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ABSTRACT
Many modern data analytics applications in areas such as
crisis management, stock trading, and healthcare, rely on
components capable of nearly real-time processing of stream-
ing data produced at varying rates. In addition to automatic
processing methods, many tasks involved in those applica-
tions require further human assessment and analysis. How-
ever, current crowdsourcing platforms and systems do not
support stream processing with variable loads. In this pa-
per, we investigate how incentive mechanisms in competi-
tion based crowdsourcing can be employed in such scenar-
ios. More specifically, we explore techniques for stimulating
workers to dynamically adapt to both anticipated and sud-
den changes in data volume and processing demand, and we
analyze effects such as data processing throughput, peak-
to-average ratios, and saturation effects. To this end, we
study a wide range of incentive schemes and utility func-
tions inspired by real world applications. Our large-scale
experimental evaluation with more than 900 participants
and more than 6200 hours of work spent by crowd work-
ers demonstrates that our competition based mechanisms
are capable of adjusting the throughput of online workers
and lead to substantial on-demand performance boosts.

General Terms
Algorithms, Experimentation, Human Factors

Keywords
crowdsourcing; stream processing; competitions.

1. INTRODUCTION
Advances in efficient algorithms and computer hardware

have enabled the processing of huge amounts of data col-
lected from a variety of sources. This includes data continu-
ously produced in streams such as output of digital sensors
in production management, user generated content in online
social networks, and stock trading data. These scenarios of-
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Figure 1: April 2015 Nepal Earthquake tweet volume dur-
ing first 24 hours vs. typical annotation throughput of a
crowdsourcing system [31]. In this work we explore methods
for adaptation to temporal changes in data volume and re-
quirement characteristics in order to overcome such demand-
supply gaps.

ten require (near) real time processing of incoming data por-
tions. Furthermore, in many cases, the rate of incoming data
can largely vary over time, resulting in data peaks and tem-
porarily large increases in processing demands. This holds,
for instance, for scenarios such as crisis management, busi-
ness analytics, or healthcare, that require immediate analy-
sis and action during exceptional situations [29, 3].

In addition to automatic processing methods, many tasks
involved in data analytics applications require further hu-
man assessment and analysis. Crowdsourcing has become
more and more popular for efficiently acquiring human an-
notations and evaluations. However, platforms such as Ama-
zon’s Mechanical Turk and CrowdFlower cannot ensure that
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the workers’ performance over time is in sync with demand
based on the properties of incoming data. In many cases
the average crowd performance at a given time is largely
influenced by aspects such as the time zones of the workers
processing the tasks, and is often subject to periodic fluctu-
ations due to day-night cycles [30, 31].

As an example for an event monitoring activity, Figure 1
shows the hourly amount of the incoming Twitter messages
(which might roughly correspond to the demand in a data
analytics application) in the context of the Nepal earthquake
in April 2015 along with the typical daily activity (offer)
of the crowd as observed in previous crowdsourcing exper-
iments [31]. The example illustrates two major issues: On
one hand, a data analytics application might not receive
enough support to process data during peak periods of the
data stream. On the other hand, too many (possibly unnec-
essary and costly) annotations might be produced during
periods, where the offer exceeds the demand.

For automatic data stream processing, many efficient al-
gorithms and models were proposed in the literature includ-
ing but not limited to representative stream sampling [20],
streaming item diversification [24], or stream clustering [37].
The performance of such algorithms is typically well pre-
dictable and is influenced on the one hand by the available
hardware and on the other hand by stream properties such
as volume, velocity and variety. Stream processing man-
agement systems such as QualiMaster1 can adapt to dy-
namic changes of incoming stream properties and choose be-
tween alternative algorithms with similar functionality and
different running time properties. The algorithms are typ-
ically evaluated in terms of their quality, throughput, and
latency. Whilst it has been shown that also crowd workers
can be motivated to process higher amounts of data through
both monetary and non-monetary incentives [23, 30, 31, 11],
adaptation of crowd performance to dynamic changes of the
demand and the resulting ability of crowdsourcing platforms
to handle streaming data has largely remained unexplored.

