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ABSTRACT
Besides the simple human intelligence tasks such as image la-
beling, crowdsourcing platforms propose more and more tasks
that require very specific skills, especially in participative sci-
ence projects. In this context, there is a need to reason about
the required skills for a task and the set of available skills in
the crowd, in order to increase the resulting quality. Most of
the existing solutions rely on unstructured tags to model skills
(vector of skills). In this paper we propose to finely model tasks
and participants using a skill tree, that is a taxonomy of skills
equipped with a similarity distance within skills. This model
of skills enables to map participants to tasks in a way that
exploits the natural hierarchy among the skills. We illustrate
the effectiveness of our model and algorithms through extensive
experimentation with synthetic and real data sets.
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1. INTRODUCTION
Crowdsourcing platforms such as Crowdflower1, Amazon

Mechanical Turk2 or FouleFactory3 engage more than 500k
participants [20] who perform simple microtasks on a daily basis.
More knowledge-intensive tasks can be found on specialized plat-
forms, such as Zooniverse4, BumbleBeeWatch5 or SPIPOLL6.
In this later, benevolent participants upload and annotate insect
images according to a precise taxonomy of species.

While one can obtain useful results through these platforms
for a number of tasks (that would be otherwise difficult for

1http://www.crowdflower.com
2https://www.mturk.com
3http://www.foulefactory.com
4www.zooniverse.org
5http://www.bumblebeewatch.org
6Photographic monitoring of pollinator insects,
http://www.spipoll.org/
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computers), controlling the quality of the results is a challenging
issue, due to the unreliability, volatility or lack of skills of partic-
ipants. In particular, in knowledge-intensive crowdsourcing [19],
where a specific expertise is needed to complete a task, the
platform should ideally assign or propose the task to a partic-
ipant who has this specific skill, or at least some experience in
the domain. Generic crowdsourcing platforms already provide
basic skill labeling (such as qualifications in Amazon Mechanical
Turk7: these are short descriptions of qualifications for certain
skills a participant might have or the requester might require).
Similarly, academic research [4, 19, 24] is also considering skill
models to improve result quality. These existing approaches rely
on flat, unstructured skill models such as tags or keywords.

However applications often require at least some basic forms
of reasoning about the skills (such as, for example, knowing that
the skill English writing is “more specific” than English reading,
in the sense that anyone who can write English can also read).
Even such simple reasoning operations are not easy to realize
with the above mentioned flat skill models. Many platforms
could benefit from such a structured skill approach. On the
one hand, it would allow a precise and better targeting of tasks.
On the other hand, skill reasoning capacities, especially skill
substitutions, would enable the participation of the full available
workforce of the platform, even if skills do not correspond exactly
to requirements. It is noteworthy that rich skill taxonomies are
available and used in other contexts, such as ESCO8, which is
used to help European citizens in their job search and represents
5,000 skills in a structured way. Skill taxonomies are also rec-
ommended for companies using collaborative solutions, so that
“employees have a common language to self-profile themselves”
(the Wandinc company sells such taxonomies with more than
1,400 personal or business skills9).

In this paper we propose to finely model tasks and participants
using a skill taxonomy. Our contributions are the following:

• we propose an effective taxonomy-based skill model for
crowdsourcing, allowing to reason about skill substitutions;

• we define a distance measure between the skills of a par-
ticipant and the skill required by a task that reflects how
well they correspond to each other;

7http://docs.aws.amazon.com/AWSMechTurk/
latest/AWSMechanicalTurkRequester/Concepts_
QualificationsArticle.html
8ESCO: European Skills, Competences Qualifications and
Occupations https://ec.europa.eu/esco/home.
9http://www.wandinc.com/wand-skills-taxonomy.aspx
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• we formalize the optimization problem of task assignment
to most suitable participants in participatory crowdsourc-
ing;

• we propose several task assignment heuristics that perform
better than methods based on unstructured skills;

• we demonstrate the effectiveness of our heuristics on syn-
thetic and real data sets.

The rest of the paper is organized as follows. In Section 2
we give details about our skill model and formulate the task
assignment problem in our terminology. In Section 3 we present
our algorithms to address the task assignment problem. We
report the results of our extensive experimental evaluation in
Section 4. In Section 5 we present the related work and we
conclude the paper in Section 6.

2. MODELING SKILLS FOR KNOWLEDGE-
INTENSIVE CROWDSOURCING

2.1 Assumptions, skills, tasks and participants
Before formalizing our problem, we summarize the assump-

tions we made. We suppose that a skill taxonomy is available at
the crowdsourcing platform that we can use to model required
skills as well as participant expertise (Figure 1). We assume
that the concepts present in this taxonomy are used (by the task
requester) to annotate the tasks which are listed at the platform,
with the required skills. We restrict our attention to tasks that
only require a single skill. We believe that this assumption is
realistic, as such tasks are more adapted for micro-task crowd-
sourcing. It is also reasonable to assume that in the launch of
a crowdsourcing application there will be no knowledge of the
participant profiles. This is known as the cold-start problem, it
is inherent to social network applications such as crowdsourcing
platforms and it is out of the scope of this study as there is
related work that studies it (as mentioned in [19] and as studied
in [9, 21, 25, 26]). However in this current paper we suppose
that the given skills are correct and assessed. Several methods
exist for this purpose, such as qualification tests in Amazon Me-
chanical Turk or ground truth questions like the ones presented
in [10] and [19]. Another interesting approach is the endorse-
ment of skills as the one proposed in LinkedIn10. Eventually
the profiles of the participants can be corrected and updated by
their participation on the platform and requester feedback (as in
[10]). In Section 4.4 we use a simple method based on the above
to obtain safer participant profiles using ground truth questions.

More formally, we model a skill taxonomy as a
tree S = ({s1, s2, ... }, is-a,≤) whose nodes are elementary
skills {s1, s2, ... } and is-a is the parent-child relationship
(subclass relationship). Relation ≤ denotes the partial order
within skills. Taking as example the skill taxonomy of
Figure 1, for s=core Java and s′=Java 1.8 thread, then s≤s′.
Informally, this partial order means that any participant with
skill s′ can perform a task requiring skill s≤s′.

Let depth(s)∈N be the depth of skill s in the taxonomy S.
We consider only taxonomies with at least two skills (hence
depth(S) > 0). We use T = {t1,t2,...} and P = {p1,p2,...} to
denote a set of tasks and participants, respectively. For a given
task t, we denote the required skill specified by the task requester
by skill(t)∈S. A skill profile of a participant is the set of skills
she possesses. We denote the skill profile of a participant p

10http://www.linkedin.com

⊥

programming

core Java
prog.

