
Effective Construction of Relative Lempel-Ziv Dictionaries

Kewen Liao
kewen.liao@unimelb.edu.au

Matthias Petri
matthias.petri@unimelb.edu.au

Alistair Moffat
ammoffat@unimelb.edu.au

Anthony Wirth
awirth@unimelb.edu.au

Department of Computing and Information Systems
The University of Melbourne, Australia

ABSTRACT
Web crawls generate vast quantities of text, retained and archived
by the search services that initiate them. To store such data and
to allow storage costs to be minimized, while still providing some
level of random access to the compressed data, efficient and effec-
tive compression techniques are critical. The Relative Lempel Ziv
(RLZ) scheme provides fast decompression and retrieval of docu-
ments from within large compressed collections, and even with a
relatively small RAM-resident dictionary, is competitive relative to
adaptive compression schemes.

To date, the dictionaries required by RLZ compression have
been formed from concatenations of substrings regularly sampled
from the underlying document collection, then pruned in a man-
ner that seeks to retain only the high-use sections. In this work,
we develop new dictionary design heuristics, based on effective
construction, rather than on pruning; we identify dictionary con-
struction as a (string) covering problem. To avoid the complica-
tions of string covering algorithms on large collections, we focus
on k-mers and their frequencies. First, with a reservoir sampler, we
efficiently identify the most common k-mers. Then, since a col-
lection typically comprises regions of local similarity, we select in
each “epoch” a segment whose k-mers together achieve, locally, the
highest coverage score. The dictionary is formed from the concate-
nation of these epoch-derived segments. Our selection process is
inspired by the greedy approach to the Set Cover problem.

Compared with the best existing pruning method, CARE, our
scheme has a similar construction time, but achieves better com-
pression effectiveness. Over several multi-gigabyte document col-
lections, there are relative gains of up to 27%.

1. INTRODUCTION
Large collections of data and meta-data are critical information

assets, and often arise during web-based activities. For example,
internet service providers are increasingly being required to retain
extensive meta-data logs; web search companies derive their corpo-
rate success from the web pages that they crawl and retain; and even
corporate entities are required to retain email and document his-
tories in order to meet governance and compliance requirements.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2016, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4143-1/16/04.
http://dx.doi.org/10.1145/2872427.2883042.

Such data is typically text-based, typically voluminous, and typ-
ically accessed in very small units. It is thus an ideal target for
bespoke compression techniques.

Dictionary-based compression has a long history, going back at
least to the work of Storer, Lempel, and Ziv in the late 1970s. The
Relative Lempel Ziv scheme [5, 8], usually abbreviated to RLZ, is a
relatively recent member of this family. It uses a semi-static dictio-
nary and static or adaptive codes to provide fast atomic decompres-
sion and retrieval of documents in a compressed large collection.
The dictionary is selected from the text that is to be compressed and
is communicated to the decoder via a secondary channel and an al-
ternative compression regime. Typical dictionary sizes are up to 1%
of the original text. Then, once the dictionary is in place, fixed-
or document-based blocks of the original text are (greedily) fac-
tored relative to the dictionary, and represented as two streams, one
of “offset” values, and one containing the corresponding “copy-
length” integers. Finally, for each block of data, the two streams
are coded, using either static representations for integers (binary,
or variable-byte codes), or using a per-block adaptive mechanism.
The two streams can be treated differently if so desired.

The key advantage of RLZ is that pseudo-random access to the
compressed text is possible, since each block can be independently
decoded; yet compression effectiveness is relatively high, since the
dictionary is drawn (in some way) from the whole of the text being
stored. Recent experimentation exploring the trade-off between ac-
cess efficiency and compression effectiveness showed that – even
with a relatively small RAM-resident dictionary – RLZ factoriza-
tion and ZLib-based encoding of the integer streams is competitive
against state-of-the-art dynamic compression schemes [12].