In this work we present a large scale study providing in-
sights into streaming properties of crowdsourcing platforms.
To this end, we introduce a temporal utility framework for
crowdsourcing as well as methods for controlling the tem-
poral behavior in crowdsourcing with respect to properties
of the streaming data. In particular we examine how fast
the crowd can react to demand changes and how workers re-
spond to dynamic incentive mechanisms within crowdsourc-
ing competitions. We evaluate the performance for differ-
ent demand scenarios and incentive-related settings using a
state-of-the-art competition based crowdsourcing framework
for maximizing the output whilst bounding the costs.

Outline. The remainder of this paper is organized as fol-
lows: In Section 2 we discuss related work on crowdsourcing
incentives, pricing schemes, and time dependent demands.
In Section 3 we introduce a temporal utility-based frame-
work for crowd output and describe our strategies for time
aware control of crowd behavior. The evaluation of our
strategies is presented in Section 4 where we first describe
the experimental setup along with the core results, and then
delve deeper into details about worker behavior and per-
formance. Finally, in Section 5 we conclude and describe
directions of our future work.

1http://qualimaster.eu

2. RELATED WORK
There is a body of work considering temporal evolution

of the incoming data in different scenarios. In [16] a gen-
eral framework for crowdsourced stream processing systems
(CSPs) is proposed where crowd workers validate the out-
put of machine based processing. The same authors apply
their methods for detecting informative tweets in the con-
text of disaster management [15, 14]. They also elaborate on
changes in the class distributions within streams and the re-
quirement of frequently updating classifier using labels gath-
ered over time. However, the evaluation is just focused on
classifier performance and does not consider the time needed
for the crowd to adopt to the changes. For shortening the
response times, standby worker pools were introduced in [4,
2] and adjusting query execution plans to reduce the num-
ber of crowdsourced tasks was suggested in [9]. For crowd
supported item search, Das Sarma et al. [7] explore trade-
offs between cost and latency, considering the number of
crowdsourcing iterations over time. Based on observations
at Amazon’s Mechanical Turk, Faridani et al. [10] propose
a theoretical framework for the relationship of HIT price
and completion time to speed up processing. They identify
the size of task batches along with the monetary reward per
batch as important factors for attracting workers. Build-
ing on that work Gao and Parameswaran [12], investigate
static and dynamic variants of pricing schemes to achieve
desired completion time with high probability. Difallah et
al. [8] employ dynamic bonus rewards at fixed intervals to
decrease completion time by motivating top contributors to
stick to a given task.

None of these works is dealing with real-time requirement
changes on aggregate crowd performance. In contrast, in our
work, we especially focus on scenarios where the crowd has
to adjust annotation throughput, reacting to sudden changes
on demand.

Time-based pricing is a strategy widely used in eco-
nomics [38] where service providers employ price variations
to ensure supply and demand balance over time. Such tech-
niques are exploited in various applications such as energy
consumption optimization in smart grid power supply sys-
tems [32, 25] and mobile internet access [6]. Time utility
functions were designed to express the temporal demand and
reward or penalize the output depending on the desired exe-
cution time limit. They are widely used in real time comput-
ing [22] for resource management such as package scheduling
in wireless networks [5] or video transcoding [35]. In contrast
to these works, we are the first to exploit time-based utility
functions with different properties in streaming crowdsourc-
ing scenarios.

Finally, a number of works have proposed gamification
elements to improve crowdsourcing performance. In [1] var-
ious aspects of game mechanics embedded in standard IR
tasks are explored, including information seeking, crowd-
sourcing, and user engagement. He et al. [13] introduce a
user interface for studying search behavior within a gamified
setting where users receive points for finding relevant doc-
uments, and where scores are announced in leaderboards.
Dinesh et al. [28] discuss additional incentive structures to
encourage user activity within an online platform. In [11]
the authors show that gamification in crowdsourcing can
improve both worker engagement and effectiveness. In our
previous work [30] we applied competition designs to im-
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prove cost and time efficiency of crowdsourcing, and we ex-
plored a wide range of monetary reward schemes that are
inspired by competitions, lotteries, and games of luck. In a
follow up work we investigated how team mechanisms can
be leveraged for further improving the cost efficiency [31].
In this paper we will use that competition framework as a
sub-component. None of works so far considers gamification
or competitions in context of streaming crowdsourcing to
stimulate the crowd to adapt to demand changes.

