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ABSTRACT
Recently, search engines have invested significant effort to
answering entity–attribute queries from structured data, but
have focused mostly on queries for frequent attributes. In
parallel, several research efforts have demonstrated that there
is a long tail of attributes, often thousands per class of enti-
ties, that are of interest to users. Researchers are beginning
to leverage these new collections of attributes to expand the
ontologies that power search engines and to recognize entity–
attribute queries. Because of the sheer number of potential
attributes, such tasks require us to impose some structure
on this long and heavy tail of attributes.

This paper introduces the problem of organizing the at-
tributes by expressing the compositional structure of their
names as a rule-based grammar. These rules offer a compact
and rich semantic interpretation of multi-word attributes,
while generalizing from the observed attributes to new un-
seen ones. The paper describes an unsupervised learning
method to generate such a grammar automatically from a
large set of attribute names. Experiments show that our
method can discover a precise grammar over 100,000 at-
tributes of Countries while providing a 40-fold compaction
over the attribute names. Furthermore, our grammar en-
ables us to increase the precision of attributes from 47% to
more than 90% with only a minimal curation effort. Thus,
our approach provides an efficient and scalable way to ex-
pand ontologies with attributes of user interest.
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1. INTRODUCTION
Attributes represent binary relationships between pairs of

entities, or between an entity and a value. Attributes have
long been a fundamental building block in any data modeling
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and query formalism. In recent years, search engines have re-
alized that many of the queries that users pose ask for an at-
tribute of an entity (e.g., liberia cocoa production), and have
answered that need by building rich knowledge bases (KBs),
such as the Google Knowledge Graph [29], Bing Satori,1 and
Yahoo’s Knowledge Graph [3]. These KBs, albeit broad,
cover only a small fraction of attributes, corresponding to
queries that appear frequently in the query stream (e.g.,
Obama wife). For the less frequent queries (e.g., Palo Alto
fire chief), search engines try to extract answers from con-
tent in Web text and to highlight the answer in Web results.
However, without knowing that, for example, fire chief is a
possible attribute of Cities, we may not even be able to
recognize this query as a fact-seeking query.

Recent work [26, 14, 16] has shown that there is a long
and heavy tail of attributes that are of interest to users. For
example, Gupta et al.[14] collected 100,000 attributes for
the class Countries, and tens of thousands of attributes
for many other classes (e.g., fire chief for Cities). However,
to make this long and heavy tail of attributes useful, we
must discover its underlying structure.

Towards this end, we propose to represent the structure
in extracted attribute names as a rule-based grammar. For
example, for the class Countries we may find many at-
tributes with the head word population, such as asian pop-
ulation and female latino population. The grammar we in-
duce will represent these and similar attributes as rules of
the form $Ethnicity population and $Gender $Ethnicity pop-
ulation. The rules are succinct, human-interpretable, and
group together semantically related attributes, yielding sev-
eral benefits. First, for curators attempting to add new at-
tributes to an existing schema, the rules reduce the complex-
ity of finding high-quality attributes and organizing them in
a principled fashion. Second, for the search engine, the rules
enable recognition of a much broader set of entity–attribute
queries: For example, a rule such as $Gender $Ethnicity popu-
lation enables the search engine to recognize new attributes,
such as male swahili population or latino female population.
Third, we discovered that these rules help distinguish be-
tween high-quality and low-quality attributes. Specifically,
the rules tend to group together attributes of similar quality.
Hence, by sampling the attributes covered by the rules, we
can quickly find where the high quality attributes are.

Finding such rules is much more subtle than simply group-
ing attributes that share a head word. For example, the
class US presidents has many attributes with head word
name, but they fall into different subsets: names of fam-

1http://searchengineland.com/library/bing/bing-satori
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ily members (daughter name, mother name), names of pets
(dog name), and names of position holders (vice president
name, attorney general name). Hence, we must discover the
more refined structure of the space of attribute names. We
draw upon an automatically extracted IsA hierarchy of con-
cepts [15, 36] to define a space of possible generalizations for
our grammar. This space is huge and we have to select the
right level of generalization without much supervision. An-
other challenge is noise in automatically generated attributes
(e.g. brand name and house name for US presidents), and
concept hierarchies (e.g. Dog IsA $Relative). In this paper
we show how we combine these large and noisy sources to
generate a precise and compact grammar.

This paper makes the following contributions.

• We introduce the problem of finding structure in the uni-
verse of attribute names as a rule-based grammar. Solu-
tions to this problem are important for interpreting queries
by search engines, and for building large-scale ontologies.

• We propose a grammar that interprets the structure of
multi-word attributes as a head word with one or more
modifiers that have the same parent in an IsA hierarchy.
We present a linear-program–based formulation for learn-
ing the grammar by capturing the noise in the extracted
attributes and concept hierarchy as soft signals. Our al-
gorithm is completely unsupervised and infers negative
training examples from occurrence frequency on the Web
and word embedding similarity with other attributes.

• We demonstrate that the precision of our learned rules
is 60% to 80%, which is significantly higher than com-
peting approaches. Furthermore, we show that for large
attributes collections (e.g. attributes of Countries), the
top-100 rules explain 4,200 attributes, providing a factor
of 42 reduction in the cognitive load of exploring large
attribute sets.

• We show that the rules distinguish between mostly good
attributes or mostly bad attributes. Put together with the
high rule quality, this observation enabled us to set up an
efficient pipeline for adding attributes to the schema of
the Google Knowledge Graph.

2. PROBLEM DEFINITION
We focus on the problem of generating a grammar to or-

ganize a large set of attributes (A). The attributes are ex-
tracted from query logs and Web text and are associated
with a class of entities such as Countries, US presidents,
and Cars. Our grammar is a set of rules that semantically
encode groups of attributes using a concept hierarchy. A
rule represents a multi-word attribute as a head word with
zero or more modifiers that are hyponyms of a concept in
the concept hierarchy. For example, we represent the at-
tribute wife’s name for class US presidents as head word
name and modifier wife from the concept $Relative in some
concept hierarchy. The same holds for attributes son’s name,
mother’s name, and father’s name of US presidents.

The rest of this section is organized as follows. We first
characterize the attributes A on which we build the gram-
mar. Then, we describe the IsA hierarchyH used to form the
rules of the grammar. We then formally define our grammar
and the challenges involved in learning it automatically.

