
On the Relevance of Irrelevant Alternatives

Austin R. Benson
∗

Stanford University
Stanford, CA

arbenson@stanford.edu

Ravi Kumar
Google Inc.

Mountain View, CA
ravi.k53@gmail.com

Andrew Tomkins
Google Inc.

Mountain View, CA
atomkins@gmail.com

ABSTRACT
Multinomial logistic regression is a powerful tool to model choice
from a finite set of alternatives, but it comes with an underlying
model assumption called the independence of irrelevant alterna-
tives, stating that any item added to the set of choices will decrease
all other items’ likelihood by an equal fraction. We perform statis-
tical tests of this assumption across a variety of datasets and give
results showing how often it is violated.

When this axiom is violated, choice theorists will often invoke
a richer model known as nested logistic regression, in which infor-
mation about competition among items is encoded in a tree struc-
ture known as a nest. However, to our knowledge there are no
known algorithms to induce the correct nest structure. We present
the first such algorithm, which runs in quadratic time under an ora-
cle model, and we pair it with a matching lower bound.

We then perform experiments on synthetic and real datasets to
validate the algorithm, and show that nested logit over learned nests
outperforms traditional multinomial regression.

Finally, in addition to automatically learning nests, we show how
nests may be constructed by hand to test hypotheses about the data,
and evaluated by their explanatory power.

Keywords:. discrete choice; independence of irrelevant alterna-
tives; logit

1. INTRODUCTION
In this paper, we consider the problem of discrete choice, in

which a user must select one element from a set of non-overlapping
and exhaustive alternatives. The element might be a car to buy, a
flight to take, or an apartment to rent. Our task is to estimate the
likelihood of each choice given a particular slate of alternatives.

The rich literature in this domain begins with Luce’s Axiom of
Choice [19], also referred to as the Independence of Irrelevant Al-

logit is employed. When IIA does not hold, modelers focus pri-
marily on introducing hierarchy to relax IIA via a generalization of
multinomial logit known as nested logit.

To begin with an example, consider the scenario above in which
a new liberal candidate competes with an existing liberal candi-
date, modifying the relative likelihood of the original liberal and
conservative candidates. In a hierarchical model, the universe of
candidates would be represented in a depth-two tree split at the top
level into a “nest” of conservatives and another nest of liberals. In
such a model, a user would first determine whether to vote liberal
or conservative, and then draw a candidate from the selected nest
according to a standard multinomial.2 This hierarchical structure
would correctly explain the change in relative likelihood when an-
other liberal candidate is added to the slate, as the amount of proba-
bility assigned to the liberal nest is fixed independent of the number
of alternatives available within that nest.

Researchers applying nested logit will typically hand-build a “nat-
ural” tree, and then employ statistical techniques to determine how
well this tree models the data. However, in modern large-scale
datasets, there are often sufficiently large numbers of choices avail-
able, that hypothesizing one particular hierarchical relationship is
simply infeasible. In such a situation, data miners would prefer to
induce the structure of the tree directly from data. However, to our
surprise, despite the broad use of nested logit, we have not discov-
ered any work on the problem of nested logit tree induction.

In this paper, we begin the study of this problem. We consider
data that has been drawn from a nested logit model, and develop a
quadratic-time algorithm to recover the nest structure using a nat-
ural oracle model that provides information about the underlying
tree structure. We show a matching quadratic lower bound, so that
under the particular oracle we study, no further improvements in
asymptotic complexity are possible.

With this algorithm in hand, we may then proceed to analysis of
data. We show our algorithm successfully recovers existing nest
structure using a set of synthetic evaluations. We then employ our
algorithm to model real-world datasets. Our algorithm in many
cases unearths trees that in post-hoc evaluation make sense, and
increase likelihood of the data compared to standard multinomial
regression. However, we also discover situations in which nested
logit performs worse than multinomial, and we describe some plau-
sible causes for this phenomenon.

To summarize, our contributions are the following.
(i) We study several choice datasets and develop statistical tests

that operate well for large-scale data with highly heterogeneous
choice sets. Using these tools, we study the prevalence of IIA
in real online datasets. We show that, to our surprise, there exist
complex datasets whose elements seem likely to compete preferen-
tially within particular subsets, for which IIA is an extremely good
model. However, we also show there are datasets with significant
and widespread violation of IIA. Hence, researchers interested in
modeling choice data are well-served to perform tests for the pres-
ence of IIA.

(ii) We develop the first algorithm for nested logit tree induction,
and show that its complexity is optimal. We show that the algorithm
successfully recovers trees on synthetic data.

(iii) We evaluate our algorithm on a range of real datasets, and
show both wins and losses, depending on how well nested logit
actually captures user behavior in these domains. As a result, we
suggest a set of open research directions for the future.

2We describe this two-stage process for model clarity; it is not gen-
erally believed that human decision-makers operate in this way.

2. PRELIMINARIES
We now review standard models from discrete choice theory that

we will use throughout the paper. For a thorough treatment of the
subject, see the books by Train [29] and Ben-Akiva and Lerman [3].

2.1 Multinomial logit
Under the multinomial logit model, the general choice theory

framework stipulates making a selection from a set C of choices,
where the utility of choice i is a random variable Ui:

Ui = Vi + εi,

where Vi is the inherent quality and the εi are i.i.d. following a
Gumbel distribution—formally, the density of the error is f (εi) =

e−εi−e−εi . It is not difficult to show that under a utility-maximization
framework, the probability of selecting choice i is

Pi =
eVi∑

j∈C eV j
. (1)

In other words, the probability of selecting an alternative is simply
proportional to the exponential of the base utility of the item, eVi .
This holds regardless of the choice set C.

While this formulation comes from discrete choice theory, multi-
nomial logistic regression is also a widespread tool in machine
learning [12]. In this domain, one usually has a small, fixed choice
set C, a feature vector x ∈ Rp, regression coefficients βi ∈ R

p for
each alternative in i ∈ C, and chooses item i with probability pro-
portional to eβ

T
i x.3

2.2 Independence of irrelevant alternatives
A property of the multinomial logit model is the “independence

of irrelevant alternatives” (IIA), i.e., the relative probability of some-
one choosing between two options is independent of any additional
alternatives in the choice set. This is a straightforward observation
from Equation 1:

Pi

P j
=

eVi/
∑

k∈C eVk

eV j/
∑

k∈C eVk
=

eVi

eV j
.

The IIA property dates back to Arrow’s work in voting theory [1],
and was first used in choice theory by Luce to derive Equation 1 [19].
Violations of IIA. There are a number of ways that the IIA assump-
tion can be violated. Expanding on our example of liberals and con-
servatives from the introduction, we provide a thought experiment
example following [20] based on our restaurant choice data. Con-
sider someone who equally enjoys both traditional Japanese (TJ)
and Italian (I) cuisine. Assume there is one restaurant of each type
open for business. In this case, the user’s preference is split evenly,
so PTJ/PI = 1. Suddenly, a new sushi bar opens up and begins can-
nibalizing business from the Japanese restaurant. Our restaurant-
goer still enjoys Italian food roughly half the time, but now chooses
equally between the old Japanese restaurant restaurant and the new
sushi bar. Her relative choice probability is now PTJ/PI = 0.5. IIA
is violated in this setting because the relative probability changed
with the introduction of the sushi alternative. Violations of the IIA
assumption have been observed through explicit statistical tests on
real-world preference data [15], preference experiments in psychol-
ogy [24], and biological behavioral studies [18].
Dealing with IIA. While counter-examples to IIA as a choice ax-
iom abound, we are more interested in:
(i) how often IIA is violated;
(ii) how to model the cases where IIA is violated; and
(iii) automatically constructing these models.
3It is standard practice to just consider the probabilities of the first
|C| − 1 alternatives and then set the probability for the last choice
so that the total probability sums to 1.

