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ABSTRACT
Many fundamental problems in natural language process-

ing rely on determining what entities appear in a given text.
Commonly referenced as entity linking, this step is a fun-
damental component of many NLP tasks such as text un-
derstanding, automatic summarization, semantic search or
machine translation. Name ambiguity, word polysemy, con-
text dependencies and a heavy-tailed distribution of entities
contribute to the complexity of this problem.

We here propose a probabilistic approach that makes use
of an effective graphical model to perform collective entity
disambiguation. Input mentions (i.e., linkable token spans)
are disambiguated jointly across an entire document by com-
bining a document-level prior of entity co-occurrences with
local information captured from mentions and their sur-
rounding context. The model is based on simple sufficient
statistics extracted from data, thus relying on few parame-
ters to be learned.

Our method does not require extensive feature engineer-
ing, nor an expensive training procedure. We use loopy be-
lief propagation to perform approximate inference. The low
complexity of our model makes this step sufficiently fast for
real-time usage. We demonstrate the accuracy of our ap-
proach on a wide range of benchmark datasets, showing that
it matches, and in many cases outperforms, existing state-
of-the-art methods.

Keywords
Entity linking; Entity disambiguation; Wikification; Prob-

abilistic graphical models; Approximate inference; Loopy
belief propagation

1. INTRODUCTION
Digital systems are producing increasing amounts of data

every day. With daily global volumes of several terabytes of
newly textual content, there is a growing need for automatic
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methods for text aggregation, summarization, and, eventu-
ally, semantic understanding. Entity linking is a key step to-
wards these goals as it reveals the semantics of spans of text
that refer to real-world entities. In practice, this is achieved
by establishing a mapping between potentially ambiguous
surface forms of entities and their canonical representations
such as corresponding Wikipedia1 articles or Freebase2 en-
tries. Figure 1 illustrates the difficulty of this task when
dealing with real-world data. The main challenges arise from
word ambiguities inherent to natural language: surface form
synonymy, i.e., different spans of text referring to the same
entity, and homonymy, i.e., the same name being shared by
multiple entities.

Figure 1: An entity disambiguation problem show-
casing �ve given mentions and their potential entity
candidates.

We here describe and evaluate a novel light-weight and
fast alternative to heavy machine-learning approaches for
document-level entity disambiguation with Wikipedia. Our
model is primarily based on simple empirical statistics ac-
quired from a training dataset and relies on a very small
number of learned parameters. This has certain advantages
like a very fast training procedure that can be applied to
massive amounts of data, as well as a better understanding
of the model compared to increasingly popular deep learn-
ing architectures (e.g., He et al. [14]). As a prerequisite, we

1http://en.wikipedia.org/
2https://www.freebase.com/
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assume that a given input set of mentions was already dis-
covered via a mention detection procedure3. Our starting
point is the natural assumption that each entity depends (i)
on its mention, (ii) its neighboring local contextual words,
and (iii) on other entities that appear in the same document.

In order to enforce these conditions, we rely on a con-
ditional probabilistic model that consists of two parts: (1)
the likelihood of a candidate entity given the referring token
span and its surrounding context, and (2) the prior joint
distribution of the candidate entities corresponding to all
the mentions in a document. Our model relies on the max-
product algorithm to collectively infer entities for all men-
tions in a given document.

We further illustrate these modeling decisions. In the ex-
ample depicted in Figure 1, each highlighted mention con-
strains the set of possible entity candidates to a limited size
set, yet leaves a significant level of ambiguity. However,
there is one collective way of linking that is jointly consis-
tent with all the chosen entities and supported by contextual
cues. Intuitively, the related entities Thomas_Müller and
Germany_national_football_team are likely to appear in
the same document, especially in the presence of contextual
words related to soccer, like “team” or “goal”.

Our main contributions are outlined below: (1) We em-
ploy rigorous probabilistic semantics for the entity disam-
biguation problem by introducing a principled probabilis-
tic graphical model that requires a simple and fast train-
ing procedure. (2) At the core of our joint probabilistic
model, we derive a minimal set of potential functions that
proficiently explain statistics of observed training data. (3)
Throughout a range of experiments performed on several
standard datasets using the Gerbil platform [37], we demon-
strate competitive or state of the art quality compared to
some of the best existing approaches. (4) Moreover, our
training procedure is solely based on publicly available Wiki-
pedia hyperlink statistics and the method does not require
extensive hyperparameter tuning, nor feature engineering,
making this paper a self-contained manual of implementing
an entity disambiguation system from scratch.

The remainder of this paper is structured as follows: Sec-
tion 2 briefly discusses relevant entity linking literature. Sec-
tion 3 formally introduces our probabilistic graphical model
and details the initialization and learning procedure of the
model’s parameters. Section 4 describes the inference pro-
cess used for collective entity resolution. Section 5 empir-
ically demonstrates the merits of the proposed method on
multiple standard collections of manually annotated docu-
ments. Finally, in Section 6, we conclude with a summary of
our findings and an overview of ongoing and future work.

2. RELATED WORK
There is a substantial body of existing work dedicated to

the task of entity linking with Wikipedia (Wikification). We
can identify four major paradigms of how this challenge is
approached.

Local models consider the individual context of each entity
mention in isolation in order to reduce the size of the decision
space. In one of the early entity linking papers, Mihalcea
and Csomai [21] propose an entity disambiguation scheme

3For example, using a named-entity recognition system.
However, note that our approach is not restricted to named
entities, but targets any Wikipedia entity.

based on similarity statistics between the mention context
and the entity’s Wikipedia page. Milne and Witten [22] fur-
ther refine their scheme with special focus on the mention
detection step. Bunescu and Pasca [2] present a Wikipedia-
driven approach, making use of manually created resources
such as redirect and disambiguation pages. Dredze et al. [7]
cast the entity linking task as a retrieval problem, treating
mentions and their contexts as queries, and ranking candi-
date entities according to their likelihood of being referred
to.

