite its
ability to visually represent the value of health care out-
comes [26], the radar chart is incompetent in the deriva-
tion of weights associated with each variable in the out-
come. Therefore, ASD adopts the analytic hierarchy process
(AHP) [18] in order to calculate the different weights of the
MetS risk factors (MRFs) in the radar chart.

AHP is a multi-attribute decision making technique for
addressing events of uncertainty and making ranked judge-
ments based on multiple criteria. Ranking in AHP is carried
by priority estimation. Priority estimation in AHP is the
process of deriving a priority vector or a vector of weights
form a pair-wise comparison matrix through the applica-
tion of various priority estimation methods. This process is
important in AHP for determining the weighting for each
criterion of the decision making problem. The most widely
use priority estimation method is the eigenvector method
proposed by Saaty [18]. The weighted least-squares method
was proposed by Chu et al. [7] while Saaty and Vargas [19]
also suggested a least squares method (LSM). An in-depth
analysis of AHP priority estimation methods can be found
in [24].

In this paper, we propose the adoption of quantum parti-
cle swarm optimisation (QPSO) [27] method to estimate the
priority vector from the pairwise matrix of each MRFs de-
rived using the AHP. The weights from the priority vectors
are then used to quantify the risk of MetS using the ASD
and also for visualisation using the radar chart.

2. MATERIALS AND METHODS

2.1 Study Population
The study population has been previously described [23].

Briefly, the study was conducted between 2007 to 2014. It
included 528 males (n=182) and (n=346) female aged 7 to
77 years recruited from the Clinic of Endocrinology, Dia-
betes and Metabolism Disorders, Clinical Center of Serbia,
Belgrade. The characteristics of the study population, as
stratified by gender are presented in Table 2.

All subjects were asked to report their age, gender, and
morbidity (diabetes, hypertension, hyperlipidemia, angina
pectoris, myocardial infarction, peripheral vascular disease)
history of their family members. Physical examination was
carried out to collect MRFmeasurements such as body weight,
height, waist circumference, systolic and diastolic blood pres-
sure. After 12 hours of fasting, other MRF measurements
such as Cholesterol, HDL-C, and Triglyceride were measured
using spectrophotometric method and the Friedwald formula
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Table 2: Characteristics of study sample
Male Female

Number of Subjects, n (%) 182 (34.47) 346 (65.53)
Age, years 11.67±18.55 24.41±22.15

0-17 (child) 31 (17.0) 42 (12.1)
18-39 (young) 86 (47.3) 152 (43.9)
40-64 (middle-aged) 60 (33.0) 136 (39.3)
65 and above (old) 5 (2.7) 16 (4.6)

Fasting Glucose
5.05±0.90

Mn 3
4.97±0.99

Mn 0
(mmol/L) Mx 13 Mx 16
Waist Circumference

108.71±15.14
Mn 73

99.318±18.30
Mn 0

(cm) Mx 150 Mx 160
HDL-Cholesterol

1.08±0.22
Mn 0

1.31±0.35
Mn 1

(mmol/L) Mx 2 Mx 4
Triglyceride

2.04±1.24
Mn 0.6

1.70±0.88
Mn 1

(mmol/L) Mx 75 Mx 6
Systolic Blood Pressure

128.82±16.03
Mn 90

125.68±18.79
Mn 0

(mm Hg) Mx 190 Mx 130
Diastolic Blood Pressure

84.08±10.19
Mn 60

81.48±12.82
Mn 0

(mm Hg) Mx 140 Mx 130

Note: Values are means±SD or n(%); Mn, Minimum; Mx, Maximum

was used to compute the LDL-C. Fasting blood glucose was
measured following the WHO guidelines [5]. In this paper,
we have categorised all subjects into two groups by gen-
der and a further sub-categorisation by age: young (from
18 to 39 years old), middle-aged (from 40 to 64 years old),
and old (more than 65 years old), respectively. Our age
stratification is not far off from that of Al-Zaarani et al. [2]
where age group is classified as younger (18 to 34 years old),
middle-aged (35 to 59 years old), and older (60 to 90 years
old) adults . However, we removed all subject of child age
(below 18 years) because the dichotomous MetS is not ap-
propriated for defining MetS in children [1]. The JIS [3]
definition, which is the latest health expert MetS definition,
was used to determine presence of MetS in subjects. The JIS
defines MetS as having any three or more of the following
components:

• Waist circumference (WC ≥ 90 cm for men and ≥ 80
cm for women);

• Elevated triglyceride (TG ≥ 150 mg/dl or being under
treatment);

• Low, high-density lipoprotein cholesterol (HDL-C <
40 mg/dl for men and < 50 mg/dl for women or being
under treatment);

• Elevated blood pressure systolic blood pressure (SBP
≥ 130 mmHg, or diastolic blood pressure DBP ≥ 85
mmHg or receiving anti-hypertensive medications);

• Elevated fasting plasma glucose (FPG ≥100 mg/dl or
treatment for hyperglycaemia).

