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   easy to implement,  
   small memory footprint 
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results, if their deployment is careless 

• In this talk, we will be considering two examples…

Random Walks



• Random Walks are a very useful tool for studying 
online and offline large-scale graphs: 
   easy to implement,  
   small memory footprint 

• Random Walks cannot give statistically meaningful 
results, if their deployment is careless 

• In this talk, we will be considering two examples…

Random Walks



• Random Walks are a very useful tool for studying 
online and offline large-scale graphs: 
   easy to implement,  
   small memory footprint 

• Random Walks cannot give statistically meaningful 
results, if their deployment is careless 

• In this talk, we will be considering two examples…

Random Walks



• Random Walks are a very useful tool for studying 
online and offline large-scale graphs: 
   easy to implement,  
   small memory footprint 

• Random Walks cannot give statistically meaningful 
results, if their deployment is careless 

• In this talk, we will be considering two examples…

Random Walks



• Random Walks are a very useful tool for studying 
online and offline large-scale graphs: 
   easy to implement,  
   small memory footprint 

• Random Walks cannot give statistically meaningful 
results, if their deployment is careless 

• In this talk, we will be considering two examples…

Random Walks



Random Walks
• Random Walks are a very useful tool for studying 

online and offline large-scale graphs:  
   easy to implement,  
   small memory footprint 

• Random Walks should be used carefully, if one 
aims for statistically meaningful results 

• In this talk, we will be considering two examples…



Random Walks
• Random Walks are a very useful tool for studying 

online and offline large-scale graphs:  
   easy to implement,  
   small memory footprint 

• Random Walks should be used carefully, if one 
aims for statistically meaningful results 

• In this talk, we will be considering two examples…



Random Walks
• Random Walks are a very useful tool for studying 

online and offline large-scale graphs:  
   easy to implement,  
   small memory footprint 

• Random Walks should be used carefully, if one 
aims for statistically meaningful results 

• In this talk, we will be considering two examples…



Picking Uniform-at-Random 
users from a Social Network



Learning Average Opinions



Learning Average Opinions



Learning Average Opinions



What is the 
fraction of     ?

Learning Average Opinions



What is the 
fraction of     ?

Asking all the users 
is too costly!
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provably close 
to the real average

Learning Average Opinions



How do we select 
uniform-at-random profiles  

in a Social Network?

http://s-n.com/001.html

• We can access the SN through a crawling process. 

• But we cannot crawl the whole network.  
Then, what can we do?
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• We can access the SN through a crawling process. 

• But we cannot crawl the whole network.  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Mixing Time MT(G)

The Mixing Times of many “Social Networks” are small  
[Leskovec et al, ’08]
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A Folklore Algorithm

This algorithm returns a node chosen  
(arbitrarily close to) uniformly at random

• While True: 
• run the random walk for MT(G) steps; 
• suppose it ends on the node v; 
• return v with probability 1/deg(v).



A Folklore Algorithm

One can easily show that this algorithm  
downloads, with high probability, at most  

O(MT(G) · AvgDeg(G)) nodes from the network

• While True: 
• run the random walk for MT(G) steps; 
• suppose it ends on the node v; 
• return v with probability 1/deg(v).



Can one do better?
• In [C., Dasgupta, Kumar, Lattanzi, Sarlós,’16] we 

analyzed various algorithms for selecting a UAR node. 

• Some of them were on-par with the Folklore Algorithm, 
some of them were worse. 

• In [C., Haddadan] we show that: 

• if an algorithm downloads < o(MT(G) AvgDeg(G))   
nodes from the network, then the node it returns will 
have a distribution very far from uniform-at-random. 

• That is, the Folklore algorithm is optimal. 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• In [C., Dasgupta, Kumar, Lattanzi, Sarlós,’16] we 

analyzed various algorithms for selecting a UAR node. 

• Some of them were on-par with the Folklore Algorithm, 
some of them were worse. 

• In [C., Haddadan] we show that: 

• if an algorithm downloads < o(MT(G) AvgDeg(G))   
nodes from the network, then it cannot return anything 
close to a uniform-at-random node. 