964

In classical discrete choice theory and machine learning with
only a few alternatives and a fixed or lightly-varying choice set
C, the first issue is of minor importance. In contrast, our datasets
involve selections from a large number of alternatives and from
many different choice sets C. Here, we can evaluate the frequency
of IIA violations in terms of pairs over varying choice sets (see
Section 3). To address the second issue, we turn to the nested logit
model, described in the following section. Finally, we deal with
computational issues in constructing the nested logit model, which
arise from the large number of items that appear in choice sets (see
Section 4).

2.3 Nested logit
A natural way to model the restaurant choice example in the prior

section is to group the Japanese and sushi restaurants into a single
category and use a sequential decision process captured by a tree:

Dinner

Japanese

SushiTraditional Japanese

0.5 0.5
Italian

0.5 0.5

The nested logit model, originally introduced by McFadden [21],
encapsulates this process. In the nested logit, the choices are grouped
into nests (clusters) such that IIA holds within a nest but not nec-
essarily between nests. In our example, we have a Japanese nest
consisting of the traditional Japanese and sushi restaurants. Con-
ditioned on choosing between Japanese restaurants, IIA holds, but
sushi and traditional Japanese cannibalize business from one an-
other. We often refer to the traditional Japanese and sushi alterna-
tives as exchangeable.

Formally, the nested logit model is given by a tree T with a des-
ignated root node. Each non-root node i has an associated utility
Vi and edges are traversed from the root with probabilities relative
to eVi .4 Leaf nodes in the tree correspond to items that can appear
in a choice set and internal nodes are nests of a set of items. If the
choice set precludes an edge from traversal, the relative probability
of that decision is set to 0.

Traditionally, the modeler must go through the following itera-
tive process:

1. Specify a tree structure, using domain knowledge.
2. Learn the parameters of the model.
3. Test to see if the model is appropriate.

The number of trees grows exponentially in the number of items
(leaf nodes). In large datasets, there are too many trees to consider,
making this process infeasible. In this work, we solve this problem
by showing how to automatically construct an appropriate model,
i.e., a tree with edge traversal probabilities, essentially eliminating
the need for input and supervision from the modeler.

3. HOW OFTEN IS IIA VIOLATED?
We now explore how often the independence of irrelevant alter-

natives holds in large discrete choice datasets from the Web (de-
scribed in Section 3.2). To accomplish this, we will bring to bear
standard methods in hypothesis testing.
4Technically, this model is called the hierarchical logit [32] and
is slightly more general than the nested logit model derived from
utility maximization. This is appropriate in our case because we
want the most predictive tree while still modeling cannibalization.
However, we will keep the nested logit terminology since it is more
prevalent in the discrete choice literature.

3.1 Statistical tests for IIA violations
We first describe a battery of statistical tests that quantify IIA

violations. All the tests are of the following flavor: under the null
hypothesis that IIA holds, certain random variables should have the
same distribution, which can be checked by statistical tests. The
fact that our datasets comprise a variety of choice sets and alterna-
tives make these tests applicable. Note that even though these tests
are based on established principles in statistics, their application to
checking for IIA violation is new. Before we derive our tests, we
first set up some notation.

We assume our dataset consists of m item selections s1, . . . , sm

from choice sets C1, . . . ,Cm, where sk ∈ Ck and Ck is a subset of
the set I of all possible items. For our datasets, it is often the case
that |C| � |I|, i.e., the choice sets contain just a few of the many
possible items. Finally, let I(·) be the binary indicator function.

We will assume that each choice set appears several times, i.e.,
there are several i for which Ci are the same. Next, let Ni j,C be the
number of times that item i or j is chosen from choice set C and let
Xi j,C ≤ Ni j,C be the number of times that i is chosen, conditioned on
item i or j being selected. Formally,

Ni j,C =

m∑
k=1

I(sk ∈ {i, j}, Ck = C), Xi j,C =

m∑
k=1

I(sk = i, Ck = C).

Let Pi j,C = Xi j,C/Ni j,C be the probability of choosing i over j in
choice set C. Denote byAi j the collection of unique choice sets C
for which item i or j is selected at least once, i.e.,

Ai j = {Ck | sk ∈ {i, j}}.
Finally, let Pi j be the overall probability of choosing i over j, i.e.,

Pi j =

∑
C∈Ai j

Xi j,C∑
C∈Ai j

Ni j,C
.

All of our tests are based on the following simple observation:

OBSERVATION 3.1. Under the null hypothesis that IIA holds
for items i and j, Pi j,C is the same for any C ∈ Ai j.

We propose four different translations of this observation to statis-
tical hypothesis tests.

Simultaneous binomial (SB). Our first test is based on interpreting
Xi j,C as a sample from a binomial distribution Binom(Ni j,C , Pi j,C).
Provided we have sufficient data,5 we can use a χ2 test on the null
hypothesis that the Pi j,C is the same for all C ∈ Ai j, directly using
Observation 3.1: ∑

C∈Ai j

(
Xi j,C − Pi jNi j,C

)2

Pi jNi j,C
∼ χ2

|Ai j |−1.

This test gives a way to measure the frequency of IIA violations.
We can fix a significance level α and compute the fraction of pairs
(i, j) for which the p-value of the χ2 test statistic is less than α.

Multiple sample binomial (MSB). Based again on Observation 3.1,
instead of simultaneously testing over all choice sets, we can in-
stead compare a single choice set C to the rest. For items i and j
and a choice set C ∈ Ai j, let Ni j,C and Xi j,C be the occurrence counts
in choice sets other than C:

Ni j,C =

m∑
k=1

I(sk ∈ {i, j}, Ck , C), Xi j,C =

m∑
k=1

I(sk = i, Ck , C).

Let Pi j,C = Xi j,C/Ni j,C . Under the null hypothesis that IIA holds
for items i and j, Observation 3.1 implies Pi j,C = Pi j,C . Thus, we
have samples from two distributions, Xi j,C ∼ Binom(Pi j,C ,Ni j,C) and
5A common rule of thumb is that Xi j,C and Pi jNi j,C are both at least
5. The χ2 test may omit the choice sets C where this is not true
but still include them in the estimate of Pi j. Furthermore, Fisher’s
exact test can be used when the sample sizes are small [11].

965

Table 1: Characteristics of the datasets. The choice sets in all
datasets are of size 3, except for SFWORK, which has choice
sets of size 3, 4, 5, and 6. The number of item pairs counts the
number of (i, j) item pairs, where i and j co-occur in at least
one choice set where i or j is selected.

Dataset # selections # items # item # choice
pairs sets

RESTAURANTS 406K 3.77K 2.22K 25.6K
JAPANESECUISINE 42.5K 31 127 634
LASTFMARTISTS 146K 15.5K 3.31K 63.7K
LASTFMGENRE 96.5K 94 258 16.3K
SFWORK 5.00K 6 10 12

Xi j,C ∼ Binom(Pi j,C ,Ni j,C), and we want to test if the success prob-
abilities are the same. This lends itself to another χ2 test statistic:(

Xi j,C − Pi jNi j,C

)2

Pi jNi j,C
+

(
Xi j,C − Pi jNi j,C

)2

Pi jNi j,C
∼ χ2

1. (2)

We now have a test for all pairs (i, j) and each choice set C ∈ Ai j.
This gives us the benefit of identifying which choice sets are caus-
ing IIA violations. In general, this is a significance test for 2 × 2
contingency tables, the nuances of which are covered in a survey
by Yates [34].
Aggregated multiple sample binomial (AMSB). We can also ag-
gregate the p-values for each choice C ∈ Ai j from the MSB test
since Observation 3.1 says that the null hypothesis should hold for
all C. To perform the aggregation, we use the Bonferroni correc-
tion [10]. Let pi j,C be the p-value from the test statistic in Equa-
tion 2. For a fixed significance level α, we reject the IIA null hy-
pothesis for items i and j if

min
C∈Ai j

pi j,C ≤ α/|Ai j|.