From the start, Storer [14], as well as Storer and Szymanski [15],
identified dictionary selection as a key optimization problem for
dictionary-based compression schemes. In many scenarios, choos-
ing an optimal dictionary is NP-hard. Typically to date, RLZ dic-
tionaries have been formed from concatenations of long segments
(of the order of 1 kiB) sampled at regular intervals from the col-
lection, then pruned appropriately [5, 6, 17]. The drawback of this
approach is that pruning commences with only a subset of the full
text available to it, and if a string is not in the initial sampled dictio-
nary, it is not in the final dictionary either. In this paper, we develop
new dictionary-design heuristics, based on direct and targeted con-
struction, rather than pruning; our mechanisms are not limited by
the choices made by the initial (regular) sampling process.

In particular, we view dictionary construction as a string-based
covering problem, seeking the combination of strings likely to yield
the most economical factorization. To avoid the complications of
string-covering algorithms on large collections, we focus on k-mers
and their frequencies. With a reservoir sampler, we efficiently iden-
tify the most common k-mers. Since a collection typically com-

807





Algorithm 1 Regular sampling
Let P be an empty dictionary pool, s the segment length, n the
length of the text, and m be the dictionary size required.
M← m/s
for i ∈ [0..M−1] do

add to P, the substring Cs[i(n/M)]

return pool P

Regular Sampling. As originally proposed [5], the RLZ dictio-
nary is formed by taking regular samples from C. That process
is described in Algorithm 1, where Cz[p] represents the string
of length z, starting at the pth symbol of C, that is, C[p, p +
1, . . . , p + z− 1]. In total, the m-byte dictionary is the concate-
nation of the M segments, each of s bytes, in the pool. Typical
values are n = 64 GiB, m = 64 MiB, and s = 1 kiB, so that there
are M = 216 = 65,536 segments concatenated to form the dictio-
nary, drawn at intervals of 1 MiB. That is, in each of the M epochs,
of length n/M, one segment is chosen, from the beginning of the
epoch, and added to the dictionary. (Note that for convenience we
assume that n is a multiple of M and of s, and that m is a mul-
tiple of s, but nothing in our implementation requires these exact
relationships.)

Picking regularly spaced segments is fast, and produces surpris-
ingly effective dictionaries [5]. However, during the dictionary
creation process, previously selected segments are not considered
when selecting the next dictionary segment. This can lead to inter-
segment similarities that do not make compression more effective,
and lead to wasted space in the dictionary. Inter-segment similarity
can be measured by quantifying the repetitiveness of the dictionary.

To quantify repetitiveness, we examine the distribution of
longest common prefix (LCP) values, computed by suffix-sorting
the dictionary. A large LCP value, x, implies that two lexicograph-
ically adjacent suffixes of the text have a large common prefix. If
those two suffixes do not overlap (in location), then the dictionary
contains a duplicate string of length x. Figure 1 shows the distri-
bution of LCP values arising in a 256 MiB dictionary formed from
regularly sampled 1 kiB segments drawn from a 64 GiB section of
a web crawl (see Section 4 for details of file “CC”). There are more
than 10,000 LCP values larger than 1,024 in the dictionary, indicat-
ing that there are many long repeated strings in the dictionary. In-
deed, that there are consecutive sampled blocks that by chance are
repeated even across segment boundaries suggests, for example,
that CC contains very long highly repetitive components. These
would span more than one sampled segment and the exact entry
point (for sampling) into the repeated string would be unimportant.
The largest LCP value, 5,119, suggests that there may be five con-
secutive segments in the dictionary all containing the same symbol.

Dictionary Pruning. Pruning was at the core of previous attempts
to produce space-efficient dictionaries. After generating a larger-
than-required regular sampled dictionary, the least useful strings
– for some definition of “useful” – were removed. The pruning
problem is difficult to analyze: there are Θ(m2) candidate strings to
remove, and the effect of any particular removal is not obvious. A
simple heuristic is to examine the factorization of C on D, and then
remove from D the bytes that are the target of very few factors. A
risk with this approach is some very long – if infrequently occurring
– factors might be disrupted.

In a follow-up to their original RLZ paper, Hoobin et al. [6] intro-
duce segment-level pruning. To prune the dictionary to the required
size, they remove from the dictionary the constituent segments that

10

1 k

100 k

10 M

1 1000 2000 3000 4000 5000

LCP

C
o

u
n

t

Figure 1: Distribution of LCP values of a 256 MiB dictionary cre-
ated using regular sampling over a 64 GiB prefix of the file CC
(described in Section 4).

are least frequently the target of a factor; this strategy is known
as REM. A risk here is that a 1 kiB segment is likely to be too large
to be the unit of removal: there could be a heavily used substring
inside such a large segment.