Global models attempt to jointly disambiguate all men-
tions in a document based on the assumption that the un-
derlying entities are correlated and consistent with the main
topic of the document. While this approach tends to result
in superior accuracy, the space of possible entity assignments
grows combinatorially. As a consequence, many approaches
in this group rely on approximate inference mechanisms.
Cucerzan [5] uses high-dimensional vector space representa-
tions of candidate entities and attempts to iteratively choose
candidates that optimize the mutual proximity to existing
candidates. Kulkarni et al. [19] exploit topical information
about candidate entities and try to harmonize these topics
across all assigned entities. Ratinov et al. [27] prune the list
of entity mentions using support vector machines trained
on a range of similarity and term overlap features between
entity representations. Ferragina and Scaiella [10] focus on
short documents such as tweets or search engine snippets.
Based on evidence across all mentions, the authors employ
a voting scheme for entity disambiguation. Cheng et al. [4]
and Singh et al. [31] describe models for jointly capturing
the interdependence between the tasks of entity tagging, re-
lation extraction and co-reference resolution. Similarly, Dur-
rett and Klein [8] describe a graphical model for collectively
addressing the tasks of named entity recognition, entity dis-
ambiguation and co-reference resolution.

Graph-based models establish relationships between can-
didate entities and mentions using structural models. For
inference, various approaches are employed, ranging from
densest graph estimation algorithms (Hoffart et al. [15]) to
graph traversal methods such as random graph walks (Guo
and Barbosa [11], Han et al. [13]). In a similar fashion, these
techniques can be combined to enhance the quality of both
entity linking and word sense disambiguation in a synergistic
solution (Moro et al. [23]).

The above approaches are limited because they assume a
single topic per document. Naturally, topic modelling can be
used for entity disambiguation by attempting to harmonize
the individual distribution of latent topics across candidate
entities. Houlsby and Ciaramita [16] and Pilz and Paaß [26]
rely on Latent Dirichlet Allocation (LDA) and compare the
resulting topic distribution of the input document to the
topic distributions of the disambiguated entities’ Wikipedia
pages. Han and Sun [12] propose a joint model of mention
context compatibility and topic coherence, allowing them to
simultaneously draw from both local (terms, mentions) as
well as global (topic distributions) information. Kataria et
al. [18] use a semi-supervised hierarchical LDA model based
on a wide range of features extracted from Wikipedia pages
and topic hierarchies.

In contrast to previous work on this problem, our method
exploits co-occurrence statistics in a fully probabilistic man-
ner using a graph-based model that addresses collective en-
tity disambiguation. It combines a clean and light-weight
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probabilistic model with an elegant, real-time inference algo-
rithm. An advantage over increasingly popular deep learn-
ing architectures for entity linking (e.g. Sun et al. [34], He
et al. [14]) is the speed of our training procedure that relies
on count statistics from data and that learns only very few
parameters. State-of-art accuracy is achieved without the
need for special-purpose computational heuristics.

3. PROBABILISTIC MODEL
In this section, we formally define the entity linking task

that we address in this work and describe our modeling ap-
proach in detail.

3.1 Problem Definition and Formulation
Let E be a knowledge base (KB) of entities, V a finite dic-

tionary of phrases or names and C a context representation.
Formally, we seek a mapping F : (V, C)n → En, that takes
as input a sequence of linkable mentions m = (m1, . . . ,mn)
along with their contexts c = (c1, . . . , cn) and produces a
joint entity assignment e = (e1, . . . , en). Here n refers to
the number of linkable spans in a document. Our problem
is also known as entity disambiguation or link generation in
the literature. 4

We can construct such a mapping F in a probabilistic ap-
proach, by learning a conditional probability model p(e|m, c)
from data and then employing (approximate) probabilistic
inference in order to find the maximum a posteriori (MAP)
assignment, hence:

F (m, c) := arg max
e∈En

p(e|m, c) . (1)

In the sequel, we describe how to estimate such a model
from a corpus of entity-linked documents. Finally, we show
in Section 4 how to apply belief propagation (max-product)
for approximate inference in this model.

3.2 Maximum Entropy Models
Assume a corpus of entity-linked documents is available.

Specifically, we used the set of Wikipedia pages together
with their respective Wiki hyperlinks. These hyperlinks are
considered ground truth annotations, the mention being the
linked span of text and the truth entity being the Wikipedia
page it refers to. One can extract two kinds of basic statis-
tics from such a corpus: First, counts of how often each
entity was referred to by a specific name. Second, pairwise
co-occurrence counts for entities in documents. Our fun-
damental conjecture is that most of the relevant informa-
tion needed for entity disambiguation is contained in these
counts, that they are sufficient statistics. We thus request
that our probability model reproduces these counts in ex-
pectation. As this alone typically yields an ill-defined prob-
lem, we follow the maximum entropy principle of Jaynes [17]:
Among the feasible set of distributions we favor the one with
maximal entropy.

Formally, let D be an entity-linked document collection.
Ignoring mention contexts for now, we extract for each doc-
ument d ∈ D a sequence of mentions m(d) and their cor-
responding target entities e(d), both of length n(d). As-
suming exchangeability of random variables within these se-

4Note that we do not address the issues of mention de-
tection or nil identification in this work. Rather, our input
is a document along with a fixed set of linkable mentions
corresponding to existing KB entities.

quences, we reduce each (e,m) to statistics (or features)
about mention-entity and entity-entity co-occurrence as fol-
lows:

φe,m(e,m) :=

n∑
i=1

1[ei = e]·1[mi = m], ∀(e,m)∈E×V (2)

ψ{e,e′}(e) :=
∑
i<j

1[{ei, ej} = {e, e′}], ∀e, e′ ∈ E , (3)

where 1[·] is the indicator function. Note that we use the
subscript notation {e, e′} for ψ to take into account the sym-
metry in e, e′ as well the fact that one may have e = e′.