• That is, the Folklore algorithm is optimal.  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Other Distributions…

• In [C., Dasgupta, Kumar, Lattanzi, Sarlós,’16], we 
also give algorithms that select nodes randomly 
according to various skewed distributions (e.g., 
probability proportional to some power of the 
degree).
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A k-graphlet is a connected  
induced subgraph of k nodes

Graphlets

Distribution of graphlets on k nodes

40% 25% 15% 9% 7% 4%

k = 4

Challenges
• social network analysis

• graph mining 

• computational biology


Applications:
• exact counting is infeasible ( nΩ(k) )

• even approximations are costly

• scaling n and k is hard in practice

53% 22%
. . .

k = 5 k = 6, 7, …

Graph on n nodes



Graphlet Distribution 
Why is it interesting?

• The Graphlet Distribution has been used to 

• classify, and 

• understand 

• networks (and different parts of the same network)



Graphlet Distribution
Road Networks do not contain many triangles

k = 3

Relatively 
few

Relatively 
many



Graphlet Distribution
Many Social Networks contain Dense Communities

k = 3

More Fewer



Computing the 
Graphlet Distribution



Random Walk

How long does the walk take to converge (Mixing Time)?

Two graphlets are adjacent 
if they share k-1 nodes in 
the graph

If the walk is sufficiently long, 
it will end on a uniform-at-
random graphlet of the graph

Random walk over adjacent 
graphlets in the graph

[Bhuyian et al., ICDM, 2012]



Issues with the Random Walk  
[Bressan, C., Kumar, Leucci, Panconesi, ’17]

2. Happens even if one graphlet appears 99.99% of the time

1. There are graphs where the mixing time of the RW is Ω(nk-1)

(almost as bad as naive enumeration!)

3. Happens even on nice graphs, i.e., with high conductance

(a property believed to be shared by many social networks)
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Issues with the Random Walk  
[Bressan, C., Kumar, Leucci, Panconesi, ’17]

Clique

k

(n-1) / k

One needs > nk-1 

steps to see a copy  
of the k-graphlet  

with > 99% frequency
Almost all 

k-graphlets in this 
graph are k-cliques



Random Walk

• If we run a “short” random walk repeatedly to 
sample UAR graphlets, and we return the empirical 
distribution that we obtain, 

• we cannot be sure that the returned distribution will 
be (even moderately) close to the real one.



Color Coding (CC)
Randomly color the vertices 
of the graph with k colors.

A graphlet, with some 
probability, receives k distinct 
colors, i.e., becomes colorful

In [Bressan, C., Kumar, Leucci, Panconesi, ’17], we modify 
CC to sample graphlets with bounded error

Can count non-induced 
colorful trees in O(m ck) time 
and O(n ck) space

[Alon et al., JACM, 1995]



Experiments 
[Bressan, C., Kumar, Leucci, Panconesi, ’17]

nodes (millions) edges (millions)

WordAssociation 0.01 0.06
Facebook 0.06 0.8

Yelp 0.2 1.3
Hollywood 2 114

Orkut 3 223
LiveJournal 5 49

Twitter 42 117

Graph datasets



How does the RW 
behave in practice?
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Distance of the Random Walk samples from the uniform distribution, 
as a function of the random walk length



Random Walk vs Color Coding

Note: CC time includes preprocessing
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CC required 200+GB of main memory for LJ!



The 6-graphlet distribution

A6 B6 C6 D6 E6 F6 G6 H6 I6 J6 K6
10-4

10-3

10-2

10-1

100

Hollywood

Orkut

Yelp

WordAssociation

Facebook

LiveJournal



• Tiny memory footprint 

• Speed and precision often in conflict 

• Understanding how much time is “enough” for a 
given statistical precision is often non-trivial 

• Use Random Walks with caution!
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• Tiny memory footprint 

• Speed and precision often in conflict 

• Understanding how much time is “enough” for a 
given statistical precision is often non-trivial 

• Exercise caution in using Random Walks :-)

Random Walks 
A fine line between Efficiency and Precision



Thanks!