To the best of our knowledge, we are the first to leverage
competition designs to adapt crowd performance to dynamic
changes in demand and utility and to conduct systematic
real-world studies of the effects on both time aware quantity
and quality of annotations.

3. TEMPORAL CROWDSOURCING
SETTING AND COMPETITIONS

In this section we formalize crowdsourcing scenarios
with temporal demand characteristics, describe our existing
competition-based crowdsourcing framework, and, building
on that framework, introduce our approach for controlling
the temporal performance of the crowd.

3.1 Temporal Valuation Framework
In time dependent applications that interact with, or in-

corporate, a crowdsourcing system, qualitatively different
forms of temporal considerations may arise (often in com-
bined form): Firstly, the utility of finished tasks might de-
crease with processing delays; this might, for instance hold
for analytics services where up-to-date information is more
valuable. Secondly, obtaining an insufficient number of fin-
ished tasks up to a certain point in time might result in
decreased utility as might be the case for real time statisti-
cal analysis or for online algorithms requiring human-labeled
training input.

To formalize and quantify these aspects, let S be a set of
task sets issued within an overall time frame T = [tstart, tend].
Each task set s ∈ S is issued to the crowdsourcing system
individually, with a desired number of annotations ds and a
desired completion time ts. The crowdsourcing system stops
issuing and processing tasks in s at time trs and responds
with ns annotations for s. For task set s we define the utility
value u(s) of ns(trs) finished tasks at response time trs as

u(s) = α(ds, ns(trs)) · β(trs, ts) · γ(s), (1)

where the completion factor α(ds, ns(trs)) is a utility term
depending on extent to which the batch has been annotated,
β(trs, ts) is a delay factor accounting for elapsed time, and
γ(s) is a base utility factor for task set s. Our goal is to
maximize the overall utility U =

∑
s∈S u(s).

3.2 Utility Scenarios
We now describe various manifestations of the individual

utility factors in Equation 1 based on different application
scenarios.

3.2.1 Completion Factor
The value of the completion utility factor depends on the

number of tasks in a task set that are finished at response
time. The concrete form of this factor can vary with the
application context. Figure 2 visualizes examples of possible
functional representations that we describe and motivate in
the following.
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Figure 2: Example of the different completion factors α de-
pending on number of annotations ns for demand ds.

Full Completion. As a first basic scenario, we model the
completion factor for the case that partial completion does
not yield any utility, i.e. each task set has to be fully com-
pleted in order to be useful:

αfull(ds, ns(trs)) =

{
0, for ns(trs) < ds

1, otherwise.
(2)

An example are complex tasks which are decomposed into
sub-tasks for annotation, such as nutritional analysis based
on photos of meals [26].

Linear with Cut-off. We model scenarios where partial
completion is acceptable but where a surplus of annotations
does not add any additional value, using a linear function
with cut-off:

αlincut(ds, ns(trs)) =
min(ns(trs), ds)

ds
. (3)

This function is applicable if a fixed number of tasks needs
to be processed with each individual item having a value by
itself as, for instance, annotations related to product cate-
gorization for online retailers like Amazon2.

Saturated. Saturation effects can occur in scenarios where
the value of additional tasks decreases with the number of
already processed tasks. In such a scenario, a monotonically
increasing convex utility function is applicable. More specif-
ically, we model utility at time trs as a logarithmic growth
function:

αsaturated(ds, ns(trs)) = logb

(
1 +

(b− 1) · ns(trs)

ds

)
, (4)

where parameter b controls the steepness of the incline. This
can be regarded as a “softer” variant of the previously de-
scribed cut-off model. A concrete application scenario is
machine learning where the accuracy of the method often
improves with training set size in a similar fashion [33, 27].
Another example is the accuracy of crowdsourced labels ob-
tained through redundant annotations, which, modeled as
an ensemble of independent classifiers, shows similar char-
acteristics [17].