We argue that the Bonferroni correction is appropriate. Indeed, we
are looking for clear evidence that any single choice set contains
an alternative that will shift the probability of choosing i over j.
This single strong effect is the exact scenario where the Bonferroni
correction has the most power [6].
Choice set binomial (CSB). Lastly, we consider a test for IIA that
considers two different choice sets C,C′ ∈ Ai j. Under the null hy-
pothesis that IIA holds for items i and j, Observation 3.1 implies
Pi j,C = Pi j,C′ . Thus, we again have samples from two binomial dis-
tributions, Xi j,C ∼ Binom(Pi j,C ,Ni j,C) and Xi j,C′ ∼ Binom(Pi j,C′ ,Ni j,C′)
and want to test if the success probabilities are the same. This again
leads to a standard χ2 test:(

Xi j,C − Pi jNi j,C

)2

Pi jNi j,C
+

(
Xi j,C′ − Pi jNi j,C′

)2

Pi jNi j,C′
∼ χ2

1.

This test gives us a comparison over pairs of choice sets. We can
measure the frequency of IIA violations over items i and j and pairs
of choice sets in which they appear.

3.2 Data
We collected a variety of datasets for our experiments. The

datasets are described below and their relevant characteristics are
listed in Table 1.
RESTAURANTS. This dataset consists of clicks on restaurants from
a panel displayed on the Google search page as a result of structured
queries such as “dinner in Palo Alto.” The panel lists three dis-
tinct restaurants (with links to a page about the restaurant), which
we consider to be the choice set. To avoid position bias on the

screen, we consider the items in the choice set as (restaurant, posi-
tion) pairs. We say that a user makes a selection from the choice set
if she clicks on one of the links to the page of the business entity.
Furthermore, we only consider instances where the user clicks on
a single link. The data is aggregated over instances, so we have no
information about any particular user’s tendency to select certain
items. Finally, we only consider choice sets that appear at least 5
times and pairs of items that appear in at least 5 choice sets.

JAPANESECUISINE. This dataset is derived from the same restau-
rant data. Here, we consider the choice sets to be the cuisine type
of the restaurant, and we restrict the data to choice sets consisting
of three different Japanese cuisine types. (We also include more
general cuisine types, such as “asian fusion” that may encompass
Japanese food.) Again, clicks on a restaurant link are interpreted
as a selection from the choice set. We only keep choice sets that
appear at least 3 times and pairs of items that appear in at least 3
choice sets.

LASTFMARTISTS. This dataset comes from the listening habits of
nearly 1000 users on the music streaming service last.fm [7].6 On
the service, users can select specific songs to listen to. Here, we
say that a user makes a selection when they listen to three different
songs from three different artists in a row and then plays one of
the three songs on the next play. Thus, the choice sets are all of
size three. We consider the choice at the level of the artist, so the
selection is the artist. In order to eliminate any position bias, we
consider the position in the sequence of the three songs as part of
the item. We only keep choice sets that appear at least 3 times and
pairs of items that appear in at least 3 choice sets.

LASTFMGENRE. This dataset comes from lifting the alternatives
in the LASTFMARTISTS dataset to genre. We derive the genre
through tags provided by the users.7 We say that the genre of an
artist is the most commonly provided tag by users, breaking ties by
choosing the most frequently occurring tag overall in the dataset.

SFWORK. This is a travel mode choice dataset derived from trans-
portation preferences of commuters going to work in San Fran-
cisco. The data was collected as part of a survey by the Metropoli-
tan Transportation Commission of California and was analyzed by
Koppelman and Bhat [15]. The items are transportation options:
walking, biking, driving alone, taking public transit, and ride shar-
ing. The choice sets for an individual are the transportation options
available for her commute to work. This data is publicly available.

3.3 Empirical observations
We ran all of the statistical tests from Section 3.1 and measured

the frequency of IIA violations at a significance level of α = 0.05.
(We omitted the SFWORK dataset, which has just a few choice
sets.) Table 2 lists the frequency of violations at this significance
level—we can expect 5% of the tests to be rejected under the null
hypothesis. For the RESTAURANTS dataset, the rejection rate for
the SB, MSB, and AMBSB is slightly above the 5% level, signi-
fying that a small percentage of the data may be violating the IIA
assumption. The JAPANESECUISINE and LASTFMGENRE datasets
exhibit extreme levels of IIA violation—in both cases 30% of the
SB tests are rejected. The LASTFMARTISTS dataset also exhibits
IIA violations, although not quite at this extreme of a level.

Our largest dataset, RESTAURANTS, had the smallest number of
IIA violations, hovering right about the 5% rejection rate. We ex-
plored a number of explanatory causes for the IIA violations using
6The data is available at http://dtic.upf.edu/~ocelma/
MusicRecommendationDataset/lastfm-1K.html.
7The data is available at http://musicmachinery.com/
2010/11/10/lastfm-artisttags2007/.

966

Table 2: Rejection rate of each hypothesis test at signifi-
cance level 0.05 on our datasets. The JAPANESECUISINE and
LASTFMGENRE datasets exhibit extreme violations of IIA.

Test
Dataset SB MSB AMSB CSB

RESTAURANTS 0.087 0.066 0.076 0.041
JAPANESECUISINE 0.325 0.238 0.316 0.093
LASTFMARTISTS 0.106 0.102 0.129 0.049
LASTFMGENRE 0.300 0.143 0.284 0.094

Table 3: Rejection rate of each hypothesis test at significance
level 0.05 on the filtered RESTAURANTS data, where choice sets
that are susceptible to cannibalization (by analyzing metadata)
are discarded. Interestingly, the rejection rates hardly change.

Filter Fraction of Test
data kept SB MSB AMSB CSB

None 1.0 0.087 0.066 0.076 0.041
Cuisine type 0.98 0.082 0.067 0.075 0.041
Price level 0.67 0.079 0.061 0.071 0.039
Star rating 0.94 0.083 0.063 0.070 0.040
Chain 0.83 0.087 0.064 0.073 0.041
Geography 0.94 0.087 0.066 0.072 0.041

additional metadata about the restaurants. Specifically, we applied
various filters to the choice sets in order to remove possible scenar-
ios where cannibalization in business might occur. In other words,
we threw out choice sets C for items i and j if the third alternative k
in C had an opportunity to cannibalize from i or j. Here, this means
that k shares some feature with exactly one of i or j. We applied
the following filters:
Cuisine type. Discard the choice set when i and j have differ-
ent cuisine types and k has the same cuisine type as one of i or j.
Restaurants are labeled with several of a set of 422 tags and we
consider two restaurants to be of the same type if they share a tag.
Price level. Discard the choice set when i and j have different price
levels (at least 1.0 on a scale of 1.0-5.0) and k is at a similar price
level to i or j (difference less than 0.25).
Star rating. Discard the choice set when i and j have a different
star rating (at least 1.0 on a scale 1.0-5.0) and k has a similar price
level to i or j (difference less than 0.5).
Chain. Discard the cases when exactly one of i and j is a chain
restaurant and k is also a chain restaurant.
Geography. Discard the choice set when k is much closer geo-
graphically to one of i or j. Specifically, let dist(i, j) be the distance
between i and j. Discard the choice set when dist(i, j) > 3km and
either dist(i, k) < 0.25 · dist(i, j) and dist(j, k) > 0.75 · dist(i, j) or
dist(j, k) < 0.25 · dist(i, j) and dist(i, k) > 0.75 · dist(i, j).

We note that we could also only run our tests on the choice sets
where the cannibalization might occur. However, if the alterna-
tives only cannibalize from either i or j, then this approach will
not work. The rejection rate on each filtered dataset is provided in
Table 3. Interestingly, the rejection rates hardly change for any of
these filters. This suggests that obvious competition among restau-
rants such as type of food, quality, price, and geography are not
actually creating violations of IIA. This can be interpreted as good
news—a multinomial logit will be a good model for user behavior.