The collection of attributes (A): Several works [26, 16,
2, 14] have mined attributes from query streams and from

Web text. We use a collection from Biperpedia [14] in this
work. Biperpedia contains more than 380,000 unique at-
tributes and over 24M class–attribute pairs (an attribute
can apply to multiple classes such as Countries, Cars,
and US presidents). Biperpedia attaches a score, ia, to
each attribute a within each class G. The score induces a
ranking that roughly correlates with the confidence that the
attribute belongs to the class. Thus, as we go further down
in the ranking, the quality of the attributes degrades. How-
ever, we emphasize that even far down in the long tail we find
high quality attributes. For example, for Countries, we
find good attributes (e.g., aerospace experts, antitrust chief)
close to the bottom of the ranked list. Our manual eval-
uation showed that attribute collection has 50% precision
for the top 5,000 attributes of representative classes among
which only 1% exist in Freebase [4] and 1% in DBpedia [1].
As we discuss later, the noise in the attribute collection in-
troduces challenges to the problem we address in this paper.
In this work, we consider only the attributes that have more
than one word in their name (which is 90% of all attributes).

IsA Hierarchy (H): In principle, we could have used any
concept hierarchy H, such as Freebase or WordNet that pro-
vides a set of concepts (e.g., $Component, $Relative), and
a subsumption relationship between them (e.g., Tyre is a
$Component). However, the concept hierarchy in Freebase
is too coarse for our needs because most of the concepts
are too general. Instead, in this work we use a concept hi-
erarchy extracted from Web text using techniques such as
Hearst Patterns (in the spirit of [36]). For example, the
text “Countries such as China” indicates that China is an
instance of Countries. The resulting IsA relations can be ei-
ther subconcept–superconcept or instance–concept. We re-
fer to both instances and subclasses in the IsA hierarchy as
hyponyms. This collection contains 17M concepts and 493M
hypernym–hyponym pairs. Naturally, the hierarchy is inher-
ently noisy. The IsA hierarchy captures this uncertainty by
associating a notability score, nk,c for any concept c ∈ H and
each hyponym k of c. Notability is the product of the prob-
ability of concept given the hyponym and the probability of
the hyponym given the concept [36].

The attribute grammar: Formally, let Head 1, Head 2,. . . ,
Head B denote a set of head words in attribute names. We
use $Attribute i to denote attributes derived from the head
word Head i. Each rule in the grammar has one of the fol-
lowing four types:

$Attribute

$Attribute



$Attribute_price

$Component $Attribute_price

$Market

price SingaporeTyre

Optional
word

in

Figure 1: A derivation from the grammar for an
attribute tyre price in Singapore for class Sports cars.

$Attribute price ::= price
$Attribute price ::= $Nation $Attribute price
$Attribute price ::= $Attribute price in $Nation
$Attribute price ::= $Product $Attribute price
$Nation ::= Singapore | USA | UAE | UK | . . .
$Product ::= battery | insurance | kit | door | . . .

We associate a score with each rule to handle such inherent
ambiguity. The score can be used to generate a ranked list
of possible interpretations for any given attribute.

Use and advantages of our proposed organization.
There are several advantages to organizing attributes based

on shared head words and concept nodes from an IsA hier-
archy. First, such rules carry semantic meaning and are
human interpretable, making them invaluable for curating
attributes. For example, a rule such as $Crop production is
more concise than a long list of attributes like coffee produc-
tion, wheat production, rice production, and so on. Second, a
correctly discovered set of rules will generalize to new or rare
attributes, such as Quinoa production because our IsA hierar-
chy knows that quinoa is a crop. Such attributes are invalu-
able to a search engine trying to identify entity–attribute
queries. Finally, the grammar provides the structure that
exposes the patterns in the attributes, which is particularly
useful for compound attributes with more than one modifier.
For example, we defined our grammar recursively in terms
of non-terminal $Attribute price. This recursion allows us
to correctly recognize a compound attribute like tyre price in
Singapore as Figure 1 shows. Also, we can recognize variants
like Singapore tyre price2.

Such advantages do not accrue if we group attributes based
only on a shared head word. A single rule like $Any price
covers valid attributes like Rome price and Tyre price but also
innumerable bogus strings like laugh price. Finding gener-
alizable rules is non-trivial and we show how we combine
several techniques from machine learning to discover them.

Challenges of rule selection The set of rules induced
from a large set of attributes and a semi-automatically cre-
ated IsA hierarchy can be bewildering both in terms of its
size and the amount of noise that it contains. In our exper-
iments, 100K attributes of Countries had 250K possible
rules along our IsA hierarchy. Of these, fewer than 1% are
likely good, but selecting the good rules is extremely chal-
lenging for several reasons. Consider attribute names ending
with ‘city’ such as capital city, port city, and university city.
There are 195 such attributes, and the IsA hierarchy H con-

2An uncontrolled recursive application can also generate
non-sensical attributes like tyre price in Singapore in Dubai.
Any practical deployment will have to include constraints to
disallow repeated application of the same rule, and limit the
depth of the recursion.

tains 267 concepts such as $Location, $Activity and $Device
that generalize at least two city attributes. Because H con-
tains only names of concepts, the match is syntactic and
the attribute names will match a concept in H regardless of
their semantics. Figure 2 presents a subset of the modifiers
of these 195 attributes (top layer) and 267 concepts (bottom
layer) with edges denoting the IsA relation. For example,
the concept $Academic institution contains modifiers college
and university of attributes college city and university city,
respectively. From these 267 concepts, we need to select a
small set that generalizes most of the 195 attributes without
introducing too many meaningless new attributes. A rule in
the initial candidate set can be bad because of a variety of
reasons, we list some below:
1. Wrong sense: Rules such as $Device city that generalize

port city and gateway city are wrong because the sense of
“port” in attribute port city and “gateway” in attribute
gateway city is not the “device” sense of the term.

2. Too general: Rules such as $Activity city to cover party
city, crime city, and business city are too general.

3. Too specific: Rules such as $Asian country ambassador
are too specific because a more general rule like $Coun-
try ambassador better captures attributes of Countries.