The document collection provides us with empirical esti-
mates for the expectation of these statistics under an i.i.d. sam-
pling model for documents, namely the averages

φe,m(D) :=
1

|D|
∑
d∈D

φe,m(e(d),m(d)) , (4)

ψ{e,e′}(D) :=
1

|D|
∑
d∈D

ψ{e,e′}(e
(d)) . (5)

Note that in entity disambiguation, the mention sequence
m is always considered given, while we seek to predict the
corresponding entity sequence e. It is thus not necessary
to try to model the joint distribution p(e,m), but sufficient
to construct a conditional model p(e|m). Following Berger
et al. [1] this can be accomplished by taking the empirical
distribution p(m|D) of mention sequences and combining it
with a conditional model via p(e,m) = p(e|m)·p(m|D). We
then require that:

Ep[φe,m] = φe,m(D) and Ep[ψ{e,e′}] = ψ{e,e′}(D), (6)

which yields |E|·|V|+
(|E|

2

)
+|E|moment constraints on p(e|m).

The maximum entropy distributions, fulfilling constraints
as stated in Eq. (6) form a conditional exponential family
for which φ(·,m) and ψ(·, ·) are sufficient statistics. We thus
know that there are canonical parameters ρe,m and λ{e,e′}
(formally corresponding to Lagrange multipliers) such that
the maximum entropy distribution can be written as

p(e|m; ρ, λ) =
1

Z(m)
exp [〈ρ, φ(e,m)〉+ 〈λ, ψ(e)〉] (7)

where Z(m) is the partition function

Z(m) :=
∑
e∈En

exp [〈ρ, φ(e,m)〉+ 〈λ, ψ(e)〉] . (8)

Here we interpret (e,m) and {e, e′} as multi-indices and sug-
gestively define the shorthands

〈ρ, φ〉 :=
∑
e,m

ρe,mφe,m, 〈λ, ψ〉 :=
∑
{e,e′}

λ{e,e′}ψ{e,e′} . (9)

Note that we can switch between the statistics view and the
raw data view by observing that

〈ρ, φ(e,m)〉 =

n∑
i=1

ρei,mi , 〈λ, ψ(e)〉 =
∑
i<j

λ{ei,ej} . (10)

While the maximum entropy principle applied to our funda-
mental conjecture restricts the form of our model to a finite-
dimensional exponential family, we need to investigate ways
of finding the optimal or – as we will see – an approximately
optimal distribution in this family. To that extent, we first
re-interpret the obtained model as a factor graph model.
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E3E4

m1 m2
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Figure 2: Proposed factor graph for a document
with four mentions. Each mention node mi is paired
with its corresponding entity node Ei, while all en-
tity nodes are connected through entity-entity pair
factors.

3.3 Markov Network and Factor Graph
Complementary to the maximum entropy estimation per-

spective, we want to present a view on our model in terms of
probabilistic graphical models and factor graphs. Inspecting
Eq. (7) and interpreting φ and ψ as potential functions, we
can recover a Markov network that makes conditional inde-
pendence assumptions of the following type: an entity link
ei and a mention mj with i 6= j are independent, given mi

and e−i, where e−i denotes the set of entity variables in the
document excluding ei. This means that a mention mj only
influences a variable ei through the intermediate variable
ej . However, the functional form in Eq. (7) goes beyond
these conditional independences in that it limits the order
of interaction among the variables. A variable ei interacts
with neighbors in its Markov blanket through pairwise po-
tentials. In terms of a factor graph decomposition, p(e|m)
decomposes into functions of two arguments only, modeling
pairwise interactions between entities on one hand, and be-
tween entities and their corresponding mentions on the other
hand.

We emphasize the factor model view by rewriting (7) as

p(e|m; ρ, λ) ∝
∏
i

exp [ρei,mi ] ·
∏
i<j

exp
[
λ{ei,ej}

]
(11)

where we think of ρ and λ as functions

ρ : E × V → R, (e,m) 7→ ρe,m

λ : E ∪ E2 → R, {e, e′} 7→ λ{e,e′}

An example of a factor graph (n = 4) is shown in Figure
2. We will investigate in the sequel how the factor graph
structure can be further exploited.

3.4 (Pseudo–)Likelihood Maximization
While the maximum entropy approach directly motivates

the exponential form of Eq. (7) and is amenable to a plausi-
ble factor graph interpretation, it does not by itself suggest
an efficient parameter fitting algorithm. As is known by
convex duality, the optimal parameters can be obtained by
maximizing the conditional likelihood of the model under
the data,

L(ρ, λ;D) =
∑
d

log p(e(d)|m(d); ρ, λ) (12)

However, specialized algorithms for maximum entropy esti-
mation such as generalized iterative scaling [6] are known to
be slow, whereas gradient-based methods require the com-

putation of gradients of L, which involves evaluating expec-
tations with regard to the model, since

∇ρ logZ(m) = Epφ(e,m), ∇λ logZ(m) = Epψ(e) . (13)

The exact inference problem of computing these model ex-
pectations, however, is not generally tractable due to the
pairwise couplings through the ψ-statistics.