Java 1.8
threads

...

core C

... ...

gardening

.. ...

English
reading

English
writing

Figure 1: a skill taxonomy

by skill(p)⊆S. We insist that skill(t) for a task t refers to a
single skill, while a skill profile skill(p) for a participant p might
contain several skills.

In this work we suppose that the announced skills are correct
(see Section 5 for existing skill estimation techniques). However
we ensure the safety of participant profiles using these simple
evaluation methods and calculate their profile. We do not study
separately spammers for the sake of simplicity, as they can be
ruled out by well-known crowd management techniques, such
as majority voting or participant response-quality estimation
based on a test set [22].

2.2 Task assignment
Given a set of tasks and participants, a task assignment A is

a mapping from T to P that maps a task t∈T to A(t)=p∈P .
A task assignment is partial (a task may not be assigned) and
injective (a participant can only perform one task during this
assignment). As a participant can only participate in one task
at a time, the maximum number of tasks that can be assigned
is min(|T |,|P |). Indeed, if there are less tasks than participants,
some participants may not be assigned. We focus here on cover-
ing task assignments, where the available workforce is maximally
assigned: the number of assigned tasks is min(|T |,|P |). More sub-
tle models with partial assignments of tasks could be envisioned,
where we would prefer not to invite some participants with very
low expertise, but we leave these considerations for future work.

If the platform assigns a participant to a task, we assume that
she accepts the assignment and completes the task to the best of
her knowledge. Remark that, to obtain a more realistic model,
we could add a probability of acceptance of a task, and a reliabil-
ity of a participant for a given skill, but this does not lighten the
skill mapping problem on its own. For the same reason we do
not map the same task to several participants. However we can
assume as in [1] that there can be several assignments rounds
to simulate this feature of multiple assignment. This is more
realistic and also used as a classic method for auction-based
transactions in economics.

We next model the quality of an assignment. The best sit-
uation is to map a task with required skill s to a participant
with this exact skill. Note also that a participant with a more
specialized skill s′≥s can perform the task. If such skills are not
available in the crowd, more generic participants can be used,
but at the expense of a lower quality. In order to capture these
situations, we consider a skill distance between the required skill
and the available ones.

2.3 Assignment quality
Our definition is inspired by the classical Resnik similarity [18]

that is generally used to measure the similarity between words
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and concepts, while taking into account their relative frequencies.
Our definition uses a simplified Resnik similarity for words with
uniform distribution.

Let dmax be the maximum depth of the taxonomy S. Let
lca(s,s′)∈S be the lower common ancestor of s and s′ in the
taxonomy. Then the (normalized) skill distance is given by

d(s,s′)=
dmax−depth(lca(s,s′))

dmax
.

Example 2.1. According to Figure 1, consider a participant
who is knowledgeable in Java 1.8 threads and English reading.
The maximum depth dmax of our taxonomy S is 3. Hence

d(Java 1.8 threads,core Java prog.)=
3−2

3
=1/3,

d(core Java prog.,programming)=
3−1

3
=2/3,

d(Java 1.8 threads,English reading)=
3−0

3
=1.

It is noteworthy that this distance favors close skills that are
deeper in the taxonomy. As an example, although Java 1.8
threads and programming are both separated from core Java
by one edge, Java 1.8 threads is considered closer. Moreover,
unrelated skills such as Java 1.8 threads and English reading
have only the root of the taxonomy as a common ancestor, and
the distance is then 1 (the maximum).

By extension, the distance D(t,p) between a task t and a
participant p is given by

D(t,p)=

{
0 if ∃s∈skill(p) s.t. s≥skill(t),

mins∈skill(p)d(skill(t),s) otherwise.

With these definitions, the distance is 0 if the participant has the
required skill or she is more specialized. Otherwise, it depends
on the distance between the task skill and the best available
participant skill. Note however that d and D are not metric
distances (no symmetry, no triangular inequality).

Finally, the quality of an assignment A is measured by the
cumulative distance D(A), which is the sum of distances between
each pair of assigned tasks and participants, i.e.:

D(A)=
∑

(t,p) s.t. A(t)=p

D(t,p).

The normalized cumulative distance is D(A) divided by the
total number of assigned participants. With this definition, the
closer the participants are to the required skill of their task, the
smaller is the distance and the better is the assignment.

We can now define the task assignment problem:

Definition 2.2. (Optimal Covering Task Assignment
Problem)
INPUT : a taxonomy S, a set of tasks T and participants P ,
skill functions.
OUTPUT: a covering task assignment A such that D(A) is mini-
mized.

In our model we want to assign a maximum number of avail-
able tasks. If there are more tasks than participants, hence
only |P | tasks can be performed during the assignment round.
On the contrary, if there are less tasks than participants, some
participants will not have any task to do on the assignment
round. However based on [1] we can assume that there can be

several rounds and waiting periods between them which is more
realistic for real crowdsourcing and can fill in the gap of more
participants or tasks at a given round.

In the following section (Section 3) we consider several heuris-
tic algorithms for the task assignment problem.

3. TASK-ASSIGNMENT ALGORITHMS
The complexity of the task assignment problem we study is in

P, as it can be reduced to a Minimum Weight Perfect Bipartite
Graph Matching problem. There are several variants of the
problem (e.g. where participants may take several tasks, or situ-
ation where one would like to simultaneously optimize the costs
and the quality of the assignment [19]) which are NP-complete.

As a baseline, we use the Hungarian method [12], the combi-
natorial optimization algorithm often used to find perfect match-
ings, to obtain assignments with minimal normalized cumulative
distance. We observed that for our specific problem, performance
enhancements can be achieved. We considered two different
heuristics: MatchParticipantFirst and ProfileHash.

Before we go on with the description of the above heuristics,
please note that in our implementation, as a natural encoding
we represent skills of tasks and participants as a set of words,
such that each word denotes a path in the taxonomy S. For
example, according to Figure 1, core Java programming is
encoded by 00 and English writing by 20 (one digit per level).

In MatchParticipantFirst (Algorithm 1), we try to assign
the most specialized tasks first to the participants with the
lowest number of skills (hence saving most diverse participants
for other tasks). More precisely, we reverse-sort the task skills
alphabetically, hence the most specific skills of each branch of the
taxonomy appear first. For instance the skill 01243 will appear
before 0124. We also sort participants according to their number
of skills, so that the least diverse participants appear first. Then,
for each distance, starting from 0 to dmax, and for each sorted
task skill, we scan the list of sorted participants and assign the
task to the first available participant at this distance. We go on
with increasing distances until there is no task or participant left.

The next heuristic, ProfileHash (Algorithm 2), uses indexes
(hashmap) to organize participants’ skills. It implements the
following heuristic:

• Try to assign the most specialized tasks first (those that
are more difficult to assign).