4. Wrong hyponyms: When IsA hierarchies are automati-
cally created, they often also include wrong hyponyms
in a concept. For example, “Florida” is a hyponym of
$Country, and a “dog” is a hyponym of $Relative.

The rule selection problem is complicated further because
we do not have a negative set of attributes that the gram-
mar should reject. We cannot assume that we should reject
anything not in A because A is only a partial list of the
attributes that belong to the class. Even for the valid at-
tributes, we have no human supervision on the choice of the
head words and the choice of the concept node to serve as
modifiers. For instance, we have no supervision of the form
that a good rule for battery size is $Part size. In the next
section, we address these challenges.

3. GRAMMAR GENERATION
We now present our method for learning the grammar

rules over a set of attributes A given a concept hierarchy
H (Section 2). Our first step is to use A and H to gener-
ate a set of candidate rules (Section 3.1). Next, we tackle
the challenge of limited supervision by creating a set of new
attributes to serve as negative examples. We depend on
occurrence frequencies on the Web and similarity in an em-
bedding space to infer these negatives (Section 3.2). Finally,
we use a combined optimization algorithm to select a subset
of rules to serve as a grammar for the attribute set A (Sec-
tion 3.3). Figure 3 shows a flowchart for learning grammar
rules, and Figure 4 presents an overview of our algorithm.

3.1 Candidate rule generation
Generating candidate rules proceeds in two steps: finding

the head words and modifiers of attributes, and generalizing
modifiers to concepts nodes from H.

We rely on in-house Natural Language Parsing technology
to identify the head words and modifiers in an attribute. For
each attribute a ∈ A, we generate its dependency parse [7],
which is a directed graph whose vertices are labeled words



Figure 2: Modifiers of attributes with head word city (top-row), and the concept nodes in C(bottom-row). A
consists of each top-row node suffixed by head word city, e.g. gateway city, port city, etc. Candidate rules consist
of concept nodes suffixed with city, e.g. $Device city, $Location city, etc. Most are bad.

Dependency parse

Candidate rule generation

Rule selection

Classifier to identify negatives

Classifier Classifier

Frequency lookup Embedding lookup

F(a) E(a)

'

'

Attribute generation

Figure 3: Grammar generation flowchart.

Inputs: Concept hierarchy H, Attributes A, Web corpus T ,
Pretrained embeddings E
Generating Candidate Rules R (Section 3.1)
Parse each a ∈ A to identify head words and modifiers
R = Generalize modifiers to concepts in H and form rules

Generating negatives N (Section 3.2)
N ′ = ∪r∈Rsample(r) = Top attributes in gen(r)−A
Get frequency #(a),#(ma) in T & find F (a) ∀a ∈ A ∪N ′
Get embeddings ~ma from E & find E(a) ∀a ∈ A ∪N ′
Train models Pr(−|F (a)),Pr(−|E(a))
N = {a ∈ N ′ : (1− Pr(−|F (a)))(1− Pr(−|E(a))) < 0.5}

Rule scoring (Section 3.3)
Obtain soft signals ia, na,r, pr from H, A, N .
Solve linear program 4 using an LP-solver.
Return rules scores wr for r ∈ R.

Figure 4: Our grammar generation algorithm ARI.

size is the root word of the parse of the attribute average
tank size. Each noun child of the root, concatenated with
its descendants, forms a modifier. It can be tricky for the
dependency parser to find the appropriate children of the
root. In Figure 5, the parser correctly identified that aver-
age and tank are both modifiers of size in average tank size,
while water tank is a single modifier of size in water tank size.
For the attribute estimated average tank size, the dependency
parse would have placed estimated as a child of average and
therefore the modifiers would be estimated average and tank.

Next we create rules by generalizing the modifiers of at-
tributes using concepts in the concept hierarchy H. For
example, the modifier tank can be generalized to (or, is hy-
ponym of) concepts $Container, $Equipment and $Car com-
ponent. Due to its ambiguity, tank can also be generalized
to $Vehicle, $Weapon, and even $American singer. Each
such concept forms a possible candidate rule. For exam-
ple, tank size has the rules $Container size, $Equipment size,
$Car component size, $Vehicle size, $Weapon size and $Amer-
ican singer size. For each attribute, we select the top-20
rules that generalize its modifiers with the highest notability
scores (defined in Section 2). In the next steps, we consider
all the rules that cover at least two attributes in A.

3.2 Generation of Negatives
The candidate-generation step (Section 3.1) produces an

enormous set of overlapping and noisy candidates. Our goal

Figure 5: Dependency parses of two attributes.

is to select just the right subset of these rules to cover most of
the given set of attributes A (i.e., positive examples), while
not covering attributes that are not valid for the class. For
this task, we need to identify strings that are not valid at-
tributes (i.e., negative examples) and should not be covered
by any selected rule. Because we do not have that supervi-
sion, we tap additional resources to infer such negatives.

For any rule r ∈ R, let gen(r) denote the set of attributes
that r generates. For example in Figure 2 a rule r of the form
$Activity city of the Countries class can generate 0.9 million
attributes corresponding to each hyponym of $Activity in H.
There three types of attributes in gen(r): (1) valid attributes
of Countries that appear in A, such as crime city, party city,
business city; (2) valid attributes that do not appear in A,
such as art city; or (3) invalid attributes such as swimming
city, yoga city, research city. We have supervision only for
the first type but not for the second or third type. Because
gen(r) is potentially large and the set of candidate rules r ∈
R is also large, we cannot afford to inspect every attribute in
gen(r) to infer whether it is valid (in second group) or invalid
(in third group). We therefore select a small subset (50 in
our experiments) of gen(r) whose modifiers have the highest
notability scores in r and do not appear in A. We denote
this set by sample(r). We will create a negative training set
N from the union N ′ of sample(r) of all candidate rules r.

One option for N is to assume that all the attributes inN ′
are negative. Many text processing tasks that train statisti-
cal models only with positive examples use this strategy [30,
20]. However, we found good rules like $Crop production for
Countries were unduly penalized by this blind strategy. In
this example, A had a handful of such attributes like mango
production and wheat production, and sample(r) had bean,
vegetable, alfalfa, etc production which should not be treated
as negative attributes. We therefore developed methods that
can remove such likely positives from N ′.