2https://amazon.com
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Sigmoidal. For machine learning or statistical analysis,
there might be situations where a small number available
annotations have very limited value, as no sufficiently reli-
able predictions can be made, whilst saturation effects might
occur for larger numbers of annotations. Such scenarios can
be addressed with a utility function that is concave at first
and then becomes convex as before. More specifically, we
model utility at time trs as

αsigmoidal(ds, ns(trs))=sc·

(
1

1+e
st·(1−2·ns(trs)

ds
)
− 1

1+est

)
,

(5)

where sc is a scaling factor and st determines the steepness of
the curve. Such sigmoidal utility functions are also employed
in the context of wireless networks [5, 36].

3.2.2 Delay Factor
Our delay factor model is inspired by Jensen’s time-utility

functions, which were introduced in the context of real-time
processing systems [19, 18] and which were also applied to
package scheduling in networks [34]. In a scenario with hard
time bounds the delay factor can be modeled as

βhard(trs, ts) =

{
1, for trs ≤ ts
0, otherwise,

(6)

i.e. tasks finished after the response time have no value. A
soft version of this assigning a diminished value to tasks pro-
cessed can be described using an exponential decay function
as follows:

βsoft(trs, ts) =

{
1, for trs ≤ ts

ec·(ts − trs), otherwise,
(7)

where c determines sharpness of decay, after the desired com-
pletion time has passed.

3.2.3 Base Utility
Finally, the base utility factor γ(s), is use case specific. In

the following we assume that individual tasks within a task
set contribute equally to the base utility. Thus the base
utility is proportional to the number of desired annotations
γ(s) ∝ ds.

3.3 Competitions and Incentives for
Dynamic Crowdsourcing Demands

We now introduce crowdsourcing competitions [30, 31], a
crowdsourcing scheme that is attractive due to its low cost
per annotation compared to standard pay-per-task micro-
task crowdsourcing. As an extension, we introduce incentive
mechanisms for dynamic processing demands.

We consider a scenario with a fixed monetary budget M
for paying workers and time frame T , as defined in Sec-
tion 3.1, and a crowd consisting of n workers W = w1, .., wn.
This budget is distributed among the (individual and teams
of) workers in a team-based crowdsourcing competition, de-
pending on the values produced by them. A worker wi re-
ceives a monetary reward m(wi) with

∑
m(wi) = M .

Individual Competitions. In individual competitions, work-
ers are ranked according to their produced values and the
reward of a worker depends on his or her rank. Formally, let
rank(wi) ∈ {1, . . . , n} be the rank of worker wi, with a rank

of j corresponding to the j-th highest value produced across
all workers. The individual reward mind(wi) is computed as
a monotonically decreasing, convex function Γ(rank(wi)) of
the worker’s rank, i.e. top performers receive more money
per solved task.

Team-based Competitions. In addition, we rank teams of
workers according to the sum of the values produced by their
members, with rank(ti) defined analogous to the individ-
ual ranks. A team reward mr(ti) is assigned to each team,
using, as for individual competitions, a monotonically de-
creasing, convex function. A worker wj receives a reward
mteam(wj) that is proportional to the contribution to his
or her team t(wj) in addition to his or her individual re-
ward mind(wj). The teams are formed through a “balanced”
strategy for team formation, where we set up a fixed num-
ber τ of empty teams and assign each new worker (from the
stream of registering workers) uniformly at random to one
of the teams containing the lowest number of workers. Fur-
thermore, in order to avoid large numbers of inactive team
members, we require a low initial threshold for the value
produced by worker wi before assigning him or her to one
of the teams.

Information on Competitors. We employ a medium in-
formation policy where only part of the information about
other workers and teams is revealed: workers are shown their
scores and rank along with their k neighbors above and be-
low in the leaderboard. Additionally, the team leaderboard
also keeps workers updated about their current shares of the
team reward.

Quality Check and Feedback Mechanism. A “honeypot”
task drawn from the gold standard is randomly introduced
within each batch of bs tasks. After workers finish a batch,
they are shown the honeypot and their input for it. If work-
ers solved the honeypot correctly, a batch reward br is added
to their score, otherwise a penalty bp ∝ br is subtracted in-
stead (with a cut-off threshold of 0 for the score, i.e. there
are no negative scores).