As an alternative to maximizing the likelihood in Eq. (12),
we have investigated an approximation known as, pseudo-
likelihood maximization [35, 38]. Its main benefits are low
computational complexity, simplicity and practical success.
Switching to the Markov network view, the pseudo-likelihood
estimator predicts each variable conditioned on the value of
all variables in its Markov blanket. The latter consists of the
minimal set of variables that renders a variable condition-
ally independent of everything else. In our case the Markov
blanket consists of all variables that share a factor with a
given variable. Consequently, the Markov blanket of ei is
N (ei) := (mi, e−i). The posterior is then approximated in
the pseudo-likelihood approach as:

p̃(e|m; ρ, λ) :=

n∏
i=1

p(ei|N (ei); ρ, λ) , (14)

which results in the tractable log-likelihood function

L̃(ρ, λ;D) :=
∑
d∈D

n(d)∑
i=1

log p(e
(d)
i |N (e

(d)
i ); ρ, λ) . (15)

Introducing additional L2-norm penalties γ(‖λ‖22+‖ρ‖22)

to further regularize L̃, we have utilized parallel stochastic
gradient descent (SGD) [28] with sparse updates to learn
parameters ρ, λ. From a practical perspective, we only keep
for each token span m parameters ρe,m for the most fre-
quently observed entities e. Moreover, we only use λ{e,e′}
for entity pairs (e, e′) that co-occurred together a sufficient
number of times in the collection D.5 As we will discuss in
more detail in Section 5, our experimental findings suggest
this brute-force learning approach to be somewhat ineffec-
tive, which has motivated us to develop simpler, yet more
effective plug-in estimators as described below.

3.5 Bethe Approximation
The major computational difficulty with our model lies

in the pairwise couplings between entities and the fact that
these couplings are dense: The Markov dependency graph
between different entity links in a document is always a com-
plete graph. Let us consider what would happen, if the
dependency structure were loop-free, i.e., it would form a
tree. Then we could rewrite the prior probability in terms of
marginal distributions in the so-called Bethe form. Encod-
ing the tree structure in a symmetric relation T , we would
get

p(e) =

∏
{i,j}∈T p(ei, ej)∏n
i=1 p(ei)

di−1
, di := |{j : {i, j} ∈ T }| . (16)

The Bethe approximation [39] pursues the idea of using the
above representation as an unnormalized approximation for

5For the Wikipedia collection, even after these pruning
steps, we ended up with more than 50 million parameters in
total.
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p(e), even when the Markov network has cycles. How does
this relate to the exponential form in Eq. (7)? By simple
pattern matching, we see that if we choose

λ{e,e′} = log

(
p(e, e′)

p(e) p(e′)

)
, ∀e, e′ ∈ E (17)

we can apply Eq. (16) to get an approximate distribution

p̄(e) ∝
∏
i<j p(ei, ej)∏n
i=1 p(ei)

n−2
=

n∏
i=1

p(ei)
∏
i<j

p(ei, ej)

p(ei) p(ej)

= exp

[∑
i

log p(ei) +
∑
i<j

λ{ei,ej}

]
,

(18)

where we see the same exponential form in λ appearing as
in Eq. (10). We complete this argument by observing that
with

ρe,m = log p(e) + log p(m|e) (19)

we obtain a representation of a joint distribution that ex-
actly matches the form in Eq. (7).

What have we gained so far? We started from the desire
of constructing a model that would agree with the observed
data on the co-occurrence probabilities of token spans and
their linked entities as well as on the co-link probability of
entity pairs within a document. This has led to the con-
ditional exponential family in Eq. (7). We have then pro-
posed pseudo-likelihood maximization as a way to arrive at a
tractable learning algorithm to try to fit the massive amount
of parameters ρ and λ. Alternatively, we have now seen
that a Bethe approximation of the joint prior p(e) yields
a conditional distribution p(e|m) that (i) is a member of
the same exponential family, (ii) has explicit formulas for
how to choose the parameters from pairwise marginals, and
(iii) would be exact in the case of a dependency tree. We
claim that the benefits of computational simplicity together
with the correctness guarantee for non-dense dependency
networks outweighs the approximation loss, relative to the
model with the best generalization performance within the
conditional exponential family. In order to close the subop-
timality gap further, we suggest some important refinements
below.

3.6 Parameter Calibration
With the previous suggestion, one issue comes into play:

The total contribution coming from the pairwise interac-
tions between entities will scale with

(
n
2

)
, while the entity–

mention compatibility contributions will scale with n, the
total number of mentions. This is a direct observation of
the number of terms contributing to the sums in (10). How-
ever, for practical reasons, it is somewhat implausible that,
as n grows, the prior p(e) should dominate and the contri-
bution of the likelihood term should vanish. The model is
not well-calibrated with regard to n.

We propose to correct for this effect by adding a normal-
ization factor to the λ-parameters by replacing (17) with:

λne,e′ =
2

n− 1
log

(
p(e, e′)

p(e) · p(e′)

)
, ∀e, e′ ∈ E (20)

where now these parameters scale inversely with n, the num-
ber of entity links in a document, making the corresponding

sum in Eq. (7) scale with n. With this simple change, a sub-
stantial accuracy improvement was observed empirically, the
details of which are reported in our experiments.

The re-calibration in Eq. (20) can also be justified by the
following combinatorial argument: For a given set Y of ran-
dom variables, define an Y-cycle as a graph containing as
nodes all variables in Y, each with degree exactly 2, con-
nected in a single cycle. Let Ξ be the set enumerating all
possible Y-cycles. Then, |Ξ|= (n − 1)!, where n is the size
of Y.

In our case, if the entity variables e per document would
have formed a cycle of length n instead of a complete sub-
graph, the Bethe approximation would have been written
as:

p̄π(e) ∝
∏

(i,j)∈E(π) p(ei, ej)∏
i p(ei)

, ∀π ∈ Ξ (21)

where E(π) is the set of edges of the e-cycle π. However,
as we do not desire to further constrain our graph with ad-
ditional independence assumptions, we propose to approx-
imate the joint prior p(e) by the average of the Bethe ap-
proximation of all possible π, that is

log p̄(e) ≈ 1

|Ξ|
∑
π∈Ξ

log p̄π(e) . (22)

Since each pair (ei, ej) would appear in exactly 2(n − 2)!
e-cycles, one can derive the final approximation:

p̄(e) ≈
∏
i<j p(ei, ej)

2
n−1∏

i p(ei)
. (23)

Distributing marginal probabilities over the parameters start-
ing from Eq. (23) and applying a similar argument as in
Eq. (18) results in the assignment given by Eq. (20). While
the above line of argument is not a strict mathematical
derivation, we believe this to shed further light on the em-
pirically observed effectiveness of the parameter re-scaling.