We infer negatives from two signals—the occurrence fre-
quency of attributes on the Web and the embedding simi-
larity of attributes—and combine them via a novel training
using only positive and unlabeled examples. We describe
these features next and then present our training method.

3.2.1 Relative frequency feature
A strong signal for deciding if an attribute in sample(r)

is valid comes from the frequency of occurrence of the at-
tribute on the Web. Consider the candidate rule r=$Device
city that wrongly generalizes attributes gateway city and port
city. In this case sample(r) will contain attributes like sensor
city and ipad city, which are meaningless strings and are per-
haps not frequent on the Web. However, absolute frequency
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of multi-word strings is less useful than relative measures
of association like PMI and its variants [5, 35]. Even PMI
and variants can be unreliable when used as a single mea-
sure in significance tests [6]. In our case, we have an addi-
tional signal in terms of A to serve as positive attributes.
We use this signal to define a relative PMI feature. Let
ma, ha denote the modifier and head word of attribute a.
Let #(a),#(ma),#(ha) denote their respective frequencies
on the Web. Using these frequencies, we calculate a relative
PMI feature F (a):

log
#(a)

#(ma)#(ha)
− log avg

b∈A:hb=ha,b6=a
#(b)

#(mb)#(hb)
(1)

The first term in the equation is standard PMI. But the
second term is a reference value calculated from the PMI of
attributes in A. This reference is the the average frequency
ratio over the attributes in A that share a’s head word3.
One immediate advantage of this reference is that the rela-
tive PMI is independent of the frequency of the head word.
This makes the relative PMI value more comparable across
attributes with different head words—allowing us to use this
as a feature of a single classifier across all head words.

3.2.2 Word embedding feature
The frequency feature is not useful for suppressing rules

that cover frequent but irrelevant attributes. For example,
the rule $Project cost for the Cars class was obtained by gen-
eralizing attributes production cost, maintenance cost, and
repair cost in A. The top few hyponyms of sample(r) are
dam cost and highway cost. These attributes are frequent
but not valid attributes of Cars.

A second feature quantifies the semantic similarity of other
hyponyms of a concept with the hyponyms that occur as at-
tribute modifiers in A. For example, the concept $Project
has hyponyms production, maintenance, and repair, which ap-
pear as modifiers of valid attributes in A. Other hyponyms
of $Project like dam and highway are further away from these
three valid hyponyms than the three are from one another.
We measure semantic similarity using word vectors trained
using a Neural network [20]. These vectors embed words in
an N-dimensional real space and are very useful in language
tasks, including translation [19] and parsing [31]. We used
pre-trained 500 dimensional word vectors4 that put seman-
tically related words close together in space.

We create an embedding feature for each attribute using
these word vectors as follows. Let ~ma denote the embedding
of the modifier ma of an attribute a. Let r be a rule that
covers a. We define the embedding feature E(a) for a with
respect to a rule r that covers it as the cosine similarity
between ~ma and the average embedding vector of all positive
attributes5 covered by r.

E(a) = cosine( ~ma, avg
b∈A,r∈rules(b),a6=b( ~mb)) (2)

Example: Let a = dam cost and let r = $Project cost be a
covering rule of a. The valid attributes r covers are produc-

3During training when we measure the relative PMI for pos-
itive attribute a, we remove a from the reference set. This
safeguards us from positive bias during training particularly
when the reference set is small for rare head words.
4https://code.google.com/p/word2vec/
5Like for the frequency feature, when we measure the em-
bedding feature of a positive attribute a during training we
exclude a’s embedding vector from the average.

tion cost, maintenance cost, and repair cost. We first compute
the average embedding vector ~v of production, maintenance,
and repair. Then the embedding feature of a=dam cost is the
cosine similarity with the embedding ~ma of modifier ma =
dam with ~v, which is 0.2. In contrast, when a =repair cost,
a positive attribute, we find the average vector of production
and maintenance and measure the cosine similarity with the
vector of repair to be 0.5.

It is useful to combine signals both from frequency and
embedding, because frequency identifies wrong rules like
$Device city and embedding identifies general rules like $Project
cost. Embedding alone cannot eliminate a rule like $Device
city because hyponyms of $Device such as “router”, “ipad”,
“sensor” are semantically close to “port” and “gateway”.

3.2.3 Training with positive instances
Now we train a classifier for classifying attributes in N ′ =
∪
r∈Rsample(r) as positive or negative using the frequency

feature F (.) (Eq 1) and embedding feature E(.) (Eq 2). At-
tributes in A serve as positive labeled instances, we have no
labeled negatives, only a large set N ′ to serve as unlabeled
instances. This setting has been studied before [17, 8], but
our problem has another special property that enables us
to design a simpler trainer: both frequency and embedding
features are monotonic with the probability of an instance
being negative. We train a single feature logistic classifier
separately on the frequency and embedding feature. For
each feature, we find the p-percentile feature value among
the positives.6 We then train each classifier with all at-
tributes in A as positive and the attributes in N ′ with fea-
ture value below this percentile as negative. This gives us
two probability distributions Pr(−|E(a)) and Pr(−|F (a)).
An instance a ∈ N ′ is negative if its negativity score ia =

Pr(−|F (a)) + Pr(−|E(a))− Pr(−|F (a)) Pr(−|E(a)) (3)

is more than half. The above formula is obtained by just
assuming that the probability that an instance is positive is
equal to the product of probability, Pr(+|F (a)) Pr(+|E(a)).
This has the effect of labeling an attribute as negative ei-
ther if its frequency (PMI) is low relative to other positive
attributes or its word embedding is far away from positive
attributes. A summary of the process of generating negative
attributes appears in Figure 4.

3.3 Rule selection
We are now ready to describe our rule selection algorithm,

we call ARI. We cast this as a problem of assigning a score
wr to each candidate rule r ∈ R such that valid attributes
(A) are covered by correct rules and the number of invalid
attributes N that are covered by these rules is minimized.

One important property of our algorithm is that it is cog-
nizant of the noise in its input, viz., the attribute set A,
the negative attributes N , and IsA hierarchy H. The algo-
rithm captures these as three soft signals as follows: Each
attribute a ∈ A is associated with an importance score ia
to capture our uncertainty about a being a part of A (Sec-
tion 2). Likewise for each negative attribute a ∈ N we have
an importance score ia (Eq 3). For each modifier m covered
by a concept class of a rule r we take as input a notability
score nm,r to capture noise in the concept hierarchy H.