• For each task, search first for participants with the exact
required skill (hence the quality is perfect without wasting
more specialized participants).

• If no such participant is available, search for participants
with more specialized skills, starting with the least
specialized (again, quality will be perfect, and we attempt
to save the even more specialized participants).

• If no such participant is available, we progressively relax
the skill required for the task (the quality will decrease,
but we try to minimize this loss by using the most
specialized participants first).

The search order of this heuristic is depicted in Figure 2.
In order to avoid a systematic traversal of the taxonomy tree,
we speed-up the skill search by indexing each participant skills.
More precisely, we build hashmaps that associate a skill to a list
of participants with this skill. We consider a hashmap for each
different skill depth. Also, in order to ease the search of prefixes
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Algorithm Time O(.) Space O(.)

Hungarian method n3 n2

MatchParticipantFirst dmax.ms.n
2 ms.n

ProfileHash dmax.ms.n dmax.ms.n

Table 1: Complexity assuming that |P | = |T | = n, ms

is the maximum number of skills of a participant and
dmax the maximum depth of the skill taxonomy.

4
⊥

1
programming

2
core Java
prog.

3
Java 1.8
threads

3
...

2
core C

3
...

3
...

5
gardening

6
...

6
...

5
English
reading

6
English
writing

Figure 2: Search order, trying to assign a programming
task (no specified order within skills with the same
number on this picture).

or extensions of a given target skill, and trading memory for
speed, we index also all prefixes of a participant skill. We insert
and consume the prefix of each skill in a FIFO order, so that
we favor the more specialized skills first.

The time complexity of MatchParticipantFirst is
composed by the sorting of T and P (O(|T |ln|T |+ |P |ln|P |),
and the scan of participants and distances for each task
(O(dmax.ms.|P |.|T |)), where dmax is the maximum distance
(depth) of the skill taxonomy and ms is the maximum number
of skills a participant has. Note also that our algorithms require
distance computations, that impose lower common ancestor
(lca) computations in the taxonomy. Constant time algorithms
exists [3] (we rely on a simpler, linear time implementation in
O(dmax) in our experiments). Space complexity is limited to
input data storage (O(|T |+ms|P |)).

For ProfileHash, beside task sorting (time O(|T |ln|T |)), we
have to pay for the indexing of all participant skills plus their
prefixes. This latter costs a constant time for a hashmap. We
also have to include the search for each task skill and for each of
its prefix if necessary. This yields a O(|T |ln|T |+dmax(|P |ms)+
|T |ms|P |)) time complexity and dmaxms|P | space complexity
for hashmap. We summarize the worst-case complexity of our
algorithms in Table 1, assuming that |T | and |P | are of the same
order of magnitude n for readability.

One can observe that the data required to handle our
problem is likely to fit in main memory. Indeed, let us consider
the realistic Amazon Mechanical Turk setting with 500,000
participants and 250,000 tasks. If we suppose one skill per
task and a maximum of ten skills per participants and we
assume that a skill can be encoded as a ten bytes word (a path
in a dmax = 10 taxonomy), the amount of memory to handle
this information is 50 MB for participants and 2.5 MB for
tasks, for a total of 53 MB. According to Table 1, the maximal

Data: Participants P , tasks T , skill() functions
Result: Assignment A
reverse sort T according to task skills, alphabetically ;
sort P (w.r.t. |skill(p)|,p∈P) ;
foreach distance i=0 to dmax do

foreach task t∈T do
foreach participant p∈P ,
hence starting with the one with less skills do

if d(skill(p),skill(t))≤i then
A(p)←t;
remove t from T ;
remove p from P ;

end

end

end

end
Algorithm 1: MatchParticipantFirst

Data: Participants P , tasks T , skill() functions
Result: Assignment A
Initialize dmax+1 hashmaps, M[0],...,M[dmax];
reverse sort T by skill depth ;
foreach distance i=0 to dmax do

foreach participant p do
foreach skill s of p do

/* take s except the last i levels */

s′←s[0...length(s)−i];
/* append at

the end of the correct skill list */

M[|length(s′)][s′].append(p);

end

end

end
foreach distance i=0 to dmax do

foreach task t∈T do
/* take skill(t) except the last i levels */

s←skill(t)[0...length(skill(t))−i];
C←M[length(s)][s];
/* take the first available

participant in C, while respecting

the skill specialization order */

p←C.first() ;
A(t)←p;
remove t from T ;
remove p from P ;

end

end
Algorithm 2: ProfileHash algorithm

space required for running our algorithms for dmax = 10,
n=500,000, ms=10 and 10 bytes to store a skill is then around
(10.dmax.ms.n=)500 MB. A typical computer as used in our
experiments can handle around thirty two times this amount.

Note also that the transactional aspect of the problem is
negligible: participant and task skills can be stored securely in a
database and updated, while the task assignment is performed.
The discrepancy between the stored version and the in-memory
version will not harm the process, as participant/task skill
updates and taxonomy changes are not so frequent.
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4. EXPERIMENTAL EVALUATION

4.1 Overall experimental setting
The evaluation was performed on an Apple Macbook Pro

featuring an Intel i7 quad core CPU running at 2.8 GHz, 16GB of
RAM (running on 1600MHz DDR3), 1TB SSD disk and the Mac
OS X Yosemite operating system. The code was written in Java
and compiled with the latest Java 8 Oracle’s compiler. In order
to assess our model, we used both a synthetic and a real data set
of participants and tasks that we will explain in separate sections.

4.2 Synthetic data setting
Our first assessment of the model was carried out with the

generation of a synthetic data set that consists of a taxonomy, a
set of participants and a set of tasks. The taxonomy S that we
used on most cases, unless stated differently, was a taxonomy
tree of depth ten with ten children per node. Domain specific
taxonomies with dmax =5 or more, like the one in SPIPOLL,
can be incorporated to more generic taxonomies to create a
deeper and greater taxonomy of dmax=10. Also, for simplicity
the taxonomy we used for the Synthetic Data was a balanced
taxonomy. However this is not a limitation because our distance
definition (see Section 2) will favor more specialized skills in case
they exist. Please note that in the real setting (see Section 4.4)
the taxonomy was not balanced.

For the synthetic experiment, we created task skills and partic-
ipant skills with respect to our taxonomy. Each task is associated
with only one skill and is generated as a random path on the
taxonomy tree.

Unlike a task, a participant might have multiple skills. To
create the participant skills we propose a budget method. This
method assumes that a participant can have several skills (nodes)
on the taxonomy and distributes them randomly, but according
to a budget. This is reasonable if we assume that to become an
expert in a skill a participant should pass some time on the given
domain, and that this occupation makes the participant less
available to learn another skill in another domain. This method
can eventually create an expert profile or a general knowledge
profile. A combination of both in a given domain is also possible.