Incentives for Dynamic Processing Demands. Our ob-
jective is to influence aggregate crowd behavior towards de-
sired temporal annotation output characteristics. To this
end, at each point in time t ∈ T , a correct task annotation
is rewarded with r(t), i.e. the batch reward is br(t) = r(t)·bs.
The reward per task at time t is announced at time a(t) ≤ t
to the workers.

In our experiments we consider the case of fixed-length pe-
riods of increased annotation demand, which we match with
periods of increased reward rates framed as “bonus events”.
During those bonus events, the reward rate r is increased by
a constant bonus factor B in comparison to a constant base
reward rate (r = 1 in our case). In addition, we assume there
is fixed forecast period fp for all tasks, i.e. a(t) = t − fp,
for all t ∈ T . As an extension of this mechanism, we further
introduce the notion of “limited bonus”, where the bonus is
granted only for a limited number l of annotations. How-
ever our general framework covers many alternative scenar-
ios, involving, for instance, variations in forecast and bonus
periods, and dynamic adjustment of bonus factors within
the competition and within bonus events.
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4. EXPERIMENTS
In this section we evaluate the demand-based control

strategies described in Section 3. The objective of our eval-
uation was to study the temporal adaptation of the crowd
under different demand scenarios and incentives, and to eval-
uate the effectiveness of our approach in achieving more de-
sirable distributions of work throughput over time.

4.1 Setup
Crowdsourcing Task. We launched a face recognition task
employed in our previous work [31], where workers were
asked to identify a person on a given reference photo among
a set of 10 test photos. The images were retrieved from
the PubFig3 database which was created for face verifica-
tion [21]. Out of originally 58,797 images with faces of 200
celebrities, 37,004 images were available on the Web. We re-
viewed the dataset manually and removed 663 images show-
ing placeholders as well as 135 images we deemed unsuitable
because the correct person was not shown on the image.

Implementation and Settings. For each reward scenario
we conducted one competition and announced a correspond-
ing crowdsourcing task on the CrowdFlower platform and a
mailing list consisting of participants from the previous com-
petition about one day before the competition started. The
workers were choosing the tasks autonomously, as common
for crowdsourcing platforms such as CrowdFlower. As the
tested reward strategies are not supported on that crowd-
sourcing platform, we ran the actual competition using an
external application on servers at our institute. Each worker
was assigned a user code upon registration which had to be
submitted to the CrowdFlower task in order for the account
to be activated, thus ensuring that each participant could
be paid. All experiments were performed with a duration of
three days and a break of one day in between two competi-
tions to avoid extensive user fatigue.

Demand Scenario. In our scenarios we considered the use
case that task sets are issued sequentially at the beginning of
each hour with a response time of one hour, and that for each
hour there exist demands ds for the completion of tasks. We
tested two forecast scenarios: forecast period fp = 1 hour
(short notice) and fp ≥ max(T ) − min(T ) (long notice -
demand is known beforehand). For all hours of the compe-
tition, demands ds were set to a constant base demand of
dbase annotations - except for 10 randomly chosen “peak”
hours where the demand was doubled. This corresponds
to the important case that higher annotation throughput
should be obtained in certain time intervals involving in-
creased demand.

Tested Strategies. In our previous works on crowdsourcing
competitions [30, 31] we observed bursts in participation for
the first few competitions launched; participation numbers
then became more stable for later runs. To reduce these
novelty effects and to ensure better comparability of our ex-
periments, we started with three preliminary experimental
rounds consisting of a competition without demand changes
and two competitions with peak hours announced as sched-
ules in advance.

3
http://www.cs.columbia.edu/CAVE/databases/pubfig/

In our main experiments, we increased the reward during
bonus events by different factors B: double points per batch
(low), five times points per batch (mid), and ten times
points per batch (high). Each setting was tested under two
forecast periods fp as described in the previous paragraph,
corresponding to different time intervals for advance notifi-
cation of bonus events to participants: In the long notice
setting, participants had access to the full event schedule
already before the competition started. In the short notice
setting, events were announced one hour beforehand. As
baseline we conducted a team-based crowdsourcing compe-
tition with balanced team strategy and individual rewards as
in [31] without any additional incentives during peak hours
(baseline). The resulting 7 individual experimental runs
were carried out in randomized order.