6For our experiments, we used p=50 based on our prior that
50% of attributes are correct.
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ARI puts together these various signals in a carefully de-
signed linear program to calculate rule scores wr via the
following constrained optimization objective.

min
wr≥0,ξa

∑
a∈A

iaξa +
∑
a∈N

iaξa + γ
∑
r∈R

wrpr

s.t.

ξa ≥ max(0, 1−
∑

r∈rules(a)

na,rwr), ∀a ∈ A

ξa ≥ max(0,
∑

r∈rules(a)

na,rwr), ∀a ∈ N

(4)

The above objective has three parts: the first part
∑
a∈A iaξa

measures the error due to lack of coverage of the valid at-
tributes A, the second part

∑
a∈N iaξa measures the error

due to wrongly including invalid attributes N , and the third
part

∑
r∈R wrpr is for penalizing overly general rules. The

hyperparameter γ tunes the relative tradeoff between rules
complexity and attribute coverage. We explain and justify
each part. Our objective is influenced by the linear SVM
objective for classifier learning but with several important
differences in the details.

Error due to lack of coverage: The first part of the
objective along with the first constraint requires that each
attribute in A has a total weighted score that is positive and
greater than one. Any deviation from that is captured by
the error term ξa which we seek to minimize. This term uses
two soft signals ia and na,r and we justify the specific form
in which we used them.
1. We measure the total score of an attribute a as the

sum of the scores wr of rules that subsume a (denoted
by rules(a)) weighted by the confidence na,r of a being
a hyponym of the concept class in r. This usage has
the effect of discouraging rules that cover an attribute
with low confidence because then the rule’s score wr will
have to be large to make the overall score greater than
1 and the third term of the objective discourages large
values of wr. This encourages attributes to be covered
by concepts for which it is a core hyponym.

2. The importance score of an attribute ia is used to weigh
the error of different attributes differently. This method
of using ia is akin to slack scaling in structured learn-
ing [34]. We also considered an alternative formulation
based on margin scaling but for reasons similar to those
discussed in [28], we found that alternative inferior.

Error for including invalid attributes: The second term
requires that the scores of all invalid attributes be non-
positive. Unlike in SVMs, we require the rule scores wr to be
positive because for our application negative scores provide
poor interpretability; it is not too meaningful to use the fea-
ture weights to choose the single rule that provides the best
interpretation. Because rule weights are non-negative, the
score of all attributes will be non-negative. The third term
thus penalizes any invalid attribute by the amount that its
score goes above the ideal value of zero. Each such error
term is scaled by ia, the importance of the attribute in its
role as a negative attribute as calculated in Equation 3.

Rule Penalty: In the third part of the objective
∑
r∈R wrpr

we regularize each rule’s score with a positive penalty term
pr to discourage overly general or too many rules. This is
similar to a regularizer term in SVMs where a common prac-

tice is to penalize all wr-s equally. Equal pr values cannot
distinguish among rules on their generality. A next natural
step is to make the penalty proportional to the size of the
concept class in r. However, a large concept class is not
necessarily bad as long as all its hyponyms generate valid
attributes. For example, a rule like $Crop production for
Countries. We define penalty of a rule r as the average
rank of the valid attributes in the concept class of r. We
assume that each concept in H has its hyponyms sorted by
decreasing membership score nr,a when calculating its rank.
For example, the modifiers of Cars attributes like tyre size,
brake size, and wheel size appear at an average rank of 23007
in concept $Product of rule $Product size but at average
rank of 4 for the concept in rule $Vehicle part size. This
makes the penalty on rule $Product size 23007/4 more than
the penalty on $Vehicle part size. The intuition behind this
penalty is that a rule where valid attributes appear much
later in the sorting, are likely to include several undesirable
attributes before it.

Our ARI objective is a Linear program and can be solved
using any off-the-shelf library such as Clp7. In Section 4
we compare our algorithm with other alternatives and show
that our final method does substantially better. We also
analyze the importance of each soft signal in our objective.

4. EVALUATING RULE QUALITY
In this section we evaluate the quality of the rules that we

generate. We evaluated on the attributes in the Biperpe-
dia collection for four classes: Countries, US presidents,
Universities, and Sports cars and an in-house created
concept hierarchy as described in Section 2. Because we are
not able to share this data, we also created a fifth dataset
from publicly available sources. We considered the set of
attributes in DBpedia [1] with noun head words and modi-
fiers,8 and we used WordNet as our concept hierarchy. Ta-
ble 1 lists these classes and their number of attributes.

We start by showing some interesting rules that our algo-
rithm generated in Table 1: For the class US presidents,
the rule $Service policy covers attributes immigration policy,
welfare policy; the rule $Relative name covers wife name, dad
name, son name. Rules for Countries cover such attributes
as adult illiteracy rate, and youth unemployment rate. The
latter rules have two modifiers and are covered by the suc-
cessive application of two rules: $Age group rate and $So-
cial problem rate. Similarly for Universities, we encounter
such attributes as emergency cell number and library phone
number that are covered by two rules $Service number and
$Mobile device number. When using DBpedia with Word-
Net, the rule $Publicize date covers DBpedia attributes like
air date and release date.

We now present a quantitative evaluation.

Ground Truth. To generate the ground truth for the rules,
we needed to label rules manually. As Table 1 indicates,
there are more than 300K candidate rules over the five at-

7https://projects.coin-or.org/Clp
8We could not find a class in DBpedia with more than a few
hundred multi-word attributes with noun modifiers. There-
fore, we took a union of attributes over all classes so that
our precision-recall curves are statistically significant. Man-
ual inspection of the rules showed that our selected rules
rarely grouped unrelated attributes. This dataset was the
largest publicly available attribute collection that we found.
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Class |A| |R| Rules Example

Countries 108K 236K
$Tax rate : {income tax rate, present vat rate, levy rate}
$Age group rate, $Social problem rate : {adult illiteracy rate, youth unemployment rate}

Universities 18K 39K
$Cost fee: {registration fee, tuition fee, housing fee}
$Service number, $Mobile device number:{emergency cell number, library phone number}

US presidents 12K 17K
$Service policy: {immigration policy, welfare policy}
$Relative name: {wife name, dad name, son name}