More precisely we carried out the experiments as follows.
First, we generated a number of tasks with the above-mentioned
method. Then we generated an equal number of participants,
using the budget method. Afterwards, we used the generated
tasks and participants as input to both our baseline algorithms
and our heuristic propositions. For our experiments, we repeated
this procedure ten times so that each point in each figure rep-
resents the aggregated result of ten repetitions of random data
with the same characteristics (taxonomy, participants, tasks).
The variance is also calculated and shown in our figures.

As a baseline we compare with the following algorithms:

• Random and

• ExactThenRandom.

The Random algorithm assigns randomly tasks to partici-
pants. More precisely it shuffles the tasks’ ids and the partic-
ipants’ ids and then makes a complete one to one assignment
between them. The ExactThenRandom algorithm matches
first each task skill with a participant that has the exact same
skill, and assigns the remaining tasks and participants randomly.
This algorithm recognizes skills, but does not take advantage
of the taxonomy structure. Instead, it can be interpreted as
a keyword-based (vector of skill) matching of the participant’s
skills with the tasks.

The figures that follow show how the results we obtained with
our different algorithms are affected by the different configura-
tions of the taxonomy, the participants and the tasks. They also
demonstrate how in terms of quality our algorithms outperform
both the Random and ExactThenRandom algorithms.

4.3 Synthetic data results and discussion
To assess our approach we propose six different figures, sup-

porting its scalability and improved quality, time cost and ef-
fectiveness. We simulate with one curve on each figure the
result of each of the five considered algorithms (two baselines,
two heuristics and the optimal HungarianMatch algorithm11)
that were used:

• Random,

• ExactThenRandom,

• MatchParticipantFirst,

• ProfileHash,

• HungarianMatch.

On each of the following figures we assume that the number
of participants and tasks are equal which does not harm the
generality of our results. For qualitative measurements we chose
a relatively small amount of participants and tasks (1,000 to
3,000). However, in order to show the scalability in terms of
participants and tasks for the time needed to perform a complete
assignment, we chose higher values of participants and tasks
(10,000 to 500,000).

Figure 3 shows the normalized cumulative distance related to
the assignment with respect to the number of participants. Each
participant is created with twenty nodes of budget. We can easily
distinguish how Random is outperformed by all the algorithms.
This can be interpreted as a motivation for the need of fine skill
modeling. On the other hand the simple exact match assign-
ment of ExactThenRandom is also outperformed by all our
algorithms which strengthens the choice of an inference model
for skills. Our ProfileHash algorithm perform as good as the
exhaustive MatchParticipantFirst algorithm even though
with minor differences. It goes without saying that the optimal
HungarianMatch algorithm gives the lower bound of the cumu-
lative distance that we can achieve. It is also noticeable that our
heuristic algorithms perform very close to the optimal solution.

Figure 4 presents the time (in ms) needed for each algorithm
to make a complete assignment of all the participants to all the
tasks. We use the same skill budget for every simulated partici-
pant as before and the same taxonomy characteristics (dmax=10,
ten children per node). The x-axis is the number of participants
(and tasks) that we keep the same as before. For qualita-
tive reasons, we present the Random, ExactThenRandom,
MatchParticipantFirst and HungarianMatch algorithms
along with the theoretical Hungarian match time for comparison
of the time needed for a complete task to participant assignment.
Not suprisingly the ExactThenRandom is the fastest and the
MatchParticipantFirst is considerably faster than the Hun-
garianMatch. We omit the presentation of the ProfileHash
algorithm here because of its extreme performance which is the
outcome of its efficiently indexed data structures.

In order to show how our algorithms can scale for more partic-
ipants and tasks in terms of speed, keeping the same taxonomy

11Adapted from K. Stern’s implementation, https:
//github.com/KevinStern
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Figure 3: Normalized cumulative distance of assign-
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Figure 4: Assignment time with respect to the number
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characteristics and participant budget parameters, we simulate
the time needed for a complete mapping of 10,000 to 500,000
participants and tasks shown in Figure 5. We compare in this
figure only the ProfileHash with the baseline Random and
ExactThenRandom algorithms. MatchParticipantFirst
and the HungarianMatch are very slow and their compu-
tational complexities and time values show that they are not
practical for such high participant and task numbers. We chose
these values because currently Amazon Mechanical Turk, the
oldest and most well known generic crowdsourcing platform,
occupies about 500k participants and hosts about 274k tasks.
In our setting we show that we can accommodate this size with
even more tasks (500k instead of 274k). This indicates that both
of our algorithms can perform (almost) real-time task mapping
in such platforms. Of course Random or ExactThenRandom
algorithms are faster but they lose a lot of potentially good
participants (see Figures 3, 6, 7, 8). This would be an extreme
waste of workforce that should not be missed.

Figure 6 shows how the budget on the skills of the partici-
pants affects the assignment in finding better mappings. We
kept a fixed number of participants (3,000) the same taxonomy
properties as before and we experimented with different partic-
ipant profile budget. The x-axis is the budget for participant
skill creation that varies from 0.5∗depth to 5∗depth (5 to 50
for our taxonomy) and the y-axis is the normalized cumulative
distance (0-1). We can observe that the quality increased with
the availability of more specialized skills. It is equally noticeable
that our algorithms outperform the other algorithms in terms

 0

 2000

 4000

 6000

 8000

 10000

100k 200k 300k 400k 500k

T
im

e
 (

m
s)

Participants

Random
Exact Match then Random

Profile Hash

Figure 5: Assignment time for larger number of
participants

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10  20  30  40  50

C
u
m

u
la

ti
v
e
 d

is
ta

n
ce

 (
0

-1
)

Profile budget {0.5-5}*dmax

Random
Exact Match then Random

Match Participant First
Profile Hash

Hungarian Match
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of quality at all budget values simulated. Moreover the faster
ProfileHash perform slightly worse than MatchParticipant-
First. Again we can see that we are not very far from the
optimal solution that the HungarianMatch provides.