People who are taking medication the treatment of hyper-
tension, T2DM, are hyperglycaemia will be automatically
diagnose as having MetS without taking into consideration
the other MRFs.

2.2 ProposedMetabolic SyndromeRiskQuan-
tif cation Method

Our proposed method takes in measurement values of all
the MRF measurement values and computes an ASD value
between 0 and 1. The steps involved in the MetS risk quan-
tification method proposed in this paper shown in Figure 2
will be described as follows.

2.2.1 Data Preprocessing
MetS risk factors (MRFs) as can be seen in Table 2 have

different measurement metrics. Therefore, data from the
population study for each MRF in each subgroup is nor-
malised to scale the variables to an input range between 0
and 1. Let each MRF variable be ai and let the maximum
and minimum value of the data be aimin and aimax . Then
the normalised variable ainew is calculated as follows:

ainew =
ai − aimin

aimax − aimin

. (1)

2.2.2 Generating the Pairwise Matrix
As mentioned in Section 1, the AHP is adopted to gener-

ate the pairwise matrix for priority estimation using QPSO.
This procedure is necessary in order to accommodate the
varying effect of each MRF on the MetS risk quantification.
AHP allows the MetS risk factors to be represented in a hi-
erarchical structure which enables a stable pairwise matrix
generation. All MRFs are on the same AHP hierarchy level
as depicted in Figure 1.

2.2.3 Priority Estimation from Pairwise Matrix us-
ing QPSO

The QPSO is a simple evolutionary algorithm which rela-
tively inexpensive in terms of speed and memory consump-
tion [8]. Genetic operators like crossover and mutation are
absent in QPSO and particles update themselves with the
internal velocity [25]. Hence, the computational effort re-
quired by QPSO to meet the optimal result is relatively less
than other evolutionary algorithms such as the genetic al-
gorithm [11]. Moreover, only one parameter is required for
update in the QPSO.

Let A = (aij)n×n be a pairwise comparison matrix with
aij = 1/aii = 1 and aij>0 for i, j = 1, . . . , n and W =
(w1, . . . , wn)

T be a priority vector with
∑n

i=1 = 1 and wi ≥
0 for i = 1, . . . , n. Therefore, if aij = aikakj holds for any
k = 1, . . . , n, then A = (aij)n×n is said to be a consistent
pairwise comparison matrix; otherwise it is inconsistent [18].
The perfectly consistent comparison matrix of MRFs for
each subgroup is showed in an example as follows:

A =

FBG WC HDL− C TG BP
















1 0.3096 0.1713 0.4569 0.2638
3.2296 1 0.5532 1.4757 0.8520
5.8376 1.8076 1 2.6674 1.5401
2.1885 0.6776 0.3749 1 0.5774
3.7905 1.1737 0.6493 1.7320 1

To obtain the weights of the matrix above, we use the
QPSO as mentioned in Section 1. The pairwise matrix is
fed into the QPSO algorithm and the following steps will
ensue:

1. Initialise algorithm parameters (population size, par-
ticle dimension, maximum number of iterations MAX-
GEN), population initialisation, initialisation of parti-
cles history, and global history optimal value.

2. Evaluate fitness value for each individual.

3. Update the optimum population in history if the par-
ticle’s fitness is better than the particle history itself,
with the current value of the replacement; otherwise,
the history optimal particles remain unchanged.
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Figure 2: Flowchart of metabolic syndrome risk quantification with ASD and QPSO.

4. Update the history global optimum particle in a popu-
lation which is the best fitness value of all the particles
in the population.

5. Update particles by using quantum behaved particle
swarm optimisation algorithm formula for all the par-
ticles in space.

6. If the algorithm reaches the maximum number of iter-
ations, then output the optimal solution, and the al-
gorithm terminates; otherwise, continue to implement
the Step 2.