The CARE Mechanism. Tong et al. [17] explore a more complex
approach that estimates the cost of removing any given string from
the dictionary. Given a set of strings that are candidates for re-
moval from the dictionary, the ideal estimator would be to trial-
compress the entire collection without each such string, then re-
move the string of least impact, then iterate greedily. But this level
of recomputation is impractical. Instead Tong et al. rely on the dic-
tionary to determine the contribution of a string, in a mechanism
they refer to as being “contribution-aware reduction”, or CARE.
Each candidate string ς is factored against D \ ς , the dictionary
with ς removed. If there is a another copy of ς in D, then ς can be
represented, with dictionary D\ ς , as just one factor. If not, then ς

might require several factors when parsed against D\ ς . The mea-
sure for removal in CARE is the number of factors so generated,
multiplied by the average target frequency of the bytes in ς , then
divided by |ς |.

The second part of CARE is the selection of candidate strings.
They are determined greedily, left to right, and are selected to be
of length at least some threshold λ , and with no byte having target
frequency more than threshold φ . The thresholds λ and φ depend
on both the collection and dictionary sizes: compressing a large
collection using a small dictionary naturally increases the target
frequency of bytes in the dictionary. Figure 2 shows a parameter
exploration of two dictionaries (32 MiB and 128 MiB) of a 64 GiB
prefix of a web crawl (file CC, described in detail in Section 4).
For example, using the 32 MiB dictionary and thresholds λ = 64
and φ = 256, only 4 MiB of candidate segments are identified; to
prune the 32 MiB dictionary to 16 MiB, a frequency threshold of
φ ≈ 1024 is required. However, at this point, ranking the candi-
date segments is inconsequential, as almost all segments are cho-
sen in order to achieve the desired pruned dictionary size. Choosing
thresholds that allow for meaningful candidate ranking for a given
dictionary size, pruning size and text size is non-trivial.

As Tong et al. [17] suggest, an option might be to prune the dic-
tionary via several rounds of the CARE heuristic, say reducing a
250 MiB dictionary first to 200 MiB, then to 150 MiB, 100 MiB,
and finally 50 MiB. However, each CARE step requires that all of
the frequency statistics be updated via re-factorization of C, mean-
ing that multi-step CARE pruning has the potential to be very slow

809



32 MiB 128 MiB

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

1 4 16 64 256 1k 4k 16k 1 4 16 64 256 1k 4k 16k
Frequency Threshold (φ)

C
an

d
id
at
e
S
eg
m
en
t
S
iz
e
[M

iB
]

Length Threshold (λ )

1
2
4
8
16
32
64

Figure 2: Pruning thresholds required by the CARE process to find
candidate segments of a certain size for initial dictionaries of size
32 MiB (left) and 128 MiB (right), both extracted from the 64 GiB
prefix of file CC.

for large datasets. Therefore, in our experiments, the principal
baselines are REM and a single iteration of CARE.

In related work, Tong et al. [16] also explore what they term the
“remote transmission” scenario, motivated by the search for effi-
cient dictionaries for expanding, rather than fixed, collections. The
question here is how best to construct a dictionary D2 for a new
tranche C2 to be added to an existing collection C1. Of course,
both the remote and local hosts in a mirrored site already know the
dictionary, D1, that was previously constructed for C1.

One technique suggested by Tong et al. is to factorize C2 against
the existing dictionary D1, then build a subcollection C′2 from the
concatenation of adjacent short factors, and sample a dictionary
from C′2. (In practice, a threshold for “short” that is twice the aver-
age factor length in this factorization works well.) The new auxil-
iary dictionary is then combined with D1 to form a larger dictionary
for the expanded collection. If the dictionary is not allowed to grow
in this way, a second option is to produce D2 directly from C2, then
prune the combined dictionary. In the transmission scenario, the lo-
cations that identify the pruned sections of D1 are efficiently listed
via a Golomb code (see Witten et al. [19]).