Sports cars 1.8K 2K
$Component size: {fuel tank size, trunk size, battery size}
$Car parts price: {bumper price, tyre price},
$Country price: {uk price, dubai price}

DBpedia 1.1K 0.5K
number of $Administrative district: {number of city, number of canton}
$Publicize date: {air date, release date}

Table 1: The five classes in our evaluation set. For each class, the second column (|A|) is the number of
attributes in the collection, the third column (|R|) denotes the number of candidate rules, the third column
contain example rules that we discover.

tribute sets. Because it is infeasible to evaluate manually
such a large rule set, we selected a subset of rules that ei-
ther appear in the top-500 by total attribute scores, or that
cover the top-20 head words by attribute importance. This
process produced roughly 4,500 rules to label for Countries
and 1,400 for US presidents. For DBpedia, we evaluated
all 500 rules. Three experts labeled each rule as good or bad
and we selected the majority label as the label of the rule.

We note some statistics that highlight the difficulty of the
rule selection problem: (1) good rules constitute only 8% of
the total rules, so we face the typical challenges of finding a
“needle in a haystack”; (2) there is significant disagreement
among experts on whether a rule is good: experts disagreed
on 22% of the rules.

Methods compared. We are not aware of any prior work
on discovery of rules over attributes. To evaluate our pro-
posed method ARI, we compare with methods used in other
related problems. We describe two broad categories of meth-
ods: integer programming and classifier-based approach.

Integer programming approach: Our core rule selec-
tion method of Section 3.3 can be cast as a classical rule
induction problem which seeks to cover as many positive in-
stances while minimizing number of negative instances cov-
ered. Several9 algorithms exist for this problem, including
the one used in the Patty system [24, 23] that we discuss in
Section 6. As a representative we choose a formulation based
on integer programming (IP) because for practical problem
sizes we can get an optimal solution. The IP formulation is
as follows:

min
wr∈{0,1}

∑
r∈R

|N r|
|N r|+ |Ar|

wr + γwr

s.t.
∑

r∈rules(a)

wr > 0 ∀a ∈ A
(5)

In the above we use |N r|, |Ar| to denote the number of at-
tributes of N , A respectively subsumed by rule r. Thus, the
first part of the objective measures the fraction of negative
attributes covered by rule r. The second term is a constant
per-rule penalty to not select too many rules. Like in our
earlier approach, the γ is a tunable parameter to control the
tradeoff between grammar size and penalty for covering in-
valid attributes. Thus, the IP above seeks to cover positive
attributes with the minimum number of low error rules.

Most classical rule induction algorithms select rules in a
greedy iterative manner. However, modern day computing

9https://en.wikipedia.org/wiki/Rule induction

power allows use of this more expensive, optimal IP. We used
the SCIP10 off-the-shelf library.

Classifier-based approach: The second approach is based
on the view that the grammar is a binary classifier between
valid and invalid attributes. This approach is popular in
modern grammar learning tasks such as in [32, 30] that we
discuss later in Section 6. The classifier-based method cre-
ates a labeled dataset by assigning a label ya = +1 for each
attribute a ∈ A, and a label ya = -1 for each a ∈ N . The
“features” for each instance are the set of rules that cover
that instance. The goal then is to assign weights to the
features so as to separate the positive from the negative in-
stances. We used a linear SVM objective:

min
wr

∑
a∈A∪N

ia max(0, 1−ya
∑

r∈rules(a)

wrna,r)+γ
∑
r∈R
|wr|

where the first term measures the mismatch between the
true label y and the classifier assigned score s. The second
term is a regularizer like in the previous two methods. This
approach is different from ours in Equation 4 in two ways:
first, we require wr ≥ 0 to get more interpretable scores,
second, we assign different regularizer penalty to rules.

In addition to the above three methods, we used a baseline
that chooses the rule whose concept has the highest notabil-
ity score for the attribute’s modifier. All hyper-parameters
were selected via cross-validation.

Evaluation metric. Given the diversity of applications to
which our grammar can be subjected, we present a multi-
faceted evaluation of rules. For applications that use rules to
explore large sets of attributes and possibly curate them in
the schema of a structured knowledge base, it is important to
generate “good” rules that compactly cover a large number
of A attributes. For applications that use the grammar to
parse (entity, attribute) queries, it is important to evaluate
correctness at an attribute-level. Accordingly, we compare
the methods along four metrics:
1. Rule Precision: the percent of generated rules that

are judged good by our manual labelers.
2. Rule Coverage: the total number of attributes that

are covered by rules judged good.
3. Attribute Precision@1: the percent of attributes

whose highest scoring covering rule is judged good.
4. Attribute Recall: the percent of attributes covered

by generated rules.11

10http://scip.zib.de/
11Some attributes might have no good rule covering it. We
remove such attributes when calculating this metric.
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Comparing methods. Figure 6 compares methods on rule-
precision and rule-coverage metrics. For plotting this graph,
for each method we select the rules for which the method
assigns a positive score and order the rules by the total im-
portance of A attributes they cover. Then, for increasing
values of k, we plot on the y-axis the fraction of good rules
out of k (rule precision) and on the x-axis the total num-
ber of attributes in A covered by the good rules (coverage).
Each marker on the line is at a multiple of 50 rules except
for the first marker at 10 rules (for DBpedia, a multiple
of 2 rules starting from 8 rules). A method has high pre-
cision if its plot is high up along the y-axis and produces
compact rules if it extends to the right with fewer mark-
ers. We show the results separately for Countries (left),
US presidents (middle), and DBpedia (right). For exam-
ple, the left plot says that for Countries the top-100 rules
(the third circle from left) of ARI cover 4,200 attributes in
A, and 68% of the rules are judged good, as we go down to
top-500 rules we cover 9300 attributes at a precision of 60%.
For US presidents, the top-10 rules of ARI cover 100 at-
tributes at a precision of 80% and the top-100 rules cover
300 attributes and 67% of them are good. For DBpedia,
the top-18 rules of ARI cover 48 attributes at a precision
of 67%. We highlight our observations about the different
methods of rule selection:
1. Overall, the ARI method provides the best tradeoff be-

tween precision of selected rules and the compactness
they provide. At the last marker in each plot (after 500
rules for Countries, 250 rules for US presidents, and
18 rules for DBpedia), the precision of ARI is high-
est, and although Integer Programming sometimes
yields more coverage, its precision is unacceptably low.