The statistical tests are also useful for identifying which pairs
of items are most sensitive to alternative choice sets. The p-value
exactly measures the likelihood of choices under the null hypoth-
esis of IIA, so the smallest p-values correspond to the items that

Table 4: The 5 item pairs in the JAPANESECUISINE and
LASTFMGENRE datasets that are the largest violators of IIA
(least likely to satisfy IIA according to the p-value from the test
statistic of SB). For the LASTFMGENRE dataset, the item for-
mat is genre_position, where position indicates the sequential
slot in the three songs played.

Item pair SB p-value

Japanese (general), sushi 1e-16
Okonomiyaki, teppan grill 1e-16
Asian, sushi 5e-12
Monja, Okonomiyaki 3e-11
Japanese (general), Japanese izakaya 1e-10

punk_1, rock_3 1e-16
punk_2, rock_3 1e-16
rock_1, electronic_3, 2e-10
rock_2, indie_3, 9e-09
rock_1, singer-songwriter_3 4e-07

are least likely to satisfy IIA. Table 4 lists the 5 item pairs with
the smallest p-values for the SB test in the JAPANESECUISINE and
LASTFMGENRE datasets. We can interpret these as the largest vi-
olators of IIA in the dataset. Interestingly, in the LASTFMGENRE
dataset, “rock” appears in all of the top violators, whereas in the
JAPANESECUISINE dataset, we see that “Japanese (general)” ap-
pears twice, once with sushi and once with Japanese izakaya. In
this case, cannibalization due to a general category makes sense.
The introduction of a third, descriptive alternative is likely to can-
nibalize from the existing descriptive cuisine type. This suggest the
following tree:

Specific cuisine

Japanese izakayaSushi

Japanese (general)

First, the user decides on general Japanese food or a more specific
cuisine type. Subsequently, users preferring more specific cuisine
can choose from those alternatives. In the following sections, we
discuss methods for automatically constructing these types of trees.

4. RECOVERING THE NESTED LOGIT TREE
We now switch gears and discuss how to recover nested logit

structure in a dataset. In this section, we focus on theory and algo-
rithms. In Section 5, we test the algorithms on synthetic datasets,
and in Section 6 we test the algorithms on real-world datasets.

This section is organized as follows. We first define (Section 4.1)
a powerful tree oracle which will reveal in a single (constant-time)
query whether an item k cannibalizes8 from either items i or j.
Based on this oracle, we show (Section 4.2) how to recover a nested
logit tree in quadratic time. We give a matching lower bound (Sec-
tion 4.3), showing that this result is asymptotically optimal. We
then show (Section 4.4) how the tree oracle may be implemented
using queries, and observe that for nested logit trees that are well-
separated in a technical sense defined below, the oracle requires
only logarithmically many queries to the underlying choice process
on slates of 2–3 items (Section 4.5). The quadratic lower bound
continues to hold in this setting. We then give a simpler but slower
8We use the term cannibalization to encompass IIA violations, but
there are a number of ways that violations can occur beyond those
discussed in Section 3. See, for example, the work of Simonson
and Tversky [26].

967

greedy algorithm (Section 4.6) that we implement in practice for
our experiments. Finally, we show (Section 4.7) how to learn the
edge weights of the tree to complete the specification of the nested
logit process.

Before proceeding, we require some notation. Let 1, 2, . . . ,N de-
note the items in the dataset. We use the following convenient set
representation of the nested logit tree. The leaf nodes are singleton
sets consisting of a single item and internal nodes are sets whose el-
ements are the children. With this set representation, the root node
captures the entire tree structure. For instance, in our restaurant
example from Section 2.2, the tree is represented by the root node
{{Italian}, {{Traditional Japanese}, {Sushi}}}.

4.1 Tree oracle model
We now define the tree oracle used in our first algorithm. Sec-

tion 4.4 discusses how to implement this oracle, and Section 4.5
shows how the oracle call may be implemented in logarithmic time
for well-behaved trees.

Let lca(i, j) denote the least common ancestor of nodes i and j
in the tree and depth(i) denote the depth of node i from the root.
Given nodes i, j, and k, the tree oracle Oracle(i, j, k) says which of
the following is true:

1. EQUAL: k is an irrelevant alternative for i and j, which is true
if and only if lca(i, k) = lca(j, k).

2. HIGHER: k is a relevant alternative and cannibalizes from
option i, which is true if and only if we have depth(lca(i, k)) >
depth(lca(j, k)).

3. LOWER: k is a relevant alternative and cannibalizes from op-
tion j, which is true if and only if we have depth(lca(i, k)) <
depth(lca(j, k)).

Here k can be either a single item (if it is a leaf node) or several
items (if it is an internal node).

4.2 A quadratic-time algorithm
We now present a quadratic-time algorithm for recovering the

nested logit tree assuming that the tree oracle is available. Later,
we show in Proposition 4.1 that this algorithm is asymptotically
optimal. Before we describe the algorithm, we introduce some ad-
ditional notation. For any pair of leaf nodes i and j in the tree,
define the sets of alternatives that cannibalize from either i or j:

S i = {leaf nodes k | Oracle(i, j, k) returns HIGHER},
S j = {leaf nodes k | Oracle(i, j, k) returns LOWER}.

We also define the set of sibling irrelevant alternative nodes whose
least common ancestor with i and j is the same as lca(i, j):
S s = {leaf nodes k | Oracle(i, j, k),Oracle(i, k, j) return EQUAL}.

Finally, we define the set of irrelevant alternative nodes for which
the least common ancestor with nodes i and j is smaller in depth
than lca(i, j):

S ∅ = {leaf nodes k | Oracle(i, j, k) returns EQUAL and
Oracle(i, k, j) returns HIGHER }.

We note that for the leaf nodes k ∈ S ∅, Oracle(k, j, i) will return
LOWER. These four subtrees provide a complete decomposition of
the leaf nodes in the tree.

The basic steps of the reconstruction algorithm are as follows.
First, choose any two leaf nodes i and j and identify the decom-
position of leaf nodes into S i, S j, S s, and S ∅. Then, recursively
construct the subtrees formed by S i, S j, and S s. Finally, merge the
subtree S i ∪ S j ∪ S s into a new leaf node. This merged node and
the nodes in S ∅ form a new set of leaf nodes, and the algorithm

Figure 1: The decomposition of the leaf nodes (processed sub-
trees). Algorithm 1 recursively constructs the trees Ti, T j, and
Ts from the sets S i, S j, and S s. These trees are merged into a
new leaf node, which is included with the other leaf nodes in S ∅.

Algorithm 1 Algorithm for recovering nested logit tree structure.
The leaf nodes are items and each internal node is the set with ele-
ments as its children.

function CONSTRUCTTREE(items 1, 2, . . . ,N)
Leaf nodes T = {{1}, {2}, . . . , {N}}.
while |T | > 1 do

Choose any two nodes i and j from T .
S i = {k ∈ T | Oracle(i, j, k) returns HIGHER}
S j = {k ∈ T | Oracle(i, j, k) returns LOWER}
S s = {k ∈ T | Oracle(i, j, k),Oracle(i, k, j) return EQUAL}
S ∅ = {k ∈ T | Oracle(i, j, k) returns EQUAL,

Oracle(i, k, j) returns HIGHER}}
Ti = CONSTRUCTTREE(S i)
T j = CONSTRUCTTREE(S j)
Ts = CONSTRUCTTREE(S s)
T = {Ti,T j,Ts} ∪ S ∅

end while
return T

end function

continues (see Figure 1). The above steps are constructed formally
in Algorithm 1.
Complexity analysis. We now show that the algorithm only re-
quires a quadratic number of queries to the oracle and a quadratic
number of operations. The key components to the algorithm are
(1) classify subtree nodes S i, S j, S s, and S ∅, (2) recurse on S i, S j,
and S s, (3) merge subtrees, (4) recurse on the remaining tree. As
shown above, the first step requires a linear number of calls to the
oracle. It takes at most linear time to form the node that contains
the items in S i ∪ S j ∪ S s, since it only needs to attach to at most a
linear number of nodes (the children of the roots of S i, S j, and S s).
To analyze the recursion, let T (N) be the time required to solve a
problem instance with N leaf nodes and denote Ni = |S i|, N j = |S j|,
and Ns = |S s|. The recursion satisfies

T (N) ≤ T (Ni) + T (N j) + T (Ns) + T (N − Ni − N j − Ns) + O(N).
Plugging in T (N) = O(N2) satisfies the inequality. We note that it
is possible to improve the analysis in the average case, following
the average-case analysis of, for example, quicksort [9].