In Figure 7 we show how the depth of the taxonomy affects the
quality of the assignment. The x-axis represents the maximum
depth of the taxonomy (dmax) from dmax =2 to 20 (dmax =1
is not as useful because it would assume falling to the vector-
like model). The y-axis is the normalized cumulative distance.
Because of the small number of participants and tasks and the
great depth of the taxonomy we see that participant skills are
quite sparse among the taxonomy and that makes it almost
impossible to obtain good matches. Also, it is noteworthy that
at about dmax=8 we have the maximum gap between Exact-
ThenRandom and ProfileHash algorithms for these number
of tasks, participants and current taxonomy setting (10 children
per node). While dmax is below 4 we can see that both Exact-
ThenRandom and our algorithms perform very well, practically
performing all the possibly good assignments (cumulative dis-
tance 0). Again in the general case and for further dmax values
our algorithms outperform both baseline algorithms. We can
again notice that the faster ProfileHash perform again slightly
worse than MatchParticipantFirst in this setting. Finally,
we can also make another two observations based on this figure.
On the one hand, MatchParticipantFirst, ProfileHash
and HungarianMatch converge at a great depth which shows
the importance of a diversity of skills in a given crowd. An in-
creased budget-to-depth ratio which means having more skillful

848



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  5  10  15  20

C
u
m

u
la

ti
v
e
 d

is
ta

n
ce

 (
0

-1
)

Taxonomy depth (dmax)

Random
Exact Match then Random

Match Participant First
Profile Hash

Hungarian Match

Figure 7: Normalized cumulative distance with respect
to the dmax of the taxonomy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 1 2 3 4 5 6 7 8 9 10

R
a
ti

o
 o

f 
a
ss

ig
n
e
d

 p
a
rt

ic
ip

a
n
ts

Distance of assignment

Random
Exact Match then Random

Match Participant First
Profile Hash

Hungarian match

Figure 8: Ratio of assigned participants per distance

participants can improve the expected quality and thus decrease
the cumulative distance measured. On the other hand, a more
numerous crowd assigned to a greater number of tasks can also
increase the probability of better task-to-participant matchings
which will also lead to a decreased cumulative distance.

Figure 8 shows the distribution of assignment distances be-
tween algorithms. For this experiment, we keep a fixed number
of participants and tasks to 3,000. The x-axis is the distance
of quality with respect to the taxonomy while the y-axis is the
ratio of tasks assigned per distance. We see that ProfileHash
algorithm outperforms the other two random based algorithms
because they make more assignments to lower distances. The
fact that there is an interchange between MatchParticipant-
First and ProfileHash has to do with the fact that they are
heuristics (do not provide the optimal solution) and that the
former is an exhaustive algorithm. It is also noteworthy how the
HungarianMatch would assign to the closest distances in or-
der to give the optimal cumulative distance. We can also notice
that due to the Resnik similarity (which is far from a shortest
path distance) and the span of task and participant skills, our
task and participant generation does not provide a lot of assign-
ments of short distances (distances 1, 2, 3 and 4 for instance
in Figure 8). To a greater extent, consider as an example a
dmax=10 taxonomy, where a depth 4 (length=5) task skill will
be matched with a depth 3 (length=4) participant skill (thus
having a depth(lca(s,s’)=3). Essentially, due to our distance
definition it will obtain a d(t,p)=10−3=7 distance and not a
d′(t,p)=4−3=1 that would be the value for the intuitive short-
est path distance between performed task and participant skills.

As mentioned, we performed a series of extensive random gen-
erated data experiments to show the significance of our model
and assignment algorithms. To the best of our knowledge we are
the first to mention and implement a concrete model that uses
fine skills based on a taxonomy. Anticipating the results of our
experiments we can observe that in all cases the heuristics we
provided give significantly better results than the Random or
ExactThenRandom algorithms. We believe that the results
speak loud themselves concerning the need of a finer model
of skills for both tasks and participants in knowledge-intensive
crowdsourcing. They also show that ProfileHash is an excel-
lent candidate for a scalable, high quality mapping algorithm. In
section 4.4 we will see how the above are supported with a real
experimentation based on a real dataset and different crowds.

4.4 Real data setting
In order to obtain a more realistic data set and test our algo-

rithms we followed a quiz procedure and recruited participants
from different sources (our University laboratory and Crowd-
Flower). As a topic we chose computer science, a topic where
we could elaborate a skill taxonomy, asked participants for their
knowledge profile beforehand, assessed their profiles and then
gave them the quiz to answer.

More precisely, we chose fifty eight multiple choice questions
on computer science that we could easily elaborate a taxonomy
of skills S. The taxonomy had a dmax=4 and a different num-
ber of children per node depending on the node and category
which in our case was at least two. In this case the taxonomy
was not symmetrical. Then we asked participants with different
backgrounds and mostly computer programming to choose four
of their preferred programming languages from a list. This first
step provided us with participants with a maximum of four skills
each (respecting the fixed profile budget used in Section 4.3).

The procedure continued with the real quiz that consisted of
fifty eight multiple choice computer science questions mainly on
programming languages, generic computer science, databases
and computer architecture questions. All the questions were
preannotated with respect to the taxonomy.

In order to carry out the questionnaire we recruited two dif-
ferent groups of participants. The first group consisted of 31
participants from the University of Rennes 1 that were either
students on computer science or computer engineers or computer
scientists. All these participants had a proven experience in com-
puter science. The second group was a group of 176 participants
that were recruited from CrowdFlower after six qualification
questions (gold mining questions in CrowdFlower). In addition
we also considered a third group made of the combination of
these two groups (207 participants) which provides with a more
diverse case of crowd.

Finally, before applying the algorithms we assessed the profiles
given from the participants using test questions on the skills
they submitted. Then we applied the two baseline algorithms
(Random and ExactThenRandom) and our ProfileHash
algorithm in order to obtain the results. Having the ground
truth for all the questions and the answers from all the partici-
pants we could easily assess the quality of the task to participant
assignment. After one hundred repetitions of the assignment
algorithms we obtained results supporting our choice of model
and methods.

4.5 Real data results and discussion
In order to show the feasibility of our approach we run two

baseline mapping algorithms and one of our algorithms (Pro-
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Figure 9: Ratio of correct answers with respect to dif-
ferent crowds and algorithm comparisons. Questions
are annotated lower in the taxonomy.

fileHash) on the questions and the participants. Unless stated
differently we also simulate the three different crowds mentioned
below:

• Laboratory participants,

• Crowdflower participants,

• Mixed Crowd.

Every bar on the figures presents the average results of one
hundred repetitions for the mapping algorithms applied and
mentioned below:

• Random,

• ExactThenRandom,

• ProfileHash.

The first crowd (Laboratory participants) consists of the thirty
one participants familiar with Computer science. These partic-
ipants including graduate students, researchers and engineers
were recruited from our laboratory and agreed to participate
voluntarily by replying to the survey we made in Google forms
for them. The same survey was also given to the Crowdflower
participants. The profiles of the participants were verified with
test questions. One test question for each skill of the partici-
pant. Then the different algorithms were applied to perform
the question-to-participant mappings (one to one). Finally with
the help of the ground truth questions we could calculate the
efficiency of the assignments. We discuss the results of these
simulations below with the help of two figures.