3. TARGETED CONSTRUCTION
We now introduce the design ideas for our dictionary-

construction algorithms, including an analysis of the robustness of
our scheme.

Sampling. Sampling is an essential component of big-data algo-
rithms, so initially we explored alternatives to regular sampling.
We first attempted to sample randomly from the whole collection;
to simplify the selection, we focused on non-overlapping segments.
Algorithm 2 generates a uniform random sample of M segments,
without replacement, from the n/s adjacent, disjoint, length-s seg-
ments that comprise the collection. In each of the dictionary-
construction schemes, we throw a family of segments into a “pool”.
The final step is to concatenate these pool segments after sorting
them in “collection order”. If the collection is processed sequen-
tially, then the sorting step can be skipped.

Part of the rationale for regular sampling is that within a col-
lection there are areas of local similarity. Therefore we also tried
a stratified sample, where the stratification is along the length of
the collection. Algorithm 3 chooses a single random segment from
each epoch of length n/M.

Algorithm 2 Sample of non-overlapping segments
Let P be an empty dictionary pool
Segs← [0..n/s−1]
for i ∈ [0..M−1] do

uniformly at random, choose J from Segs
add to P, the substring Cs[J · s]
Segs← Segs\{J}

return pool P

Algorithm 3 Stratified sample of one segment per epoch
Let P be an empty dictionary pool
for i ∈ [0..M−1] do

uniformly at random, from the range [0..(n/M)− s−1],
choose offset j

add to P, the substring Cs[i(n/M)+ j]
return pool P

Unfortunately, neither of these sampling schemes, alone, pro-
duced dictionaries that were much better than those of regular sam-
pling. Seemingly, stratified or random sampling would only be bet-
ter than regular sampling if there were some unfortunate “structure”
or pattern in the collection; a regular sample would then fail to be a
“reasonable” sample. Nevertheless, some of these sampling ideas
inspired our covering techniques.

String Covering. The decision to include a substring in a dictio-
nary must account for its length, its frequency, and its similarity
to other substrings (already) in the dictionary. Forming a dictio-
nary from segments of 1 kiB provides potential for longer matches.
On the other hand, the discriminatory power of such segments is
poor: only about 20 of every million strings of length 1 kiB ap-
pear more than once in the collection. Our compromise is to in-
clude in the dictionary these non-overlapping 1 kiB segments, but
the criterion for inclusion is based on smaller substrings. These
smaller substrings are in fact rolling k-mers. As shown in Sec-
tion 4, letting k = 16, we can distinguish well between high and
low-frequency k-mers. Overlapping k-mers avoid alignment is-
sues, and allow for efficient rolling hash functions, such as Karp-
Rabin [7]. With this segment/k-mer approach, we can apply cover-
ing algorithms inspired by the greedy approaches to Set Cover and
Max Coverage [13].

Figure 3 shows the layout of our dictionary-construction scheme.
It combines stratification and local maximal coverage. The collec-
tion is split into adjacent epochs, E0, . . . ,EM−1, with each epoch
comprising n/m segments. In turn, each segment consists of s−
k+1 overlapping k-mers. To estimate the frequency of each k-mer
in the collection, a first pass through the collection builds a reser-
voir sample of k-mers, as detailed in the next subsection.

Accompanying Figure 3 is Algorithm 4, the dictionary-
construction procedure. The algorithm iterates through the epochs
either sequentially, as shown in Algorithm 4, or in random order,
choosing one segment from each epoch. Every segment in the
epoch is scored according to the frequencies of its k-mers, as de-
scribed below. The highest-scoring segment is the one selected for
the dictionary pool.

Segment Scoring. The score of a segment is a function of the
value of all its s− k + 1 rolling k-mers. The value of k-mer w is
represented by f (w): initially, it is (an estimate of) the frequency
of w in the collection. However, since each k-mer is only needed

810



E0 E1 E2 . . . Ei . . . EM−1C

Reservoir
S0 S1 . . . S j Sn/m

s

n/M

k

Figure 3: The local maximal covering procedure, where the collection C is split up into M epochs, E0 . . .EM−1. An epoch Ei consists of
n/m disjoint segments of s bytes. To score each segment, rolling k-mers are compared to the reservoir of frequent k-mers. For each epoch,
the highest scoring segment is added to the dictionary.