4.3 A quadratic-time lower bound
We now show a lower bound that matches the algorithm: any de-

terministic tree reconstruction algorithm based on the oracle model
must query the oracle at least a quadratic number of times.

PROPOSITION 4.1. Any deterministic algorithm needs Ω(N2)
queries to the tree oracle to reconstruct the nested logit tree.

PROOF. Suppose there exists an algorithm that uses o(N2) queries.
Since there are N leaf nodes, there must be some pair of leaf nodes
i and j such that there was no query that contains i and j as argu-
ments. We claim that such an algorithm cannot distinguish between
the following two trees:

968

(i) T1 is a star: {{1}, . . . , {N}}.
(ii) T2 is the same as T1 but replaces the edges from the root to i
and j with an edge to {{i}, { j}}.
Indeed, any query containing node i as an argument with any two
other arguments not equal to j returns EQUAL (the root is the lca).
The same holds when j is an argument but not i.

4.4 Implementing the tree oracle
To implement the oracle, we use classical hypothesis testing. Re-

call that the nested logit tree is defined by leaf nodes of singleton
sets of the entire item population and internal nodes that correspond
to the union of their children. We first consider queries that involve
only leaf nodes in the tree (i.e., queries about individual items). We
define Pi j to be the pairwise preference of item i over item j, i.e.,

Pi j = Pr (s(C) = i | C = {i, j}) ,
where s(C) is the random selection over the choice set C. The or-
acle implementation is based on the following simple observation.

OBSERVATION 4.2. Alternative k is an irrelevant alternative of
i and j if and only if including it in the choice set does not affect the
pairwise preference of item i over item j. Formally, Oracle(i, j, k)
returns EQUAL if and only if

Pi jk := Pr (s(C) = i | s(C) ∈ {i, j}, i, j, k ∈ C) = Pi j. (3)

We do not know whether Equation 3 holds, but we do observe sam-
ples Xi jk ∼ Binom(Pi jk,Ni jk) and Xi j ∼ Binom(Pi j,Ni j), where

Xi jk =

m∑
l=1

I(i, j, k ∈ Cl) · I(sl = i) Ni jk =

m∑
l=1

I(i, j, k ∈ Cl)

Xi j =

m∑
l=1

I(Cl = {i, j}) · I(sl = i) Ni j =

m∑
l=1

I(Cl = {i, j}).

With these observations, we can again rely on classical hypothesis
tests to determine a confidence level for Pi j = Pi jk. In particu-
lar, we use the χ2 test for the MSB test detailed in Section 3.1.
Practically, we can fix some significance level α, and Oracle(i, j, k)
returns EQUAL if the p-value is greater than α.9 If the test rejects
at the α level, the oracle returns HIGHER if Pi j < Pi jk and LOWER
if Pi j > Pi jk. Alternatively, we can also apply significance tests to
the null hypotheses HHIGHER : Pi j < Pi jk and HLOWER : Pi j > Pi jk.

When querying the oracle with sets of items, we have to be
slightly more careful about the test. Let I, J, and K be sets of
items with i ∈ I, j ∈ J, k ∈ K. We have to avoid contamination of
the estimate Pi jk from alternatives that appear in I or J. The reason
is that the presence of these alternatives may affect the probability
of selecting item i over item j. We compare Pi j against the estimate
for Pi jk that discards all choice sets C containing elements of I or J
other than i and j. Formally, we estimate Pi jk by
Pi jk := Pr (s(C) = i | s(C) ∈ {i, j}, k ∈ C, C ∩ I = {i}, C ∩ J = { j}) .
Again, we observe a sample of a binomial with success probability
equal to Pi jk and run the same χ2 test.

4.5 Well-separated nested logit trees
We now observe that for “well-behaved” trees, a nearly-quadratic

time algorithm can recover the nested logit tree using only the abil-
ity to ask for a random choice from a slate of 2–3 items.

Note that the goal of the oracle is to differentiate situations in
which Pi jk = Pi j from situations in which they are not equal. We
say a nested logit tree is ε-well-separated if for all i, j, k we have
|Pi jk −Pi j| < (0, ε]. That is, the value of Pi jk is either identical to Pi j

9If α = 0, the null hypothesis is never rejected and Algorithms 1
and 2 recover a multinomial logistic model.

or different by more than ε. When ε is clear from context, we will
simply refer to the tree as well-separated.

If a nested logit tree is well-separated, a constant number of
choices C(ε, δ) are sufficient to determine the tree oracle’s response
for i, j, k with failure probability at most δ. Hence, given O(log n)
choices per oracle invocation, Algorithm 1 may be implemented
with only O(n2 log n) choices, with overall failure probability (in-
verse) polynomially small in n.

4.6 Greedy algorithm
We now present an alternative greedy algorithm for constructing

the nested logit tree. We introduce this algorithm for the follow-
ing reasons. First, and most importantly, it is more effective on
sparse, real-world datasets where we do not have sufficient sam-
ples to completely implement the oracle (see Section 6.1). Second,
it is considerably simpler to implement than Algorithm 1.

The greedy algorithm is based on the idea that it is simple to test
whether or not two leaf nodes are siblings in the nested logit tree.
This is described by the following proposition.

PROPOSITION 4.3. Leaf nodes i and j are siblings in the nested
logit tree if and only if Oracle(i, j, k) returns EQUAL for all other
leaf nodes k.

PROOF. If i and j are siblings and k is any leaf node, then we
have lca(i, k) = lca(parent(i), k) = lca(parent(j), k) = lca(j, k) and
therefore Oracle(i, j, k) will return EQUAL. Now suppose that i
and j are not siblings. Consider the siblings of node i. If i has
all leaf siblings, then for any such one k, Oracle(i, j, k) will return
HIGHER. Otherwise, i has internal nodes as siblings. Each of these
subtrees has at least two leaf nodes. If j is in one of the subtrees,
then for any leaf node k , j in that subtree, Oracle(i, j, k) will re-
turn LOWER. If j is not in one of the subtrees, then for any leaf node
k from any of the subtrees, Oracle(i, j, k) will return HIGHER.

The greedy algorithm finds all siblings of some node i, merges
these nodes into a new leaf node, and continues recursively. Al-
gorithm 2 formally describes the procedure. We note that this al-
gorithm can be implemented by an alternative oracle that imple-
ments the IsSibling function that determines whether or not
two nodes in the tree are siblings. We will use this fact to implement
the algorithm on sparse data. Even though the worst-case complex-
ity of the greedy algorithm is O(N4), for the low-depth trees we
encounter in our data, it is very efficient.

4.7 Learning edge probabilities
Once we have recovered the nested logit tree T , we must deter-

mine the probability of selecting an item given a set of alternatives.
Recall that we can represent each edge in T as a relative probability.
The choice set determines which edges in the tree can be traversed.