To address problem settings where more annotations might
not offer additional value at a certain point, we conducted
an additional experiment with a limited bonus pool mecha-
nism (limited): during peak hours, bonus points were only
awarded for the first l annotations. Based on results from
our main experiments we chose limit l = 6000. For notice
and bonus settings, we chose long notice and high bonus
in expectation of more clear results. In all experiments, we
distributed a prize money of M = 100 USD among the top-5
performing teams and individuals.

4.2 Results
In our experiments, overall 2.36 million images were

matched correctly by 921 participants from 76 different
countries (amounting to over 6200 hours of work). The
workers were accessing our competitions from several parts
of the world, with a majority from Europe (34.9%) and
South America (27.6%). The country represented most nu-
merously was Venezuela (17.9%), followed by India (9.1%)
and the United States (5.8%).

4.2.1 Aggregate Results

Annotation Throughput. Table 1 shows the number of cor-
rectly annotated images for each of the experiments, along
with the peak-to-non-peak ratio of mean annotation through-
put per hour, overall number of participants, and peak-to-
non-peak ratio of average number of annotators per hour.
The main results are the following:

• As expected, for the baseline experiment the mean
throughput in peak hours does not deviate noticeably
from throughput in non-peak hours, as no bonus mech-
anism was employed. Differences are due to random-
ness in the distribution of peak demands and uneven
base annotation throughput distribution in time (see
Figure 4g).

• For the short notice experiments, medium bonus in-
creases peak-to-non-peak ratio of mean annotation
throughput in comparison to low bonus, while increas-
ing the bonus further did not offer additional benefits
in this setting.

• In contrast, in the long notice setting further substan-
tial increase of the throughput peak-to-non-peak ratio
can be observed when high bonus is employed.
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Experiment Correct Annotations Mean Throughput Annotators Mean no. of Annotators

peak-to-non-peak ratio Overall peak-to-non-peak ratio

Baseline

no bonus 316,769 1.02 208 1.14

Short Notice

low bonus 271,963 2.42 164 1.41
medium bonus 272,549 3.02 214 1.46

high bonus 319,236 2.96 260 1.62

Long Notice

low bonus 376,828 2.34 291 1.55
medium bonus 284,596 3.26 179 1.76

high bonus 247,901 4.21 167 1.95

Table 1: Aggregate outcomes of the experimental rounds.

Statistical Tests. We validated our results against false pos-
itive findings that may occur as a result of varying base an-
notation behavior, experiment order, or peak demand distri-
bution. To this end, we employed Welch’s unequal variances
t-test for comparing the average number of annotations dur-
ing peak and non-peak hours. For all experiments involving
bonus incentives, the differences between average peak and
non-peak were significant with p < 0.001.

Participation. The number of annotators given in Table 1
provides further insight into differences between short no-
tice and long notice settings. The ratio of average number
of annotators per hour for peak and non-peak hours varies
drastically for the different settings. For both short and long
notice, the ratio increases with the bonus amount; however,
under all bonus settings, the ratio is higher for long notice.
This is not surprising, as participants have advance knowl-
edge of bonus events in the long notice setting and can plan
accordingly, while in the short notice setting participants
have to monitor the application for presence of a bonus.
In combination, we find that increasing bonus can increase
peak throughput significantly but is limited in the number
of workers that can be mobilized. This indicates that ad-
vance notice, based on forecasts for instance, is necessary to
match more extreme peaks in annotation demand.

Annotation Quality. Similar to previous results [31], the
large majority of images was annotated correctly, with over-
all accuracy ranging from 93.9% in the long notice, medium
bonus experiment, to 96.4% in the long notice, low bonus
experiment. In comparison to the baseline, with overall ac-
curacy of 95.0%, there is no noticeable difference. In addi-
tion, there is no difference in annotation accuracy for peak
hours compared to non-peak hours in our experiments.