Figure 9 shows the ratio of correct answered questions with
respect to the three different crowds. We can observe how our
method outperfoms the baselines in all the different cases and
how the different crowds affect the percentage of correct answers.
It also supports the intuition that with crowdsourcing the good
use of a greater number of participants (from the laboratory par-
ticipants towards the mix crowd) improves the result. In addition
it shows that even a simple model of a vector of skills, such as
the one simulated by ExactThenRandom can improve signif-
icantly the expected results compared to the Random method.

Figure 10 shows again the ratio of correct answered questions
with respect to the different crowds but this time the questions
annotated two levels higher in the taxonomy. We performed
this test to simulate the realistic case where a question could
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Figure 10: Ratio of correct answers with respect to dif-
ferent crowds and algorithm comparisons. Questions
are annotated higher in the taxonomy.

be annotated at a higher level. For instance imagine a Java
question on sockets. This is clearly a networking task in Java
and should be annotated lower in the taxonomy. It should be
neither annotated as core Java nor as Object Oriented Pro-
gramming. However such mistakes or lack of knowledge for a
given task could occur in crowdsourcing platforms. With this
figure we show that when the questions are poorly annotated
we can obtain a greater result than that of the baselines because
our model supports search for more specialized participants.
This is very important especially for real life crowdsourcing
where automatic keyword similarity methods annotating the
questions, such as the ones described in [10], could fail capturing
the most specialized and important keywords that characterize
the question and thus gives more robustness to our model.

To sum up, in this experimental section we saw how the
different crowds and task annotations worked in favor of our
model and provided with very interesting results. According
to Section 4.3 and more precisely figure 7 we were expecting
to have an observable improvement with the use of taxonomies
that have dmax>5. However we could show that even less deep
taxonomies equipped with our model and mapping algorithms
could give a real life improvement. Even when there was lack
of information on the tasks our algorithm performed a better
mapping that provided better results. All the above showed
the robustness of our model despite the potential existence of
spammers (people lying about their skills, or giving bad an-
swers). To the best of our knowledge we are the first to use
such an hierarchy of skills for reasoning on the substitution of
participants on crowdsourcing applications and equip it with
similarity metrics for better task to participant assignments.

5. RELATED WORK

5.1 Taxonomies of skills vs. Keywords
Skill management is one of the key issues for crowdsourcing

platforms. Being able to gather a huge number of diverse and
complementary skills constitutes one of the strengths of these
platforms, beside their ability to deliver tasks on a regular basis.

It is noteworthy that most of the existing platforms and most
of the related work in the literature rely on skills described as
keywords from a free vocabulary, proposed by task requesters or
by participants (see for example [10, 17, 19]). To reason about
skills, keyword similarity metrics can be used, such as in [10].
First, this approach has the major advantage of being extremely
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flexible: if a new skill appears (say, an expertise on a new elec-
tronic device), the skill name can be added by any participant
and then become available for the overall community. Second,
these systems can be seen as self-adaptive and self-tuning, as
inappropriate or deprecated keywords can be ruled out by the
natural effect of collaborative filtering. But flexibility can also
be seen as a drawback for this approach:

• keyword dispersion: participants may use very different
keywords for the same skill, leading to a blurred descrip-
tion of available competences;

• low precision: for a task requester looking for a precise skill
s, a keyword-based system will return all skills s′ equal to
s or similar to s up to a given threshold. Hence the task
requester is not guaranteed to obtain only the desidered
skills. As a näıve example, looking for “Java” experts
(computer language) could return “Java” experts (the real
Island). Using vocabularies and entity resolution to solve
this problem means indeed that a kind of taxonomy as
the one we propose is required.

• low recall: due to the openness of the vocabulary, a task re-
quester looking for a skill s is never sure to have exhausted
all the possible keywords that correspond to her goal.

In this paper we advocate the use of structured vocabularies
for skill management. A structured vocabulary can be a tree (a
taxonomy of skills) or a more general ontology of skills (that we
do not consider in the present work). We would like to illustrate
the various benefits we envision:

• Complementarity: it should be observed that our proposal
is complementary to keyword-based systems, and that
existing methods for skill estimation can be enriched with
ours (given nevertheless technical adaptation). Our work
proposes to structure the similarity between skills, so it
could extend the comparison methods used in the related
work.

• Reasoning on skills: being structured as a tree, skills can
be substituted by more specific or more generic skills with
a clear semantics.

• Availability: participatory platforms in science, especially
in biology and ecology, are already using taxonomies to
structure image labeling and hence participant abilities
(see for example the SPIPOLL platform or BumbleBee-
Watch). In these domains, taxonomies are already avail-
able to apply our technique. The situation is less advanced
for generic applications, but as mentioned in the introduc-
tion, several generic skill taxonomies already exist (e.g.
ESCO).

• Support for crowd assessment: finally, using taxonomies
to structure the crowd allows for an efficient design of
targeted qualification tests or quizzes. For example, par-
ticipants can start by answering generic questions (top of
the taxonomy) and go on with more and more specialized
questions (bottom of the taxonomy).

Table 2 sums up this comparison.

5.2 Skill models and crowdsourcing platforms
Several papers propose the use of skill models to improve the

task assignment techniques in crowdsourcing platforms.

Criteria keyword-based taxonomy based
flexibility + -
dynamicity + -
precision - +
recall - +
reasoning - +
stuctured assessment - +

Table 2: Taxonomy- vs. keyword-based skill manage-
ment

Bozzon et al. [4] present a way to extract experts in different
domains from social networks data. The method they propose
consists of a meta model of evaluating resources shared in a
social network and social relations between people participating
in these networks. The resources in this model are assessed with
a direct and an indirect way. The direct method considers the
direct profile info of the participants, while the indirect method
relates the resources with a depth distance of two from each
corresponding user. They also comprised the bi-directionality of
friendship to asses the quality of the relation between people. A
user’s expertise is represented as a label and a normalized value
from the interval zero to one. They do not rely on a taxonomy
of skills.

Maary et al. [14] in their vision paper present a potential
model of an ontology-based skill-modeling methodology. The
goal of their approach is to assure the quality of answers based
on the level of available skills in the crowd. As their work is a
vision paper, they did not provide an implementation and eval-
uation of the platform. The authors argue that uncertainty is
inevitable when human workers are involved in the computation
and that is why quality assurance is needed to eliminate the
unqualified workers who do not pass the quality threshold.