We represent each selection si from choice set Ci as a collection
of d edge selections in T , (si1,Ci1), . . . , (sid,Cid), where d = d(si)
is the depth of the item in the tree. The probability of traversing
each edge f is eV f , where V f is the utility of the head node of the
edge. Consequently, we learn a multinomial logistic model for each
node in the tree, where the choice sets vary over the samples. The
negative log-likelihood over the data is

−LL({(si j,Ci j)} | {V f }) = −

m∑
i=1

d(si)∑
j=1

Vsi j + log

∑
k∈Ci j

eVk

 . (4)

Equation 4 is the sum of a linear term and a log-sum-exponential
term on a subset of the variables, which is well-known to be convex
over the domain RN [5].

969

Algorithm 2 Greedy algorithm for recovering nested logit tree
structure. The leaf nodes are items and each internal node is the
set with elements as its children.

function GREEDYCONSTRUCTTREE(items 1, 2, . . . ,N)
Leaf nodes T = {1, 2, . . . ,N}.
while |T | > 1 do

Choose any node i from T .
N = { j ∈ T | ISSIBLING(i, j)}
if |N | > 1 then

T = (T \ N) ∪ {N}
end if

end while
return T

end function
function ISSIBLING(nodes i, j)

for k ∈ T \ {i, j} do
if Oracle(i, j, k) , EQUAL then

return false
end if

end for
return true

end function

To learn the parameters V f , we use gradient descent on the neg-
ative log-likelihood in Equation 4. Let C(f) be the set of all choice
sets in which edge f is an option, and let N f be the number of
times that f is traversed—formally, C(f) = {Ci j | f ∈ Ci j} and
N f =

∑
Ci j∈C(f) I(si j = f). Then the partial derivatives with respect

to the log-likelihood are given by
∂LL
∂V f

= −N f + eV f
∑

Ci j∈C(f)

1∑
k∈Ci j

eVk
.

5. EXPERIMENTS ON SYNTHETIC DATA
We now test our recovery algorithms on synthetic data. Success-

ful recovery requires sufficient fidelity to the data. This require-
ment is two-fold. First, we need pairwise and multi-way prefer-
ence data. By pairwise preference data, we mean that for items i
and j, we require knowledge about the probability of selecting each
item if these are the only available options. Similarly, multi-way
preference data are selections among more than two items. Sec-
ond, there must be sufficient samples to use the hypothesis tests of
Section 4.4. We employ Algorithm 2 to recover synthetically gen-
erated data and empirically evaluate the relationship between the
number of samples and the degree of correctness in the recovered
tree. In real-world datasets, we may not meet these requirements
on the data in order to guarantee recovery. We defer to Section 6
for dealing with these issues.

Figure 2 shows the tree structure and edge probabilities of our
synthetic tree. To generate a sample from the tree, we first uni-
formly at random choose the size of the choice set from {2, 3, 4}.
After, we uniformly at random choose the items that appear in the
choice set from the item set {A, B,C,D, E, F,G,H, I}. Finally, the
selection is chosen according to the edge probabilities in the tree.
We used this procedure to generate four datasets of different sizes.
The number of selections were βN2, where N = 9 is the number of
items in the data set and β = 10, 100, 500, 1000.

We used the oracle with significance level α = 0.05 on each syn-
thetic dataset. The recovered trees are in Figure 3. We see the effect
of samples size on the recovery of the tree. When β = 10, there is
too little data to recover the tree. When β = 100, the tree recovers
the nest structure of {A, B,C}, {D, E}, and {H, I}. However, there is

ABCDEFGHI

FGHI

HI

IH

.40 .60

FG

GF

.20 .80

.50 .50

DE

ED

.30 .70

ABC

CBA

.50

.20

.30

.30
.30

.40

Figure 2: Tree for generating synthetic data. Figure 3 shows
the trees recovered by our algorithm for various sample sizes.

too little data for selections of item G, and it is put in the nest with
A, B, and C. The tree recovered when β = 500 is nearly the true
tree, but is missing the extra hierarchy of the node {{F,G}, {H, I}}
that contains {F,G} and {H, I} as children. Finally, when β = 1000,
we recover the full tree structure, up to small estimation errors in
the edge probabilities.

6. EXPERIMENTS ON REAL-WORLD DATA
We now recover nested logit trees from real-world datasets. As

discussed above, data sparsity changes the way in which we run the
recovery algorithms, and we discuss these changes in Section 6.1.
Our recovered trees reveal an interesting mixture of results.

6.1 Dealing with data sparsity
Compared to the synthetic data, our real-world datasets are sparse

in several ways. First, we may lack the pairwise preferences to
run the hypothesis tests described in Section 5. For example, the
JAPANESECUISINE dataset only contains selections from choice
sets of three items. Second, we may not have sample coverage over
all items. In other words, there may be items i, j, and k that do
not co-occur in any choice set. Finally, we may not have sufficient
samples to reject hypotheses at a meaningful significance level.

Nevertheless, we can still attempt to recover a tree using the
greedy algorithm (Algorithm 2). The crucial insight is that we can
still test whether or not two nodes are siblings in the tree, which is
the only functionality needed by the greedy algorithm. The follow-
ing observation is derived from Proposition 4.3:

OBSERVATION 6.1. Two leaf nodes i and j are siblings in the
nested logit tree if Pi jk is the same for all leaf nodes k , i, j.

This observation is analogous to the derivation of the SB test
in Section 3.1. Let K be the set of nodes k that appear in choice
sets with i and j. Then we observe samples Xi jk from binomials
Binom(Pi jk,Ni jk), where Pi jk =

∑
k∈K Xi jk/

∑
k∈K Ni jk, and we can

employ the χ2 test statistic used for the SB test.
This test tells us whether two leaf nodes i and j should be sib-

lings, but it does not say whether or not the items corresponding
to these nodes should be in their own nest or both be children of
the root. We make one more observation that gives a necessary and
sufficient condition for two leaf nodes belonging to a nest.

OBSERVATION 6.2. In the nested logit model, sibling leaf nodes
i and j are not children of the root if and only if there exists some
node k such that Oracle(i, k, j) returns HIGHER or Oracle(j, k, i)
returns HIGHER.

Combining Observations 6.1 and 6.2 gives us a method to con-
struct nests. To summarize, the process is:
IIA test: Check if the two items i and j satisfy IIA by looking at

970

ABCDEFGHI

BDH

HDB

.31

.31

.38

ACEFGI

IGFECA

.21

.13 .14 .15 .19

.17

.60 .40

ABCDEFGHI

HI

IH

.41 .59

F

DE

ED

.32 .68

ABCG

GCBA

.32

.19 .24

.26

.30

.25

.21

.24

ABCDEFGHI

HI

IH

.40 .60

FG

GF

.19 .81

DE

ED

.30 .70

ABC

CBA

.49

.21

.30

.24
.24 .26

.26

ABCDEFGHI

FGHI

HI

IH

.40 .60

FG

GF

.20 .80

.50 .50

DE

ED

.30 .70

ABC

CBA

.51

.20

.30

.30
.30

.40

Figure 3: Recovered trees from synthetic data with βN2 samples, β = 10, 100, 500, 1000 (left to right). As the number of samples
increases, the recovered tree becomes closer to the underlying tree generating the data (see Figure 2).

Table 5: Negative log-likelihood for the recovered nested logit
and multinomial logit on real-world datasets. The better model
is in bold.

Negative log-likelihood
Dataset nested logit multinomial logit

SFWORK 4126 4132
JAPANESECUISINE 46217 46272
LASTFMGENRE 67358 62817

SYNTHETIC (81K samples) 82181 85138

the probability of selecting i over j over all choice sets in which the
items appear. This is formalized by not rejecting the null hypothe-
sis that i and j satisfy IIA.
Cannibalization test: If IIA is not rejected, check if there is a third
alternative k such that introducing j as an alternative decreases the
probability of selecting i over k (or vice versa).