Base Offer Distribution. Figure 3 shows the distribution
of annotations per hour of day (in hours where no bonus
incentive was applied) from the workers perspective in their
local time, as well as from our perspective in CEST, aggre-
gated over all workers in all experiments4. The distribution

4Time zone information was obtained from the workers’
browsers and depends on their system settings.
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Figure 3: Non-peak annotations per hour of day for a)
worker local time and b) CEST aggregated for all experi-
ments.

according to the workers’ local time in Figure 3a shows pro-
nounced differences based on time of day, with a general
preference for annotating in the evening. Surprisingly, even
in late night hours there is substantial activity. From the
global point of view (Figure 3b), time zone effects interfere
with each other and differences are less pronounced; how-
ever, variations in annotation output depending on time of
day are still clearly visible. In addition, we can observe
two peaks in annotation output featured in the CEST plot.
There is a peak between 6pm and 7pm, which possibly oc-
curs due to our experimental schedule: experiments started
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Figure 5: Number of correct annotations per minute around
a typical bonus hour.

hours align with the overall progression of measurements.
In addition, the peak demand hours fell mostly into the first
half of the experiment, influencing the annotation through-
put and number of annotators peak-to-non-peak ratios ob-
served before.

In contrast, the plots for all variations of our bonus method
show clearly increased annotation throughput for peak de-
mands5. Furthermore, Figure 4f shows that the combination
of high reward and long notice results in extreme annota-
tion peaks in response to the demand peaks, compared to
a rather low base annotation throughput due to lower par-
ticipation numbers (see Table 1). In all bonus settings, the
magnitude of peak hour annotation throughput varies in a
similar fashion to base annotation throughput in non-peak
hours, depending on factors such as hour of day and general
activity in the competition.

Temporal Variations around Bonuses. A more fine-
grained view of annotation throughput can be seen in Fig-
ure 5 showing annotations per minute for a period of 1.5
hours before and after a bonus hour in the long notice,
medium bonus experiment, as a typical example. Most no-
tably, we observe a drop shortly before the bonus is applied.
This “anticipation period” is a pattern that can be observed
for most bonus hours.

In the beginning of bonus hours increased throughput lev-
els are reached in a sharp incline after a short delay; com-
pared to annotation rate in the preceding hour, throughput
is increased by at least 50% in less than two minutes on av-
erage. On the other hand, towards the end of bonus hours
a decline can be observed. As a result of our quality mech-
anism, scores are granted only upon completion of a batch
of 100 images. A participant who estimates he or she will
not complete the batch in time before the end of the bonus
hour may not expect to receive bonus points for the anno-
tations. These observations can be taken into account when
planning the bonus based on a demand scenario: our de-
mand scenario could be matched more closely by awarding
the bonus slightly earlier and longer.

5Except for one hour in Figure 4f. Activity during bonus
hours was so high in the high bonus setting, in fact, that
our application could not handle the load at some points,
which resulted in artifacts in the data.
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Figure 6: Peak and non-peak annotations per hour (a) and
annotations per minute around a typical bonus hour (b) for
the limited bonus experiment.

4.2.3 Limited Bonus
We also studied a complementary mechanism to control

the effect of our bonus incentive scheme with more preci-
sion. To this end, for the high bonus - long notice setting,
we introduced and announced to workers a limit on the num-
ber of annotations that were awarded a bonus upon comple-
tion. Figure 6a shows the number of correct annotations per
hour over the course of the experiment6. Except for the first
bonus hour at the very beginning of the competition, for the
most part annotation numbers for bonus hours are closely
above our set limit of l = 6000 processed tasks, and exhibit
less variation for those hours in comparison to the setting
without limit. A more fine-grained view shown in Figure 6b
for the example of bonus hour 6 reveals throughput levels
comparable to peak hours in the previous experiments as
long as the bonus is available which afterwards drops ap-
proximately to the level of non-bonus hours. These results
illustrate the viability of our method for further adjusting
temporal crowd performance to annotation demands.