Instead of error rate matching techniques they claim that
finding the potential match is more efficient so they propose a
skill ontology and competencies model that given an annotated
task the corresponding to this domain of expertise participants
will be questioned. The quality of the taxonomy can be judged
in 4 different levels. The result’s quality, the platform’s quality,
the task’s quality and the worker’s quality. Respecting this
taxonomy they propose a skill ontology based model consisting
of the skill ontology, the ontology merger, the skill library of
assessments, the skill aligner, the reputation system and the
task assigner.

In their article [19] Roy et al. formalize the problem of task
assignment given a certain pool of workers and propose different
algorithms to solve it. Similarly to our work, they address
problems in the context of knowledge-intensive crowdsourcing.
They define knowledge-intensive crowdsourcing as the process
of collaborative creation of knowledge content. In their paper,
they assume -as we also do- that workers are never interrupted:
they complete their task once they accept doing it. Their other
assumption is that minimum task per user is one and maximum
task per user is two. They provide three different algorithms
to find an optimal task assignment: the C-DEX optimal, the C-
DEX approximative (deterministic and non-deterministic) and
the C-DEX+. The first uses the reduction form the multiple
knapsack problem and thus is using the dual-primal problem
properties from integer linear programming. The second is a
greedy approximation based on the knapsack problem with
either deterministic or stochastic criteria. The third of their
algorithms reduces the variables of the problem by grouping the
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participants that have same or equivalent profiles to one vir-
tual worker group represented by the highest amount of money
among them and the minimum knowledge among them. The
algorithm then solves the reduced variable problem with the
same integer linear programming method using the same tasks
as in the C-DEX optimal but also the virtual workers instead
of all the workers. All algorithms have an offline and an on-
line phase. In the offline phase the indexes are created for all
participants no matter their connectivity status. On the online
status only the online participants are taken into account in
the reduced problem. The main difference to our work is the
model for representing worker skills. While Roy et al. [19] rely
on a simple keyword-based skill modeling (associated with a
value from [0,1]), we exploit the presence of a skill taxonomy.
This allows us to take into account the whole taskforce of the
platform by reasoning about skills w.r.t. to the skill taxonomy.

Amsterdamer et al. [2] also rely on an ontology to model
a crowd, but they take a different perspective. Their goal is
to extend a knowledge base, by focusing questions to relevant
crowd members (“mining the crowd”). This approach is distinct
from task assignment, where every task has to be assigned to
a participant, even if her skills are not perfectly relevant.

Karger et al. [11] study the task allocation problem, similar
to ours. However, they make completely different assumptions
in their work, in particular, they do not use at all skill profiles
in their algorithms.

In [17], the authors study the problem of team building in
collaborative settings. They consider the optimization prob-
lem of building the best team of participants to reach a given
task quality. The related skill model is also vector-based, but
enriched with a probabilistic distribution.

5.3 Skill modeling
Modeling the skills of a group of people is a challenge in

various contexts. Various models have been developed and are
in use. A review of learner skill assessment techniques can be
found in [8]. The goal of the authors is to provide models that
could be useful in the context of eLearning platforms. Rec-
ommender systems have also been extended with skill profiles
[15]. Campion et al. [6] survey the recent competence modeling
techniques, for generic applications.

Bradley at al. [5] have developed a case-based system for pro-
viding adaptive multimedia content. In particular, in their work
they analyze a Web search engine for jobs. They use similarity
metrics to relate the different cases in their case-based system
with respect to the user queries. Similarly to our approach their
system can make simple reasoning about related (or subsumed)
skills when it relates queries to the cases. The similarity function
(between a query and the stored cases) is a simple weighted sum,
while we use a more sophisticated distance function, inspired
by the Resnic distance.

5.4 Task assignment for crowdsourcing plat-
forms

Several recent work address the question of assigning tasks to
participants in crowdsourcing platforms. Despite the similarity
of the overall goal, the settings and assumptions of these works
are rather different. For example, [23] studies the problem of
task assignment in a streaming setting. On the other hand,
crowd data analytic platforms of Fan et al. [10] and Liu et al.
[13], assume a bounded budget for the assignments, that we
do not have. Mo et al. [16] also assume a limited budget, and
propose methods to optimize the overall quality of (aggregated)

responses by varying the number of participants who perform
the task. Cao et al. [7] and Zheng et al. [27] assign each task
to multiple participants (in a jury form) and they analyze the
trade-off between budget and the expected (aggregated) result
that one can obtain this way. In our work the quality of an
assignment is characterized by the overall compatibility of the
skills of the participants and the tasks, which is more realistic
in platforms such as AMT and Crowdflower, while other work
try to find assignments where the tasks are expected to be
completed timely, based on the participant’s history records. In
the version of the assignment problem studied by Acemoglu et al.
[1], the participant skills are described by a hierarchical structure,
however (unlike in our setting) the difficulties of the tasks are not
known in advance. They also provide a pricing mechanism that
results to an optimized result quality after multiple matching
rounds. However, their work is motivated and studied within
the domain of Finance and not Computer Science.

6. CONCLUSION AND FUTURE WORK
In this paper we have demonstrated the use of taxonomy-based

skill modeling for crowdsourcing. Our techniques allow a simple
form of reasoning about skills and participant substitution that
is particularly useful for optimizing task assignment quality. We
proposed several heuristics for task assignment to participants,
and evaluated their respective performances in terms of quality
and scalability through extensive experimentation.

In our future work, we will consider the relaxation of this
model to incorporate participants with uncertain skills. We
plan to investigate several further questions, with the help of
our proposed model: 1) how to construct skill profiles (from
their answer traces for instance), 2) how to identify and recruit
experts in order to maximize the expected resulting quality, 3)
how to optimize the task assignments in the presence of per-
sonal preferences, 4) how to include a cost model for task-cost
estimation and 5) how to model complex tasks requiring more
than one skills in order to be performed.
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the Muséum national d’histoire naturelle (MNHM), for pointing
us their challenges in participative science. Finally, we would
like to thank the CNRS Mastodons initiative on big data, and
especially the ARESOS project.

852



7. REFERENCES

[1] Acemoglu, D., Mostagir, M., and Ozdaglar, A.
Managing innovation in a crowd. In Proceedings of the
Sixteenth ACM Conference on Economics and
Computation (New York, NY, USA, 2015), EC ’15, ACM,
pp. 283–283.

[2] Amsterdamer, Y., Davidson, S. B., Milo, T.,
Novgorodov, S., and Somech, A. OASSIS: query
driven crowd mining. In International Conference on
Management of Data, SIGMOD 2014, Snowbird, UT,
USA, June 22-27, 2014 (2014), pp. 589–600.

[3] Bender, M. A., Farach-Colton, M., Pemmasani, G.,
Skiena, S., and Sumazin, P. Lowest common ancestors
in trees and directed acyclic graphs. J. Algorithms 57, 2
(2005), 75–94.