There are several practical heuristics that can be used with these
tests. For example, we may require that the sibling nodes occur
in at least q different choice sets. We can also set the significance
level for the cannibalization test to be smaller than the significance
level for the IIA test to be conservative about building nests.

6.2 Recovery results
Using the strategies for dealing with sparse data described above,

we used the greedy algorithm to recover nested structure in our
real-world datasets. Table 5 lists the negative log-likelihood of
the recovered nested logit and multinomial logit for the SFWORK,
JAPANESECUISINE, and LASTFMGENRE datasets. (We also list
the corresponding results on the synthetic data for comparison.) We
observe an interesting mix of results. Recovered nested logit has
better likelihood for the SFWORK and JAPANESECUISINE dataset,
but a worse likelihood for LASTFMGENRE dataset. Below, we dis-
cuss why this is the case and highlight some features of the recov-
ered tree structures.
SFWORK. The recovered nested logit tree from the greedy algo-
rithm is as follows.

public transitwalk

.56 .44

shared ride
(3+ people)

bike

.59 .41

shared ride
(2 people)

drive alone

.74

.09

.04
.14

The tree has two nests: one consisting of biking and shared rides
between 3 or more people and the other consisting of walking and
public transit. The latter nest can roughly be interpreted as “no

equipment needed”—walking and public transit are the only op-
tions that do not require ownership of an item (car or bike). Inter-
estingly, the two shared ride options do not appear in the same nest.
This dataset suffers from data sparsity in the sense that the options
available to individuals are correlated. For example, many people
who can walk to work also have biking as an option.
JAPANESECUISINE. Figure 4 shows the recovered nested logit
tree. The tree has natural nesting structure. For example, “Japanese
(general)” and “regional Japanese” and “sushi” and “unagi” form
nests, and these cuisine specifiers have natural exchangeability. The
algorithm also discovers a nest consisting of “teppan grill” and
“monja”, two specific cuisines that are not obviously exchangeable.
Overall, there is not much nesting structure—25 of the 31 cuisine
types are just children of the root. Interestingly, natural nests such
as “asian” and “pan asian” or “Japanese izakaya” and “modern iza-
kaya” do not appear.
LASTFMGENRE. The greedy algorithm finds several levels of
nesting structure, as illustrated in Figure 4. We see that several
of the siblings are natural: classic rock and progressive rock, in-
dustrial and rock, singer-songwriter and alternative. We note that
female vocalist and pop appear as siblings twice (for two different
positions in the play sequence). Unfortunately, however, the likeli-
hood of the recovered nested logit is still worse than the multino-
mial logistic. The reason is that these pairs are not completely ex-
changeable in the dataset. The nested logit tree forces us to assign
a relative probability to a given nest. Although the siblings satisfy
IIA and also exhibit cannibalization, we are really only guaranteed
a likelihood improvement on choice sets that include both choices.
Put another way, if i and j are siblings in the recovered nested logit
tree, we will only see a likelihood improvement on the choice sets
C = {i, j, k} containing both i and j. In choice sets C = {i, k, l}
that only contain one of the siblings, we are forced to represent
the probability of selecting i as the probability of selecting the nest
{i, j}. Thus, the likelihood can be worse if the two items are not
completely exchangeable.

In some sense, our algorithm is too greedy and forms nests when
they may not be appropriate. One way to remedy this problem is to
collapse any nest that does not improve likelihood. This would at
least provide a guaranteed improvement over the multinomial logit
model, which would arise from collapsing every nest. We leave
efficient algorithms for this process as future work.

7. OTHER RELATED WORK
We now survey some additional related work. We first note that

the nested logit is a popular model from a broader class of “gener-
alized extreme value” models that also includes the paired combi-
natorial logit [31] and the heteroskedastic logit [28]. We choose to
study the nested logit because of its simplicity, interpretability, and
widespread use.

In the study of IIA, there are three classical statistical tests for
the multinomial logit model. First, McFadden et al. [22] proposed

971

.47
.53

.03

.38

.04

.03

.03

.03

.04.0
4

.0
3

.0
3

.03

.05

.03

.03

.62

.03

.39

.48

.07

.04

.0
4

.03

.04

.03

.05

.04

.0
4

.03

.04

.05

.52
.0

3

.61

pan asian
Japanized western food

sushi

Japanese (general)

casual Japanese style
asian

regional Japanese

fugu
ramen

asian fusion
Japanese hot pot

oden

kyoto cuisine

shabu shabu

mordern izakaya

tempura dish

casual sushi

hot pot
okinawan

unagi

Japanese izakaya
high quality Japanese

yakiniku
kaiseki

monja

Japanese curry

teppan grill

okonomiyaki
shabu shabu and sukiyaki

authentic Japanese
yakitori

.32

.1
8

.67

.04

.24

.31

.71

.05

.49

.33 .70

.06

.37

.21

.51

.06

.04

.79

.30

.49

.70

.23 .05

.08

.67

.52
.20

.59 .06

.16

.30

.24

.02

.34

.19

.48

.66

.04

.30

.53

.25

.70

.20

.75

.69

.06

.63

.12

.33

.0
6

.02

industrial_1

punk_3
punk_2

folk_2

female_vocalists_2

female_vocalists_3

emo_2

rock_1

rock_2
rock_3

progressive_rock_2
progressive_rock_3

pop_1

pop_3pop_2

grunge_2

classic_rock_3

classic_rock_2

singer-songwriter_1

singer-songwriter_2

female_vocalists_1

hard_rock_3
hard_rock_2

indie_3

indie_2

indie_1

electronic_2

electronic_1

hip-hop_3

hip-hop_2

seen_live_2

alternative_3

alternative_2

metal_2

Figure 4: Top: Nest structure for the JAPANESECUISINE
dataset. The tree contains sensible nests such as {sushi, unagi}
and less obvious structure, such as the {teppan grill, monja}
nest. The recovered nested logit model has better likelihood
compared to the multinomial logit model (see Table 5). Bot-
tom: Nest structure for the LASTFMGENRE dataset (leaf node
children of the root are omitted). The names are of the for-
mat genre_position, where position indicates the position in the
sequence of plays. The tree contains several sensible pairings
(e.g., singer-songwriter_1 and alternative_3), but does not im-
prove upon the likelihood of the multinomial logit model.

a likelihood ratio test on two models—a full model that accounts
for all of the variables and a restricted model that only considers
a subset. Small and Hsiao provide a modified version of the Mc-
Fadden test to avoid asymptotic bias towards accepting the null hy-
pothesis [27]. An alternative test proposed by Hausman and Mc-
Fadden [13] uses a Hausman test [14] to compare the estimated
parameters from the full and restricted models. Cheng and Long
survey and empirically evaluate these tests [8].

These tests can be adapted to test whether a nested logit model
satisfies the modified IIA assumptions governed by the nested logit
tree [15]. However, these tests can only reject the validity of a fixed
model. In other words, given a proposed nested logit tree structure,
we can test whether or not the data follows that model. This gives
no meaningful way to construct the nested logit tree, and a model
must be proposed from intuition and then tested. In this work, we
have presented an algorithm to automatically construct the nested
logit tree from data. Other work in this direction includes learning
Markov chain approximations for choice models [4].

There are also several studies of choice models for applications
involving web data. Sheffet et al. predict when the click through
rate of items on an e-commerce web site will change due to changes
in the slate of alternatives displayed on the page [25]. Kumar et al.
frame several user choice inference problems on the web as a prob-
lem of determining transition probabilities in a Markov chain when
given the stationary distribution [17]. In the domain of recom-
mender systems, Yang et al. employ user choice models to improve
the performance of collaborative filtering algorithms [33]. Finally,
through the analysis of map search logs, choice models have been
developed to characterize how users select restaurants [16].