3.7 Integrating Context
The model that we have discussed so far does not consider

the local context of a mention. This is a powerful source of
information that a competitive entity linking system should
utilize. For example, words like “computer”, “company” or
“device” are more likely to appear near references of the
entity Apple_Inc. than of the entity Apple_fruit. We
demonstrate in this section how this integration can be eas-
ily done in a principled way on top of the current probabilis-
tic model. This showcases the extensibility of our approach.
Enhancing our model with additional knowledge such as en-
tity categories or word co-reference can also be done in a
rigorous way, so we hope that this provides a template for
future extensions.

As stated in Section 3.1, for each mention mi in a doc-
ument, we maintain a context representation ci consisting
of the bag of words surrounding the mention within a win-
dow of length K6. Hence, ci can be viewed as an additional
random variable with an observed outcome. At this stage,
we make additional reasonable independence assumptions
that increase tractability of our model. First, we assume

6Throughout our experiments, we used a context window
of size K = 100, intuitively chosen and without extensive
validation.
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that, knowing the identity of the linked entity ei, the men-
tion token span mi is just the surface form of the entity, so
it brings no additional information for the generative pro-
cess describing the surrounding context ci. Formally, this
means that mi and ci are conditionally independent given
ei. Consequently, we obtain a factorial expression for the
joint model

p(e,m, c) = p(e)p(m, c|e) = p(e)

n∏
i=1

p(mi|ei)p(ci|ei) (24)

This is a simple extension of the previous factor graph that
includes context variables. Second, we assume conditional
independence of the words in ci given an entity ei which let
us factorize the context probabilities as

p(ci|ei) =
∏
wj∈ci

p(wj |ei) . (25)

Note that this assumption is commonly made in models us-
ing bag-of-word representations or näıve Bayes classifiers.

While this completes the argument from a joint model
point of view, we need to consider one more aspect for the
conditional distribution p(e|m, c) that we are interested in.
If we cannot afford (computationally as well as with regard
to training data size) a full-blown discriminative learning
approach, then how do we balance the relative influence of
the context ci and the mention token span mi on ei? For
instance, the effect of ci will depend on the chosen window
size K, which is not realistic.

To address this issue, we resort to a hybrid approach,
where, in the spirit of the Bethe approximation, we continue
to express our model in terms of simple marginal distribu-
tions that can be easily estimated independently from data,
yet that allow for a small number of parameters (in our case
“small” equals 2) to be chosen to optimize the conditional
log-likelihood p(e|m, c). We thus introduce weights ζ and
τ that control the importance of the context factors and,
respectively, of the entity-entity interaction factors. Putting
equations (19), (20), (24) and (25) together, we arrive at
the final model that will be subsequently referred to as the
PBoH model (Probabilistic Bag of Hyperlinks):

log p(e|m, c) =

n∑
i=1

log p(ei|mi) + ζ
∑
wj∈ci

log p(wj |ei)


+

2τ

n− 1

∑
i<j

log

(
p(ei, ej)

p(ei) p(ej)

)
+const .

(26)

Here we used the identity p(m|e)p(e) = p(e|m)p(m) and ab-
sorbed all log p(m) terms in the constant. We use grid-search
on a validation set for the remaining problem of optimizing
over the parameters ζ, τ . Details are provided in section 5.

3.8 Smoothing Empirical Probabilities
In order to estimate the probabilities involved in Eq. (26),

we rely on an entity annotated corpus of text documents,
e.g., Wikipedia Web pages together with their hyperlinks
which we view as ground truth annotations. From this cor-
pus, we derive empirical probabilities for a name-to-entity
dictionary p̂(m|e) based on counting how many times an en-

tity appeared referenced by a given name7. We also compute
the pairwise probabilities p̂(e, e′) obtained by counting the
pairwise co-occurrence of entities e and e′ within the same
document. Similarly, we obtained empirical values for the
marginals p̂(e) =

∑
e′ p̂(e, e

′) and for the context word-entity
statistics p̂(w|e).

In the absence of huge amounts of data, estimating such
probabilities from counts is subject to sparsity. For instance,
in our statistics, there are 8 times more distinct pairs of
entities that co-occur in at most 3 Wikipedia documents
compared to the total number of distinct pairs of entities
that appear together in at least 4 documents. Thus, it is
expected that the heavy tail of infrequent pairs of entities
will have a strong impact on the accuracy of our system.

Traditionally, various smoothing techniques are employed
to address sparsity issues arising commonly in areas such as
natural language processing. Out of the wealth of methods,
we decided to use the absolute discounting smoothing tech-
nique [40] that involves interpolation of higher and lower or-
der (backoff) models. In our case, whenever insufficient data
is available for a pair of entities (e, e′), we assume the two
entities are drawn from independent distributions. Thus,
if we denote by N(e, e′) the total number of corpus docu-
ments that link both e and e′, and by Nep the total number
of pairs of entities referenced in each document, then the
final formula for the smoothed entity pairwise probabilities
is:

p̃(e, e′) =
max(N(e, e′)− δ, 0)

Nep
+ (1− µe)p̂(e)p̂(e′) (27)

where δ ∈ [0, 1] is a fixed discount and µe is a constant that
assures that

∑
e

∑
e′ p̃(e, e

′) = 1. δ was set by performing a
coarse grid search on a validation set. The best δ value was
found to be 0.5.

The word-entity empirical probabilities p̂(w|e) were com-
puted based on the Wikipedia corpus by counting the fre-
quency with which word w appears in the context windows
of size K around the hyperlinks pointing to e. In order
to avoid memory explosion, we only considered the entity-
words pairs for which these counts are at least 3. These
empirical estimates are also sparse, so we used absolute dis-
counting smoothing for their correction by backing off to the
unbiased estimates p̂(w). The latter can be much more ac-
curately estimated from any text corpus. Finally, we obtain:

p̃(w|e) =
max(N(w, e)− ξ, 0)

Nwp
+ (1− µw)p̂(w) . (28)

Again ξ ∈ [0, 1] was optimized by grid search to be 0.5.