The resulting priority vector from the pairwise matrix above
is given below:

W =

wFBG wWC wHDL−C wTG wBP

[ ]0.0783 0.2721 0.3643 0.0499 0.2353

2.2.4 Risk Quantif cation using ASD
Let the Radar R be a set of disjoint polygons Aij , where

i = 1, . . . , n and j = (i+ 1) mod n. Let the polygon Aij in
the radar chart R be a polygon consisting of vertices O, Ai,
and Aj , such as △OAiAj , where OAi = riA , OAj = rjA ,
∠O = θi, i = 1, . . . , n, j = (i+1) mod n, and ri is the value
of the i-th indicator.
Let the ASD of two polygons Aij and Bij be the ratio of

intersection of the two polygons Aij and Bij over the area
of Bij . Therefore, the ASD of the two polygons is

S(Aij |Bij) =
Area of intersection of polygonAij andBij

Area of intersection of polygonBij

(2)
where polygon Bij is reference polygon determined by the
thresholds of MRFs and polygon Aij is determined by the
MRF measurement values of an individual. So, given the
two polygons Aij and Bij , let polygon Aij include Bij , iff
riA ≥ riB and rjA ≥ rjB .
Therefore, given two indicators i and j, the ASD of two

polygons Aij and Bij , specifically, S(Aij |Bij) can be calcu-
lated as follows:

S(Aij |Bij) =































1 if Aij includes Bij
Area of Aij

Area of Bij
if Bij includes Aij

rjB · riB −Q

rjB · riB
if riA > riB and rjA < rjB

rjB · riB −Q
′

rjB · riB
if riA < riB and rjA > rjB

,

(3)

where

Q =
riA · riB (rjB − rjA)

2

rjA(riA − riB ) + riA(rjB − rjA)
, (4)

and

Q
′

=
rjA · rjB (rib − riA)

2

riA(rjA − riB ) + rjA(riB − riA)
. (5)

Finally, let the ASD of two radar charts R1 and R2 be
the ratio of the intersection area of the two radar charts, R1

and R2, over the area of radar chart R2. Then, S(R1|R2)
is the weighted sum of Aij and Bij , where wi is the weight
of Aij and Bij , and i = 1, . . . , n and j = (i + 1) mod n,

and wi =
θi
360

. Therefore, the final ASD value which is the

weighted sum of all the ASDs for each MRF of each is given
by

S(R1|R2) =

n
∑

i=1

θi
360

· S(Aij |Bij) (6)

where
∑n

i
θi = 360, j = (i+ 1) mod n. The ASD value for

any individual is (0,1].

3. RESULTS
From the 528 samples, 73 which belonged to the child

category were removed and the proposed model was run on
455 samples. Table 3 shows the ASD with QPSO results on
middle-aged female subjects. As mentioned in Section 2.1,
the dichotomous method (JIS MetS definition) was used to
label each subject. If a subject has exceeded threshold of
three or more the MRFs ( or failed to meet the threshold in
the case of HDL-C,), then the subject is labelled as having
MetS. Also those on treatment as mentioned in Section 3
are also labelled with having MetS. Only subjects with 3
or more MRF value measurements above the threshold are
classed to have MetS. All subjects did not present with being
on any medication treatment.

Figure 3 show the regression analysis plots of the average
ASD values and the number of MRFs. We can observe that
there exists a strong positive correlation between the ASD
values and the number of MRFs based on the high R2 val-
ues. As the number of MRFs increases, the ASD values also
increase from the regression lines. However, we notice that
the ASD values are dependent on the sample size of each
subgroup and gender. This is a limitation to the model as
the ASD values will increase as the number of sample size
increase.
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(a) Male (b) Female

Figure 3: Regression Analysis of proposed QPSO-ASD model and the number of risk factors.

Table 3: Examples of ASD experiment results for
middle-age females.

Subject FBG WC HDL-C TG BP JIS ASD

1 4.4 79 1.29 1.65 150/100 Non MetS 0.83
2 9.1 79 1.30 1.80 129/79 Non MetS 0.92

Note: FBG, HDL-C and TG are measured in mmol/L; WC is

measured in cm; BP is measured in mmol/L.

The ASD results for each individual was calculated and
Receiver Operating Characteristic (ROC) curves were plot-
ted as shown in Figure 4. The performance of a medical
test is evaluated using performance metrics known as pre-
dictive biomarkers [16]; area under the ROC curve (AUC),
sensitivity (SEN), specificity (SPEC), precision (PREC) or
positive predictive value (PPV), and negative predictive val-
ues (NPV). However, the predictive biomarker discussed in
this paper is the AUC because it is a summary measure of
accuracy derived from the ROC curve. In this paper our
focus is the proposed method’s ability to classify individu-
als with MetS, especially, those who present with borderline
measurement MRF values.
We have proposed and validated a method for the early