8. DISCUSSION AND CONCLUSIONS
In this paper we study the veracity of the IIA axiom in choice

theory. We develop robust statistical tests for eliciting the presence
of IIA and use it to analyze the prevalence of IIA in several real-
world datasets. For the cases where IIA is violated, as in classical
discrete choice theory, we resort to modeling the choice using a
nested logit model. We develop an efficient algorithm to learn the
tree representing the model by abstracting an oracle that answers
queries about the structure of a tree. Under this oracle, we derived
an optimal algorithm for the recovery of a nested logit tree. Af-
ter recovering the tree structure, learning the remaining parameters
of the model (the edge traversal probabilities) is a simple convex
optimization problem. To our knowledge, this is the first efficient
algorithm for learning a nested discrete choice model.

One crucial component to the robustness of our implementation
of the oracle model was the availability of pairwise comparisons,
i.e., user preferences when presented with a choice set of just two
items. This is an important observation for experimental design
when investigating discrete choice modeling. On the web, where
experiments can be large and served automatically, this observation
is particularly important.

The results of our algorithm on real-world datasets were mixed.
In all cases, the recovered nests made sense in terms of item ex-
changeability; however, likelihood only improved in some of the
datasets. The largest omission from our models is the variance in
per-user preferences. Classical discrete choice models have ad-
dressed this problem theoretically, but the relevant issue is data
sparsity—we do not have many samples for an individual. For
example, the SFWORK dataset only contains one survey response
per person and the JAPANESECUISINE dataset had no information
about the users. One relevant direction for future work is to au-
tomatically cluster users and learn a nested logit model for each
cluster. Alternatively, more sophisticated global models may also
work well. We suspect that existing generalizations of the nested
logit, such as overlapping nests [2, 30], could work well. However,
it is not obvious how our formal results on nest recovery from the
oracle model generalize to these models. This provides an interest-
ing problem for future work.

Acknowledgments. We thank the reviewers for their suggestions.

9. REFERENCES
[1] K. J. Arrow. Social Choice and Individual Values. Yale

University Press, first edition, 1951.
[2] M. Ben-Akiva and M. Bierlaire. Discrete choice methods and

their applications to short term travel decisions. In Handbook
of Transportation Science, pages 5–33. Springer, 1999.

[3] M. E. Ben-Akiva and S. R. Lerman. Discrete Choice
Analysis: Theory and Application to Travel Demand. MIT
Press, 1985.

972

[4] J. Blanchet, G. Gallego, and V. Goyal. A Markov chain
approximation to choice modeling. In EC, pages 103–104,
2013.

[5] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[6] E. Candes. STATS 300C notes.
http://statweb.stanford.edu/~candes/
stats300c/Lectures/Lecture2.pdf. Accessed:
Oct. 10, 2015.

[7] Ò. Celma Herrada. Music Recommendation and Discovery in
the Long Tail. PhD thesis, Universitat Pompeu Fabra, 2009.

[8] S. Cheng and J. S. Long. Testing for IIA in the multinomial
logit model. Sociological Methods & Research,
35(4):583–600, 2007.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, third edition, 2009.

[10] O. J. Dunn. Multiple comparisons among means. Journal of
the American Statistical Association, 56(293):52–64, 1961.

[11] R. A. Fisher. On the interpretation of χ2 from contingency
tables, and the calculation of p. Journal of the Royal
Statistical Society, pages 87–94, 1922.

[12] J. Friedman, T. Hastie, and R. Tibshirani. The Elements of
Statistical Learning. Springer, 2001.

[13] J. Hausman and D. McFadden. Specification tests for the
multinomial logit model. Econometrica: Journal of the
Econometric Society, pages 1219–1240, 1984.

[14] J. A. Hausman. Specification tests in econometrics.
Econometrica: Journal of the Econometric Society, pages
1251–1271, 1978.

[15] F. S. Koppelman and C. Bhat. A self instructing course in
mode choice modeling: multinomial and nested logit models.
US Department of Transportation, Federal Transit
Administration, 31, 2006.

[16] R. Kumar, M. Mahdian, B. Pang, A. Tomkins, and
S. Vassilvitskii. Driven by food: Modeling geographic
choice. In WSDM, pages 213–222, 2015.

[17] R. Kumar, A. Tomkins, S. Vassilvitskii, and E. Vee. Inverting
a steady-state. In WSDM, pages 359–368, 2015.

[18] T. Latty and M. Beekman. Irrational decision-making in an
amoeboid organism: transitivity and context-dependent
preferences. Proceedings of the Royal Society of London B:
Biological Sciences, 278(1703):307–312, 2011.

[19] R. D. Luce. On the possible psychophysical laws.
Psychological Review, 66(2):81, 1959.

[20] D. McFadden. Conditional logit analysis of qualitative
choice behavior. In Frontiers in Econometrics. Academic
Press, 1973.

[21] D. McFadden. Modelling the choice of residential location.
In A. Karlqvist, L. Lundqvist, F. Snickers, and J. Weibull,
editors, Interaction Theory and Planning Models, pages
75–96. North Holland, 1978.

[22] D. McFadden, W. B. Tye, and K. Train. An application of
diagnostic tests for the independence from irrelevant
alternatives property of the multinomial logit model.
Transportation Research Board Record, pages 39–45, 1977.

[23] Nobel Media AB 2014. The Prize in Economic Sciences
2000 - Press Release. http://www.nobelprize.org/
nobel_prizes/economic-
sciences/laureates/2000/press.html.
Accessed: January 31, 2016.

[24] C. Sedikides, D. Ariely, and N. Olsen. Contextual and
procedural determinants of partner selection: Of asymmetric
dominance and prominence. Social Cognition,
17(2):118–139, 1999.

[25] O. Sheffet, N. Mishra, and S. Ieong. Predicting consumer
behavior in commerce search. In ICML, 2012.

[26] I. Simonson and A. Tversky. Choice in context: Tradeoff
contrast and extremeness aversion. JMR, Journal of
Marketing Research, 29(3):281, 1992.

[27] K. A. Small and C. Hsiao. Multinomial logit specification
tests. International economic review, pages 619–627, 1985.

[28] J. H. Steckel and W. R. Vanhonacker. A heterogeneous
conditional logit model of choice. Journal of Business &
Economic Statistics, 6(3):391–398, 1988.

[29] K. E. Train. Discrete Choice Methods with Simulation.
Cambridge University Press, 2009.

[30] P. Vovsha. The cross-nested logit model: Application to
mode choice in the Tel-Aviv metropolitan area.
Transportation Research Board, pages 6–5, 1997.

[31] C.-H. Wen and F. S. Koppelman. The generalized nested
logit model. Transportation Research Part B:
Methodological, 35(7):627–641, 2001.

[32] G. Y. Wong and W. M. Mason. The hierarchical logistic
regression model for multilevel analysis. Journal of the
American Statistical Association, 80(391):513–524, 1985.

[33] S.-H. Yang, B. Long, A. J. Smola, H. Zha, and Z. Zheng.
Collaborative competitive filtering: learning recommender
using context of user choice. In SIGIR, pages 295–304, 2011.

[34] F. Yates. Contingency tables involving small numbers and
the χ2 test. Supplement to the Journal of the Royal Statistical
Society, pages 217–235, 1934.

973

	Introduction
	Preliminaries
	Multinomial logit
	Independence of irrelevant alternatives
	Nested logit

	How often is IIA violated?
	Statistical tests for IIA violations
	Data
	Empirical observations

	Recovering the nested logit tree
	Tree oracle model
	A quadratic-time algorithm
	A quadratic-time lower bound
	Implementing the tree oracle
	Well-separated nested logit trees
	Greedy algorithm
	Learning edge probabilities

	Experiments on synthetic data
	Experiments on real-world data
	Dealing with data sparsity
	Recovery results

	Other related work
	Discussion and conclusions
	References