4. INFERENCE
After introducing our model and showing how to train it

in the previous section, we now explain the inference process
used for prediction.

4.1 Candidate Selection
At test time, for each mention to be disambiguated, we

first select a set of potential candidates by considering the
topR ranked entities based on the local mention-entity prob-
ability dictionary p̂(e|m). We found R = 64 to be a good

7In our implementation we summed the mention-entity
counts from Wikipedia hyperlinks with the Crosswikis
counts [32]
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compromise between efficiency and accuracy loss. Second,
we want to keep the average number of candidates per men-
tion as small as possible in order to reduce the running time
which is quadratic in this number (see the next section for
details). Consequently, we further limit the number of can-
didates per mention by keeping only the top 10 entity can-
didates re-ranked by the local mention-context-entity com-
patibility defined as

log p(ei|mi, ci) = log p(ei|mi) + ζ
∑
wj∈ci

log p(wj |ei) +const .

(29)

These pruning heuristics result in a significantly improved
running time at an insignificant accuracy loss.

If the given mention is not found in our map p̂(e|m), we
try to replace it by the closest name in this dictionary. Such
a name is picked only if the Jaccard distance between the
set of letter trigrams of these two strings is smaller than a
threshold that we empirically picked as 0.5. Otherwise, the
mention is not linked at all.

4.2 Belief Propagation
Collectively disambiguating all mentions in a text involves

iterating through an exponential number of possible entity
resolutions. Exact inference in general graphical models is
NP-hard, therefore approximations are employed. We pro-
pose solving the inference problem through the loopy belief
propagation (LBP) [24] technique, using the max-product al-
gorithm that approximates the MAP solution in a run-time
polynomial in n, the number of input mentions. For the sake
of brevity, we only present the algorithm for the maximum
entropy model described by Eq. (7); A similar approach was
used for the enhanced PBoH model given by Eq. (26).

Our proposed graphical model is a fully connected graph
where each node corresponds to an entity random variable.
Unary potentials exp(ρm,e) model the entity-mention com-
patibility, while pairwise potentials exp(λ{e,e′}) express enti-
ty-entity correlations. For the posterior in Eq. (7), one can
derive the update equation of the logarithmic message that
is sent in round t+ 1 from entity random variable Ei to the
outcome ej of the entity random variable Ej :

mt+1
Ei→Ej

(ej) = (30)

max
ei

ρei,mi +λ{ei,ej}+
∑

1≤k≤n;k 6=j

mt
Ek→Ei

(ei)


Note that, for simplicity, we skip the factor graph frame-
work and send messages directly between each pair of entity
variables. This is equivalent to the original BP framework.

We chose to update messages synchronously: in each round
t, each two entity nodes Ei and Ej exchange messages. This
is done until convergence or until an allowed maximum num-
ber of iterations (15 in our experiments) is reached. The
convergence criterion is:

max
1≤i,j≤n;ej∈E

|mt+1
Ei→Ej

(ej)−mt
Ei→Ej

(ej)|≤ ε (31)

where ε = 10−5. This setting was sufficient in most of the
cases to reach convergence.

Dataset # non-NIL mentions # documents
AIDA test A 4791 216
AIDA test B 4485 231

MSNBC 656 20
AQUAINT 727 50

ACE04 257 35

Table 1: Statistics on some of the used datasets

In the end, the final entity assignment is determined by:

e∗i = arg max
ei

ρei,mi +
∑

1≤k≤n

mt
Ek→Ei

(ei)

 (32)

The complexity of the belief propagation algorithm is, in
our case, O(n2 · r2), with n being the number of mentions
in a document and r being the average number of candidate
entities per mention (10 in our case). More details regarding
the run-time and convergence of the loopy BP algorithm can
be found in Section 5.

5. EXPERIMENTS
We now present the experimental evaluation of our method.

We first uncover some practical details of our approach. Fur-
ther, we show an empirical comparison between PBoH and
well known or recent competitive entity disambiguation sys-
tems. We use the Gerbil testing platform [37] version 1.1.4
with the D2KB setting in which a document together with a
fixed set of mentions to be annotated are given as input. We
run additional experiments that allow us to compare against
more recent approaches, such as [16] and [11].

Note that in all the experiments we assume that we have
access to a set of linkable token spans for each document. In
practice this set is obtained by first applying a mention de-
tection approach which is not part of our method. Our main
goal is then to annotate each token span with a Wikipedia
entity8.

Evaluation metrics. We quantify the quality of an entity
linking system by measuring common metrics such as pre-
cision, recall and F1 scores.

Let M∗ be the ground truth entity annotations associated
with a given set of mentions X. Note that in all the results
reported, mentions that contain NIL or empty ground truth
entities are discarded before the evaluation; this decision is
taken as well in Gerbil version 1.1.4. Let M be the output
annotations of an entity disambiguation system on the same
input. Then, our quality metrics are computed as follows:

• Precision: P = |M∩M∗|
|M|

• Recall: R = |M∩M∗|
|M∗|

• F1 score: F1 = 2·P ·R
P+R

We mostly report results in terms of F1 scores, namely
macro-averaged F1@MA (aggregated across documents),
and micro-averaged F1@MI (aggregated across mentions).
For a fair comparison with Houlsby and Ciaramita [16], we

8In PBoH, we refrain from annotating mentions for which
no candidate entity is found according to the procedure de-
scribed in Section 4.1.
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AGDISTIS 65.83
77.63