4.2.4 Utility Scenarios
We further evaluated our methods by comparing overall

Utility U , as defined in Eq. 1, in Table 2 for several variations
on completion factors α, parameterized with b = 8, sc = 1,
and st = 3 (controlling the steepness of saturated completion
factor, scaling of sigmoidal utility factor, and steepness of
sigmoidal utility factor, respectively). We employed hard
time constraints βhard, base utility γ = s for non-peak hours
and an increased base utility γ = 10 · s for peak-hours, in
accordance with our scenario, focusing on matching peak
annotation demands. To eliminate influences on absolute
annotation numbers, such as the order of experiments, we
normalized the annotations ns as well as the demand ds by
their respective sums for each of the experiments.

For the described setting, all of our methods outperform
the baseline with respect to utility. This is because peak-
hour annotation demands, which are of high interest in our
setting, are well matched (cf. Figure 4). For completion
factor αsaturated, annotation output in the long notice, high
bonus experiment results in highest overall utility, in spite
of the fact that the observed effect was extreme (peak-to-
non-peak throughput ratio of 4.2), at the expense of com-

6Note that in hours 7, 18, and 19 of the competition un-
fortunately there occurred application failures, resulting in
strongly reduced throughput for those hours.
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Experiment Utility U

αlincut αsaturated αsigmoidal

Baseline

no bonus 2.1 2.62 2.12

Short Notice

low bonus 2.96 3.27 3.09
medium bonus 2.91 3.38 3.05

high bonus 2.98 3.40 3.12

Long Notice

low bonus 2.81 3.23 3.01
medium bonus 3.02 3.47 3.15

high bonus 2.83 3.55 2.95

limited bonus 3.01 3.39 3.13

Table 2: Overall utility U under several completion fac-
tor scenarios with increased base utility factor during peak-
hours and hard time bounds delay factor.

pletion rates during non-peak hours. In contrast, sigmoidal
αsigmoidal and linear cut-off α lincut completion factors pe-
nalize low completion rates more harshly and lead to a rel-
atively lower overall utility. In these settings, annotation
output in the long notice, medium bonus experiment, with
a more moderate peak-to-non-peak throughput ratio of 3.3,
achieved highest valuation. Similarly, utility of annotation
results in the limited bonus experiment (as an extension on
the long notice, high bonus setting) is comparable, demon-
strating the usefulness of the mechanism.

4.2.5 Influences on Worker and Competition
Dynamics

In the following, we examine possible effects of bonus me-
chanics on worker behavior and on competition dynamics.
Some participants might use the setting to their advantage,
whilst others are discouraged. In addition, the setting might
put additional strain on the workers.

Distribution of Annotations throughout the Day. Fig-
ure 7 shows the distribution of annotations over hours of
day based on individual participant time zones aggregated
over all users for the baseline and long notice, medium bonus
experiments. The distribution observed for the baseline ex-
periment does not differ from the aggregate results shown
in Figure 3. In bonus settings however, as shown for long
notice, medium bonus as an example in Figure 7b, bonus
hours result in spikes that deviate from the normal daily
annotation pattern of the workers. Although occurrence of
bonus hours in relation to worker local time is random, we
observe a common pattern of increases in annotation out-
put occurring predominantly in the afternoon and evening
hours. This indicates that our method amplifies time zone
effects in annotation output of the users; however, as the
bonus hours match our demand scenario, the effects coun-
teract in general in a useful way. In addition, we do not
see a general pattern of changes in the day-night cycles of
participants, which may have adverse effects on them.
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Figure 8: Scores over time for the top 10 individual participants in the baseline and long notice, medium bonus experiments.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have studied the problem of stream alike

data processing in crowdsourcing scenarios. To this end, we
proposed a temporal valuation and utility framework as well
as incentive schemes to control crowd performance as would
be required in many real world stream processing applica-
tions. Our evaluation shows the viability of our techniques
for flexibly adjusting worker output according to demand
changes over time with a fixed budget and considerable im-
provement of the time-adjusted value produced in various
utility scenarios when compared to the baseline. In partic-
ular, for peak demand periods, our most effective strategy
increases the crowd throughput by more than 300% on av-
erage.

In our future work we aim to extend our techniques for
effecting desired throughput distributions to accommodate
a variety of demand scenarios defined in our temporal val-
uation framework. To this end, we plan to involve crowd
performance forecasting techniques to support adjustment
of the input parameters on the fly and to carry out in-depth
studies on the effects of dynamic parameter changes.
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