2. The ARI and Classifier approach eventually get the
same precision for US presidents, but for the top few
hundred rules the ARI method has significantly higher
precision. The main reason for the low precision of the
Classifier approach for top-rules is that it does not
penalize general rules that appear at the top when we
sort rules by total importance of A attributes.

3. The compactness of rule sets for Countries is much
higher than for US presidents: for roughly the same
precision of 62%, the top-250 rules of ARI cover 7000
and 500 attributes, respectively. This observation indi-
cates that countries have many more related attributes
(e.g., economic indicators), whereas attributes of presi-
dents tend to refer to less structured data (e.g., legacy,
achievements).

We next show how accurately each method can interpret at-
tributes by comparing them on the attribute precision and
recall metrics. Figure 7 shows the precision and recall val-
ues of the four methods for the top-k most important labeled
attributes (covered by rules) for increasing k separately for
Countries and US presidents. The DBpedia setting is
slightly different where all attributes are used without rank-
ing, and the baseline method is not compared because Word-
Net does not have notability scores. For Countries, ARI
dominates all other methods on precision and recall. For
US presidents and DBpedia, ARI provides much higher
precision than other methods that have high recall. The
poor performance of the Integer Programming approach
highlights the importance of considering the noise in our
inputs A and R. The simple baseline that independently
selects for each attribute the rule with the highest notabil-

Attribute-level Rule-level (top-100)
Method Pr@1 Re F1 Pr Coverage

All features 45 56 50 68 4491
No importance score 38 58 46 56 4188
No membership score 40 60 48 55 6133
No per-rule penalty 34 55 42 42 5682
All Negatives 43 55 48 68 4644

Table 2: Impact of different features in ARI. Here
Pr denotes precision and Re denotes recall.

ity score provides poor precision. Hence, it is important to
make global decisions for a rule based on other positive and
negative attributes it covers.

These evaluations show that our proposed method pro-
vides the best precision-compactness tradeoffs whether viewed
broadly at top-covering rules or microscopically at individ-
ual attributes and their best interpretation by our grammar.

Analysis of ARI. Our method of rule selection has a num-
ber of novel features in terms of how it handles attribute
importance scores, handles noise in inputs, penalizes general
rules, and generates negative attributes. In this section, we
analyze the impact of each feature by reporting accuracy
with that feature removed. In Table 2 the first row is the
performance of the full-featured method and each of the sub-
sequent rows has one feature removed as follows:
1. The second row is with the importance scores ia re-

moved — that is, by setting ia = 1 in Equation 4. We
observe that both attribute-level and rule-level accura-
cies drop. Attribute-level F1 drops from 50 to 46 mostly
because of reduced precision. Rule-level precision drops
by a larger margin from 68 to 56.

2. The third row shows accuracy with the concept mem-
bership scores na,r hardened to 1. Attribute-level F1
drops from 50 to 48 and rule-level precision drops from
68 to 55. Coverage increases because by dropping mem-
bership scores more general concepts that cover many
attributes are preferred but many of these are bad as
reflected in the dropped precision.

3. The fourth row shows accuracy with the same penalty
for all rules instead of being proportional to their rank.
We observe that attribute-level F1 drops from 50 to 42
and rule-level precision drops from 68 to 42; indicat-
ing that rank-based rule penalty is perhaps the most
important feature of ARI.

4. The fifth row shows accuracy where we label all at-
tributes in sample(r) as negative instead of using our
method based on low embedding similarity and low fre-
quency (discussed in Section 3.2). We observe that the
quality of interpretation drops from 50 to 48.

These experiments demonstrate that ARI is an effective
method for rule selection and the careful inclusion of var-
ied soft signals to handle input uncertainty and incomplete
supervision has paid off.

5. APPLYING RULES TO FOCUS MANUAL
CURATION OF ATTRIBUTES

In this section we demonstrate one application of our se-
lected rules—their use in curating attributes for expanding
knowledge bases. While the automatically extracted at-
tributes are invaluable in capturing the interests of users,
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Figure 6: Rule Precision versus Coverage of top-500 rules of Countries (left), top-250 rules of US presidents
(middle), and top-18 rules for DBpedia (right).
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Figure 7: Attribute Precision versus Recall of 4135 attributes of Countries (left), 238 attributes of
US presidents (middle), and 91 attributes of DBpedia (right).

Figure 8: Overall skew and rule-wise skew for each
collection. Skew=fraction of attributes in the ma-
jority class and is always between 0.5 and 1.

they do not meet the precision standards of a knowledge base
and often require human curation. Because our rules dis-
cover semantically related attributes they hold great promise
in reducing the cognitive burden of this curation. Further-
more, our curation mechanism exploits the following hypoth-
esis: The quality of attributes within most rules is highly
skewed: Either the vast majority of the attributes covered by
a rule will be judged by human evaluators as good attributes
or the vast majority will be judged as bad. For example, in
Sports cars, the rule $Fastener pattern covers mostly good
attributes including bolt pattern, lug nut pattern, and stud
pattern while the rule $Automaker engine covers mostly bad
attributes including bmw engine and ford engine. We eval-
uated the hypothesis using the following process: On each
Biperpedia class in Table 1, we select the top-20 rules for
which our algorithm assigns a positive score ordered by the
total importance of A attributes they cover. We then get
an expert to label up to 15 randomly selected attributes in
each rule as either good or bad for the class. Using the labels
we plot two kinds of skew in Figure 8:
1. overall skew: fraction of attributes covered by the ma-

jority label. For instance, for Sports cars, 71% of the

labeled attributes were good, so the skew is max{0.71, 1−
0.29} = 0.71. For US presidents, 47% were good, so
the skew is max{0.47, 1− 0.47} = 0.53.

2. rule-wise skew: measure skew within each rule and aver-
age. For instance, for Sports cars rule-wise skew is 1
since each rule had either all bad or all good attributes.

Figure 8 shows that for all collections rule-wise skew is much
higher than overall skew. For Countries, for example, the
skew of 0.53 went to 0.92 for the selected rules. In other
words, for any given rule that our algorithm selected, on av-
erage, 92% of attributes covered by the rule had the same
judgement (“good” or “bad”). Thus, these results confirm
our hypothesis that the rules that we generate help us dis-
tinguish between clusters of “good” and “bad” attributes.