60.27
56.97

59.06
53.36

58.32
58.03

61.05
57.53

60.10
58.62

36.61
33.25

41.23
43.38

34.16
30.20

42.43
61.08

50.39
62.87

75.42
73.82

67.95
75.52

59.88
70.80

Babelfy 63.20
76.71

78.00
73.81

75.77
71.26

80.36
74.52

78.01
74.22

72.27
73.23

51.05
51.97

57.13
55.36

73.12
69.77

47.20
62.11

50.60
61.02

78.17
75.73

58.61
59.87

69.17
76.00

DBpedia Spotlight 70.38
80.02

58.84
60.59

54.90
54.11

57.69
61.34

60.04
62.23

74.03
73.13

69.27
67.23

65.44
62.81

37.59
32.90

56.43
71.63

56.26
67.99

69.27
69.82

56.44
58.77

57.63
65.03

Dexter 18.72
16.97

48.46
45.29

45.44
42.17

48.59
46.20

49.25
45.85

38.28
38.15

26.70
22.75

28.53
28.48

17.20
12.54

31.27
44.02

35.21
42.07

36.86
39.42

32.74
31.85

31.11
33.55

Entityclassifier.eu 12.74
12.3

46.6
42.86

44.13
42.36

44.02
41.31

47.83
43.36

21.67
19.59

22.59
18.0

18.46
19.54

27.97
25.2

29.12
39.53

32.69
38.41

41.24
40.3

28.4
24.84

21.77
22.2

Kea 80.08
87.57

73.39
73.26

70.9
67.91

72.64
73.31

74.22
74.47

81.84
81.27

73.63
76.60

72.03
70.52

57.95
53.17

63.4
76.54

64.67
74.32

85.49
87.4

63.2
64.45

69.29
75.93

NERD-ML 54.89
72.22

54.62
52.35

52.85
49.6

52.59
51.34

55.55
53.23

49.68
46.06

46.8
45.59

51.08
49.91

29.96
24.75

38.65
57.91

39.83
53.74

64.03
67.28

54.96
62.9

61.22
67.3

TagMe 2 81.93
89.09

72.07
71.19

69.07
66.5

70.62
70.38

73.2
72.45

76.27
75.12

63.31
65.1

57.23
55.8

57.34
54.67

56.81
71.66

59.14
70.45

75.96
77.05

59.32
67.55

78.05
83.2

WAT 80.0
86.49

83.82
83.59

81.82
80.25

84.34
84.12

84.21
84.22

76.82
77.64

65.18
68.24

61.14
59.36

58.99
53.13

59.56
73.89

61.96
72.65

77.72
79.08

64.38
65.81

68.21
76.0

Wikipedia Miner 77.14
86.36

64.72
66.17

61.65
61.67

60.71
63.19

66.48
67.93

75.96
74.63

62.57
61.43

58.59
56.98

41.63
35.0

54.88
69.29

55.93
67.0

64.25
64.68

60.05
66.51

64.54
72.23

PBoH 87.19
90.40

86.72
86.85

86.63
85.48

87.39
86.32

86.59
87.30

86.64
86.14

79.48
80.13

62.47
61.04

61.70
55.83

74.19
84.48

73.08
81.25

89.54
89.62

76.54
83.31

71.24
78.33

Table 2: Micro and macro F1 scores reported by Gerbil for 14 datasets and 11 entity linking systems including
PBoH. For each dataset and each metric, we highlight in red the best system and in blue the second best
system.

Datasets
AIDA test A AIDA test B

Systems R@MI R@MA R@MI R@MA

LocalMention 69.73 69.30 67.98 72.75
TagMe reimpl. 76.89 74.57 78.64 78.21
AIDA 79.29 77.00 82.54 81.66
S & Y - 84.22 - -
Houlsby et al. 79.65 76.61 84.89 83.51

PBoH 85.70 85.26 87.61 86.44

Table 3: AIDA test-a and AIDA test-b datasets re-
sults.

also report micro-recall R@MI and macro-recall R@MA
on the AIDA datasets.

Note that, in our case, the precision and recall are not
necessarily identical since a method may not consider anno-
tating certain mentions 8.

Pseudo-likelihood training. We briefly mention some of
the practical issues that we encounter with the likelihood
maximization described in Section 3.4. From the practical
perspective, for each mention m, we only considered the set
of parameters ρm,e limited to the top 64 candidate entities e
per mention, ranked by p̂(e|m) . Additionally, we restricted
the set λe,e′ to entity pairs (e, e′) that co-occurred together
in at least 7 documents throughout the Wikipedia corpus. In
total, a set of 26 millions ρ and 39 millions λ parameters were

learned using the previously described procedure. Note that
the universe of all Wikipedia entities is of size ∼ 4 million.

For the SGD procedure, we tried different initializations
of these parameters, including ρm,e = log p(e|m), λe,e′ = 0,
as well as the parameters given by Eq. (17). However, in all
cases, the accuracy gain on a sample of 1000 Wikipedia test
pages was small or negligible compared to the LocalMention
baseline (described below). One reason is the inherent spar-
sity of the data: the parameters associated with the long tail
of infrequent entity pairs are updated rarely and expected
to be defective at the end of the SGD procedure. However,
these scattered pairs are crucial for the effectiveness and cov-
erage of the entity disambiguation system. To overcome this
problem, we refined our model as described in Section 3.5
and subsequent sections.

PBoH training details. Wikipedia itself is a valuable re-
source for entity linking since each internal hyperlink can be
considered as the ground truth annotation for the respective
anchor text. In our system, the training is solely done on
the entire Wikipedia corpus9. Hyper-parameters are grid-
searched such that the micro F1 plus macro F1 scores are
maximized over the combined held-out set containing only
the AIDA Test-A dataset and a Wikipedia validation set
consisting of random 1000 pages. As a preprocessing step
in our training procedure, we removed all annotations and
hyperlinks that point to non-existing, disambiguation or list
Wikipedia pages.