[4] Bozzon, A., Brambilla, M., Ceri, S., Silvestri, M.,
and Vesci, G. Choosing the right crowd: Expert finding
in social networks. In Proceedings of the 16th International
Conference on Extending Database Technology (2013),
EDBT ’13, pp. 637–648.

[5] Bradley, K., Rafter, R., and Smyth, B. Case-based
user profiling for content personalization. In Proceedings of
the International Conference on Adaptive Hypermedia and
Adaptive Web-based Systems (2000), Springer-Verlag,
pp. 62–72.

[6] Campion, M. A., Fink, A. A., Ruggeberg, B. J.,
Carr, L., Phillips, G. M., and Odman, R. B. Doing
competencies well: Best practices in competency modeling.
Personnel Psychology 64, 1 (2011), 225–262.

[7] Cao, C. C., She, J., Tong, Y., and Chen, L. Whom to
ask?: Jury selection for decision making tasks on
micro-blog services. Proc. VLDB Endow. 5, 11 (July 2012),
1495–1506.

[8] Desmarais, M. C., and d Baker, R. S. A review of
recent advances in learner and skill modeling in intelligent
learning environments. User Modeling and User-Adapted
Interaction 22, 1-2 (2012), 9–38.

[9] Enrich, M., Braunhofer, M., and Ricci, F. Cold-start
management with cross-domain collaborative filtering and
tags. In E-Commerce and Web Technologies (2013),
C. Huemer and P. Lops, Eds., vol. 152 of Lecture Notes in
Business Information Processing, Springer Berlin
Heidelberg, pp. 101–112.

[10] Fan, J., Li, G., Ooi, B. C., Tan, K.-l., and Feng, J.
icrowd: An adaptive crowdsourcing framework. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (2015), SIGMOD ’15,
pp. 1015–1030.

[11] Karger, D. R., Oh, S., and Shah, D. Budget-optimal
task allocation for reliable crowdsourcing systems.
Operations Research 62, 1 (February 2014), 1–24.

[12] Kuhn, H. W. The hungarian method for the assignment
problem. Naval Research Logistics Quarterly 2 (1955),
83–97.

[13] Liu, X., Lu, M., Ooi, B. C., Shen, Y., Wu, S., and
Zhang, M. Cdas: a crowdsourcing data analytics system.
Proceedings of the VLDB Endowment 5, 10 (2012),
1040–1051.

[14] Maarry, K., Balke, W.-T., Cho, H., Hwang, S.-w.,
and Baba, Y. Skill ontology-based model for quality
assurance in crowdsourcing. In Database Systems for

Advanced Applications, Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2014, pp. 376–387.

[15] Middleton, S. E., Shadbolt, N. R., and De Roure,
D. C. Ontological user profiling in recommender systems.
ACM Transactions on Information Systems (TOIS) 22, 1
(2004), 54–88.

[16] Mo, L., Cheng, R., Kao, B., Yang, X. S., Ren, C.,
Lei, S., Cheung, D. W., and Lo, E. Optimizing
plurality for human intelligence tasks. In 22nd ACM
International Conference on Information and Knowledge
Management, CIKM’13, San Francisco, CA, USA,
October 27 - November 1, 2013 (2013), pp. 1929–1938.

[17] Rahman, H., Thirumuruganathan, S., Roy, S. B.,
Amer-Yahia, S., and Das, G. Worker skill estimation in
team-based tasks. PVLDB 8, 11 (2015), 1142–1153.

[18] Resnik, P. Semantic similarity in a taxonomy: An
information-based measure and its application to problems
of ambiguity in natural language. J. Artif. Intell. Res.
(JAIR) 11 (1999), 95–130.

[19] Roy, S. B., Lykourentzou, I., Thirumuruganathan,
S., Amer-Yahia, S., and Das, G. Task assignment
optimization in knowledge-intensive crowdsourcing. VLDB
J. 24, 4 (2015), 467–491.

[20] Tamir, D. 500000 worldwide mechanical turk workers. In
Techlist (Retrieved September 17, 2014).

[21] Victor, P., Cornelis, C., Teredesai, A. M., and
De Cock, M. Whom should i trust?: The impact of key
figures on cold start recommendations. In Proceedings of
the 2008 ACM Symposium on Applied Computing (New
York, NY, USA, 2008), SAC ’08, ACM, pp. 2014–2018.

[22] Vuurens, J., and de Vries, A. Obtaining High-Quality
Relevance Judgments Using Crowdsourcing. IEEE
Internet Computing 16, 5 (2012), 20–27.

[23] Wang, D., Abdelzaher, T., Kaplan, L., and
Aggarwal, C. C. Recursive fact-finding: A streaming
approach to truth estimation in crowdsourcing
applications. In Distributed Computing Systems (ICDCS),
2013 IEEE 33rd International Conference on (2013),
IEEE, pp. 530–539.

[24] Zhang, J., Tang, J., and Li, J.-Z. Expert finding in a
social network. In DASFAA (2007), K. Ramamohanarao,
P. R. Krishna, M. K. Mohania, and E. Nantajeewarawat,
Eds., vol. 4443 of Lecture Notes in Computer Science,
Springer, pp. 1066–1069.

[25] Zhang, W., and Wang, J. A collective bayesian poisson
factorization model for cold-start local event
recommendation. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (New York, NY, USA, 2015),
KDD ’15, ACM, pp. 1455–1464.

[26] Zhao, Z., Cheng, J., Wei, F., Zhou, M., Ng, W., and
Wu, Y. Socialtransfer: Transferring social knowledge for
cold-start cowdsourcing. In Proceedings of the 23rd ACM
International Conference on Conference on Information
and Knowledge Management (New York, NY, USA, 2014),
CIKM ’14, ACM, pp. 779–788.

[27] Zheng, Y., Cheng, R., Maniu, S., and Mo, L. On
optimality of jury selection in crowdsourcing. In
Proceedings of the 18th International Conference on
Extending Database Technology, EDBT 2015, Brussels,
Belgium, March 23-27, 2015. (2015), pp. 193–204.

853


	Introduction
	Modeling skills for knowledge-intensive crowdsourcing
	Assumptions, skills, tasks and participants
	Task assignment
	Assignment quality

	Task-assignment algorithms
	Experimental evaluation
	Overall experimental setting
	Synthetic data setting
	Synthetic data results and discussion
	Real data setting
	Real data results and discussion

	Related work
	Taxonomies of skills vs. Keywords
	Skill models and crowdsourcing platforms
	Skill modeling
	Task assignment for crowdsourcing platforms

	Conclusion and future work
	References