Algorithm 4 Local Maximal Coverage Dictionary (Sequential)
Let P be an empty dictionary pool, and g(·) a segment-scoring
function
for i ∈ [0..M−1] do # for each epoch Ei

for j ∈ [0 . . .n/m−1] do # for each segment
score the segment S j =Cs[i(n/M)+ js]

add to P the segment in Ei with maximum g(·) score
update the scoring function g(·)

return pool P

once in the dictionary, f (w) should be zero if w is already in the
dictionary (pool). Moreover, we do not reward duplicate k-mers in
a segment.

Therefore, let KS be the set of k-mers Sk[ j], for j ∈ [0..s− k], in
segment S. To score a segment, we take the `p norm of the “vector”
of k-mer frequencies: more precisely, g(S) = (∑w∈KS

f (w)p)1/p.
The unweighted norm, `0, rewards long stretches of moderately
frequent k-mers. The weighted norm `1 rewards highly frequent k-
mers. And as shown in practice, `1/2 is a useful compromise.

In Algorithm 4, the scoring function is updated after S is added
to the dictionary pool: for each w ∈ KS, f (w) is set to zero. The
string covering process is reminiscent of the greedy algorithm for
Max Coverage, whose approximation ratio is 0.632 [13].

Reservoir Sampling. To cope with the full 426 GiB GOV2 col-
lection, we involve several big-data tools. The scoring function
relies on estimating k-mer frequencies. Our initial thought was to
adopt the count-min sketch [1]. Unfortunately, we could not find a
suitable compromise between sketch size and frequency accuracy.
However, we only need good estimates for the frequencies of com-
mon k-mers. And since we can ignore rare k-mers in dictionary
construction, a sample of the k-mers is appropriate; As shown be-
low, the frequency estimates from the sample are sufficiently accu-
rate for dictionary construction. (Indeed, a sample of the collection
is an appropriate tool for other analyses and algorithms.)

A reservoir sample is simply a random sample taken without re-
placement from a population in an efficient way [9, 18]. Algorithms
for constructing such samples often apply in streaming settings in
which the population size is unknown. Typically, the algorithm
starts with a prefilled sample of the right size, taken arbitrarily from
the population. For every (other) element, the algorithm tosses bi-
ased coins to decide whether an incoming element should replace
an element in the prefilled sample or be discarded. In our case,

there are n− k+ 1 ≈ n rolling k-mers in C, which are the popula-
tion elements. If we care most about those with frequency above t,
then we create a sample of size r = n/t. Although the worst case
running time of reservoir sampling is O(n), the expected time can
be designed to be O(r (1+ log t)), which is linear in the number of
k-mers in the sample [18].

Our experiments confirm the sampling process is quite fast. Fi-
nally, to save a little extra space, a rolling Karp-Rabin hash is run
over the k-mers. With an 8-byte hash, even in a 426 GiB collec-
tion, the chance of a k-mer hash collision is minimal, and scoring a
segment requires O(s) time.

Robustness. Consider a k-mer w that occurs f (w) times in C. For
each k-mer occurrence, the probability of inclusion in the reservoir
sample is 1/t. Therefore the expected number of occurrences in
the sample is f (w)/t. So we let the (unbiased) estimate of the fre-
quency of w, f̂ (w), be the number of occurrences of w in the sample
multiplied by t.

How good is this estimate? Multiple occurrences of the same
k-mer in the sample are negatively correlated, so we can ap-
ply Chernoff bounds [11]. If the threshold t is 200, say, and
if f (w) = 100,000, then the probability that f̂ (w)/ f (w) > 3/2 is
about exp(−500/12), which is about 10−18. A similar estimate ap-
plies to Pr[ f̂ (w)/ f (w) < 1/2]. Taking a union bound across all k-
mers in a half-terabyte collection, the probability of at least one
such mis-estimate is at most one in a million.

We mention in passing that we attempted a global maximum
coverage dictionary construction scheme without imposing the
epoch boundaries. Preliminary results were not promising, though
further application of techniques for covering problems on massive
datasets [2, 10, 13] may yet yield more competitive performance.