These results enable us to reduce dramatically the cura-
tion required to increase the precision of attributes: An ex-
pert (or, crowd) labels on only a small sample of attributes
from a rule identify which rules are heavily skewed towards
positive attributes. Once we detect such a rule with desired
level of confidence, we can select all its attributes as positive.
Because we have a large number of skewed rules, this process
yields many good attributes at any desired precision-level.
Figure 9 shows the number of good attributes that we gath-
ered by increasing manually labeled attributes. For large
collections like Countries we gathered 200 attributes after
labeling just 5 and 500 after labeling just 90.

We would not get such behavior by rules that group on
head words alone. Often, different rules with the same head
have opposing skews. For example, US presidents has
many attributes with head word name, such as mother name,
dog name, hat name, brand name, and car name. Our rules
segregate them into mostly good attributes ($Relative name,
and $Pet name) and mostly bad attributes ($Place name).
Also, not all candidate rules exhibit such skew. Our candi-
dates set might include very general rules like $Person name

947



Figure 9: Number of positive attributes selected
against number of attributes labeled. Precision of
the selected set is more than 90% in all cases.

that cover semantically unrelated attributes (vice president
name and mother name). Our rule selection algorithm is able
to eliminate them by penalizing overly general rules.

6. RELATED WORK
Open-domain IE systems [9, 10, 18, 21] have automat-

ically extracted large collections of textual relations (e.g.,
“starred in” and “was elected to”) between entities. These
textual relations can be viewed as attributes, but are typi-
cally in verb form rather than noun form. Recently, many
efforts have attempted to extract attributes of classes from
query streams and text [26, 16, 2, 14, 37, 27, 12, 25]. The fo-
cus of all these work is on extracting high quality attributes,
and not on finding structure in the space of extracted at-
tribute names, which is the focus of our work. One excep-
tion is the Patty system [24, 23], which generalizes a textual
relation such as “Taylor effortlessly sang Blank Space” to a
pattern such as “#Singer * sang #Song” and arranges the
patterns in a taxonomy. The focus of Patty is on general-
izing w.r.t. the subject and object of the relation, not on
finding structure of the relation names themselves. The al-
gorithm used for generalization in Patty is a specific instance
of a rule-learning algorithm; and the Integer Programming
(IP) -based approach we compared with in Section 4 is an-
other. We chose to compare with the later because the IP
formulation could be solved optimally for our problem sizes.

A tangentially related stream of work is on unsupervised
grammar induction in the NLP literature [32, 30] where the
goal is to learn semantic parses of a set of sentences. The
important differences with our work is that in sentences are
much longer than attributes, and require a more complex
interpretation. In addition, all sentences are assumed to be
correct, which is not true in our case. Negative examples
are generated by perturbing the given sentences [30]. This
method does not work for us since negatives generated by
random word replacements are unlikely to help us discrimi-
nate between overlapping concept hierarchies. [11] presents
another method of generating negatives based on a partial
completeness assumption that applies when generating rules
over multiple relations. Their method is not applicable to
our setting and we are not aware of any prior work that
generates negatives like we do by combining Web frequency
and embedding similarity.

The work on noun compound understanding (e.g., [33])
attempts to parse descriptions of sets of objects (e.g., na-
tive american authors). In contrast, our work focuses
on understanding the structure of attribute names of enti-
ties. However, an important line of research is to investigate

whether noun-phrase understanding can benefit from under-
standing attributes and vice versa.

Another related problem is linking extracted binary rela-
tions to a verb taxonomy like WordNet. For example this
work tries to link the relation “played hockey for” to the
“play1” verb synset and to link “played villain in” to the
“act” verb synset[13]. The problem we address here is very
different. Instead of linking individual attributes to a tax-
onomy, we introduce new rules to group related attributes
using the taxonomy to provide hypernyms.

Mungall et al [22] used the regularities in the syntactic
structure of class names in the Gene Ontology (GO) to gen-
erate formal definitions for classes. Like our work, they also
relied on parsing complex names and then grouping them to
create the rules. Because their approach needed to work for
relatively small number of entities, they relied on heuristics
rather than machine learning to generate the rules and the
approach was heavily tailored to class names in GO.

7. CONCLUSION
This paper introduced the problem of finding structure

in the universe of attribute names via rules comprising a
head word and a concept node from a IsA hierarchy. Such
rules offer a concise semantic representation of attributes
and the ability to recognize new attributes names and vari-
ations of existing attributes. The rules can also be used to
build high-quality ontologies at scale with minimal curation
effort. The methods described in this paper are already in
use for schema exploration and curation at Google.

Our rule learning algorithm takes as input two noisy inputs—
class attributes extracted from query stream and text, and
an IsA hierarchy also extracted from text— carefully mod-
els their noise in a constrained linear program to produce a
set of high quality rules. Our algorithm is totally unsuper-
vised and leverages web frequency and embedding vectors
to automatically discover negative attributes.

We perform extensive experiments over four large attribute
collections. Our experiments show that our rules have pre-
cision between 60% and 80% and compress attribute names
by up to a factor of 42. We show that our selected rules are
highly skewed in the quality of attributes they cover. This
skew aids in significantly reducing the curation effort needed
in adding attributes to a knowledge base.

Our work is the first step in discovering the structure of
attribute names. This paper presented one method of orga-
nization based on rules. Another alternative we considered
was to use clustering (using embedding vectors) to group
related attributes like economy and currency that rules can-
not. However, clustering tends to be noisy (mixing good and
bad attributes together if they are semantically similar) and
was not effective in surfacing structurally related attributes.
Rules and clusters play complementary roles and in future,
we would like to combine the two methods. Also, we would
like to understand more deeply the semantics of the rules.
For example, we discovered rules of the form $Metal produc-
tion, where the rule modifier can be understood as a selec-
tion condition on a (logical) table that contains production
of various medals. In contrast, other modifiers may simply
be mathematical functions applied to an attribute (e.g., av-
erage unemployment rate). Attaining a deep understanding
of variations in attribute naming is a major step towards
building ontologies that capture the way users think about
the world and providing better services for them.
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