9We used the Wikipedia dump from February 2014
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Datasets
new MSNBC new AQUAINT new ACE2004

Systems F1@MI F1@MA F1@MI F1@MA F1@MI F1@MA

LocalMention 73.64 77.71 87.33 86.80 84.75 85.70

Cucerzan 88.34 87.76 78.67 78.22 79.30 78.22
M & W 78.43 80.37 85.13 84.84 81.29 84.25
Han et al. 88.46 87.93 79.46 78.80 73.48 66.80
AIDA 78.81 76.26 56.47 56.46 80.49 84.13
GLOW 75.37 77.33 83.14 82.97 81.91 83.18
RI 90.22 90.87 87.72 87.74 86.60 87.13
REL-RW 91.37 91.73 90.74 90.58 87.68 89.23

PBoH 91.06 91.19 89.27 88.94 88.71 88.46

Table 4: Results on the newer versions of the MSNBC, AQUAINT and ACE04 datasets.

The PBoH system used in the experimental comparison
is the model given by Eq. (26) for which grid search of the
hyper-parameters suggested using ζ = 0.075, τ = 0.5, δ =
0.5, ξ = 0.5.

Datasets. We evaluate our approach on 14 well-known pub-
lic entity linking datasets built from various sources. Statis-
tics of some of them are shown in Table 1, and their de-
scriptions are provided below. For information on the other
datasets used only in the Gerbil experiments, refer to [37].

• The CoNLL-AIDA dataset is an entity annotated cor-
pus of Reuters news documents introduced by Hoffart
et al. [15]. It is much larger than most of the other ex-
isting EL datasets, making it an excellent evaluation
target. The data is divided in three parts: Train (not
used in our current setting for training, but only in the
Gerbil evaluation), Test-A (used for validation) and
Test-B (used for blind evaluation). Similar to Houlsby
and Ciaramita [16] and others, we report results also
on the validation set Test-A.

• The AQUAINT dataset introduced by Milne and Wit-
ten [22] contains documents from a news corpus from
the Xinhua News Service, the New York Times and
the Associated Press.

• MSNBC [5] - a dataset of news documents that in-
cludes many mentions which do not easily map to
Wikipedia titles because of their rare surface forms or
distinctive lexicalization.

• The ACE04 dataset [27] is a subset of ACE2004 Coref-
erence documents annotated using Amazon Mechani-
cal Turk. Note that the ACE04 dataset contains men-
tions that are annotated with NIL entities, meaning
that no proper Wikipedia entity was found. Following
common practice, we removed all the mentions corre-
sponding to these NIL entities prior to our evaluation.

Note that the Gerbil platform uses an old version of the
AQUAINT, MSNBC and ACE04 datasets that contain some
no-longer existing Wikipedia entities. A new cleaned version
of these sets10 was released by Guo & Barbosa [11]. We
report results for the new cleaned datasets in Table 4, while
Table 2 contains results for the old versions currently used
by Gerbil.

10http://www.cs.ualberta.ca/~denilson/data/
deos14_ualberta_experiments.tgz

Datasets
AIDA
test A

AIDA
test B

MSNBC AQUAINT ACE04

Avg. num
mentions
per doc

22.18 19.41 32.8 14.54 7.34

Conv. rate 100% 99.56% 100% 100% 100%
Avg. run-
ning time
(ms/doc)

445.56 203.66 371.65 40.42 10.88

Avg. num.
rounds

2.86 2.83 3.0 2.56 2.25

Table 5: Loopy belief propagation statistics. Av-
erage running time, number of rounds and conver-
gence rate of our inference procedure are provided.

Systems. For comparison, we selected a broad range of com-
petitor systems from the vast literature in this field. The
Gerbil platform already integrates the methods of Agdis-
tis [36], Babelfy [23], DBpedia Spotlight [20], Dexter [3],
Kea [33], Nerd-ML [29], Tagme2 [9], WAT [25], Wikipedia
Miner [22] and Illinois Wikifier [27]. We furthermore com-
pare against Cucerzan [5] – the first collective EL system
that uses optimization techniques, M& W [22]– a popular
machine learning approach, Han et al. [13] – a graph based
disambiguation system that uses random walks for joint dis-
ambiguation, AIDA [15] – a performant graph based ap-
proach, GLOW [27] – a system that uses local and global
context to perform joint entity disambiguation, RI [4] – an
approach using relational inference for mention disambigua-
tion, and REL-RW [11], a recent system that iteratively
solves mentions relying on an online updating random walk
model. In addition, on the AIDA datasets we also compare
against S& Y [30] – an apparatus for combining the NER
and EL tasks, and Houlsby et al. [16] – a topic modelling
LDA-based approach for EL.

To empirically assess the accuracy gain introduced by each
incremental step of our approach, we ran experiments on
several of our method’s components, individually: Local-
Mention – links mentions to entities solely based on the
token span statistics, i.e., e∗ = arg maxe p̂(e|m); Unnorm
– uses the unnormalized mention-entity model described in
Section 3.5; Rescaled – relies on the rescaled model pre-
sented in Section 3.6; LocalContext – disambiguates an
entity based on the mention and the local context proba-
bility given by Equation (29), i.e., e∗ = arg maxe p(e|m, c).
Note that Unnorm, Rescaled and PBoH use the loopy
belief propagation procedure for inference.
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Datasets
MSNBC AQUAINT ACE2004

Avg # men-
tions per doc

36.95 14.54 8.68

Systems # entities # entities # entities
PBoH 247.19 95.38 66.66
REL-RW 382773.6 242443.1 256235.49

Table 6: Average number of entities that appear in
the graph built by PBoH and by REL-RW

5.1 Results
Results of the experiments run on the Gerbil platform are

shown in Table 2. Detailed results are also provided1112.
We obtain the highest performance on 11 datasets and the
second highest performance on 2 datasets, showing the ef-
fectiveness of our method.

Other results are presented in Table 3 and Table 4. The
highest accuracy for the cleaned version of AQUAINT, MSNBC
and ACE04 was previously reported by Guo & Barbosa [11],
while Houlsby et al. [16] dominate the AIDA datasets. Note
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