detection of MetS using the five MRFs. The results as can
be seen in Table 4 are promising. The previous study on
ASD [20] did not evaluate the risk quantification method
using performance metrics. The young female has the high-
est AUC of 98.92 %, followed by that of the young male while
the old female has the lowest AUC of 54.54 %. From Table 2,
we observe that the number of samples for the young female
is the highest (n = 152), which is 9 % of the study sample
while the old male data sample is only 1 %. Furthermore, we
notice that even though the young female presents with the
highest AUC, the PPV of the young male is higher than that
of the young female with about 7 %. This variation in AUC
results could be attributed to the sensitivity of the proposed
algorithm towards the number of data samples. The weights
generated from the QPSO were calculated purely based on
the number of individuals in each subgroup. This could at-
tribute a limitation of the proposed algorithm because there
will be differing ASD values for the quantification of MetS
based on the volume of data sample available. However, we

Table 4: Results of the ASD with QPSO algorithm
based on the population sample.

AUC SEN SPEC PPV NPV

Male
Young 88.33 80.84 46.66 73.89 56.61
Middle-Aged 83.18 77.27 42.65 63.82 58.93
Old 54.54 51.52 59.09 65.38 44.84

Female
Young 98.92 84.45 54.74 66.90 76.48
Middle-Aged 73.71 96.43 83.55 77.90 63.82
Old 77.08 66.66 47.72 79.27 32.30

can conclude that the higher the data sample of the MRFs,
the higher the AUC value.

4. DISCUSSION
To perform an in-depth analysis of the ASD results in Ta-

ble 3, we will refer to each subject in the table with their
subject numbers. The cut off point for the diagnosis of MetS
using our proposed method is calculated as the mean of all
the ASD values of the population subgroup. In the case of
the middle-aged female subgroup, the cut-off point is set at
0.73. Subject 1 according to medical indication can be said
to be hypertensive. However, the JIS dichotomous method
classifies her as not being at risk or having MetS because
only two of her MRF values–HDL-Cholesterol and blood
pressure–exceed the recommended thresholds. On the other
hand, the ASD value depicts otherwise. Subject 1 has an
ASD value of 0.83 which clearly puts her at risk of MetS.
Furthermore, the MRF results of subject 2 provides an indi-
cation of a diabetic. Nevertheless, the dichotomous method
does not recognise the health risk of this subject because
only her fasting blood glucose and triglyceride MRF values
exceed the dichotomous threshold. Fortunately, subject 2
has an ASD value of 0.92 which diagnoses her as having
MetS. Here, we can see the possibility of information loss
in the dichotomous method where both subjects with hy-
pertension and diabetes are diagnosed as not having MetS.
This diagnosis is in contradiction with the inclusion of hy-
pertension and diabetes as NCDs with high mortality and
morbidity [13]. The ASD values of the two study subjects
also correlate with the 84 % specificity of the model. Thus,
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Figure 4: Receiver Operating Characteristic (ROC) curve of ASD for six subgroups.

our proposed model is able to reduce information loss in
diagnosis of MetS.

5. CONCLUSION
Consider an old female aged 67 years presenting with the

following MRFs examination measurements: a fasting blood
glucose of 5.4 mmol/L, waist circumference of 91 cm, HDL-
Cholesterol of 1.2 mmol/L, Triglyceride of 0.8 mmol/L, sys-
tolic blood pressure of 145 mm Hg, and diastolic blood pres-
sure of 79 mmHg. Clearly from the dichotomous definition
of MetS, this old female will be diagnosed as not having or
even being at risk of MetS since only two of her MRF mea-
surement values is below the threshold i.e. elevated waist
circumference and systolic blood pressure. However, this
middle-aged woman has borderline MRF measurement val-
ues (close to the thresholds) on three out the five MRF. We
used our model to calculate the ASD value for the old fe-
male and the ASD value was 0.79. With an ASD value of
0.79, what ever cut-off value is adopted, this will still place
the old female at being diagnosed with Metabolic Syndrome.
Clearly, this knowledge will guide both the medical health
practitioner and the individual in becoming alert. Elderly
people need to know their current metabolic status at an
early stage. This will help to keep both their medical health
care personal, caregivers and also themselves the likelihood
of being at risk of CVD and T2DM. Dietary and Life style
habit management can be initiated and monitored at this
early stage so as to prevent a progression of MetS which will
lead to the NCDs mentioned in Section 1. The clinical indi-
cation of our proposed method is quite promising, however,
this method is quantitative and not self learning. Quanti-

fied risk values are not updated at any stage and thus the
method is heavily reliant on the population sample. The
method also holds the flexibility of being applicable to per-
sonal healthcare systems.
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