4. EXPERIMENTS
We evaluate the compression effectiveness of the new dictionary-

creation strategies over three large-scale datasets, and compare
them to previous RLZ algorithms. We first describe our experi-
mental methodology including datasets, hardware, implementation
and baselines.

Datasets. Three data sets are used in the experiments:

• The GOV2 standard information retrieval dataset of the
TREC 2004 Terabyte Track, consisting of a test collection
of ≈ 25 million documents crawled from the .gov subdo-
main in early 2004, which contains a mix of pdf and html

811



Name Description

VLDB The approach of Hoobin et al. [5], which uses regular sampling of 1 kiB segments to create the dictionary, and encodes
offsets and lengths using ZLib (RLZ-ZZ in their paper).

AIRS The improved encoding scheme of Petri et al. [12] (RLZ-ZZZ in their paper) which also uses regular sampling of 1 kiB
segments for dictionary creation, but splits the encoding into three ZLib streams: offsets, lengths, and literals. Factors
of length less than four are encoded as raw text.

REM The AIRS scheme, coupled with the pruning mechanism of Hoobin et al. [4], which discards 1 kiB segments from the
dictionary until the desired size is reached.

CARE The AIRS scheme, coupled with the CARE pruning mechanism of Tong et al. [17], using initial thresholds φ = 10 and
λ = 20 and the FFT mode as suggested by Tong et al., but doubling φ until enough candidate segments are found to
reach the desired dictionary size.

LMC The AIRS scheme, coupled with our local maximum coverage-based dictionary creation method (Algorithm 4).
Parameters that govern LMC include epoch-access order, either sequential (SEQ) or random (RAND); k-mer size;
reservoir sampling threshold, t; and “power”, p, in the `p-norm of segment-scoring function, g(·).

L+C The LMC method coupled with the CARE pruning scheme, using the same CARE parameters discussed above.

Table 1: Baseline and methods used in our experimental evaluation.

documents, each truncated at 256 kiB. The entire dataset is
426 GiB uncompressed, and is denoted as GOV2-426.

• The CC data set, consisting of the first 100 files of the
February 2015 Common Crawl (CC-MAIN-2015-11), cor-
responding to a 371 GiB subset of a recent 145 TiB we-
bcrawl freely available at commoncrawl.org. The content
was extracted using the tools from https://bitbucket.

org/hanzo/warc-tools.

• The KERNEL data set, consisting of the source code of
all (332) linux kernel versions 2.2.X , 2.4.X .Y and 2.6.X .Y ,
downloaded from kernel.org and concatenated into one
78 GiB sequential file, appending the source packages in
release-date order. This data set is highly repetitive, as only
minor changes exist between subsequent kernel versions.

The GOV2 dataset serves as a benchmark in the compression lit-
erature [5, 6, 12, 17]. We adopt GOV2-426 as the large dataset
in our experiments. For each dataset we additionally use a prefix
of 64 GiB to explore the parameter space; these are referred to as
GOV2-64, CC-64 and KERNEL-64.

Hardware and Implementation. The parameter-setting experi-
ments were run on a Intel Xeon E7-8837 CPU with 150 GiB RAM
and a network file system which is part of a large computing clus-
ter. The large-scale experiments were run on a Intel Xeon E5640
CPU using 148 GiB RAM and an SSD hard drive. Input and output
files are memory mapped to allow the operating system (Ubuntu
15.04) to manage the available memory space. All methods are
implemented in C++11 and compiled using GCC 4.9.2 using all
optimizations. The different index types were built using the SDSL
library [3]. For fast factorization, we implemented a “flat” wavelet
tree which uses one bitvector per symbol to efficiently perform
searches in the compressed suffix array (CSA) over the dictionary.
This increases the space usage of the factorization index, but the
CSA is only built over the dictionary, which is small relative to the
collection being compressed.

A fixed blocksize of 64 kiB was used throughout our experimen-
tation, and blocks were compressed individually. Hoobin et al. [5]
take individual documents to be blocks in their investigation, while
Petri et al. [12] explore a range of blocksizes in their experiments.
In terms of back-end coding, all of the results in this paper use the
RLZ-ZZZ approach of Petri et al. – literals are generated to a third

stream, whenever the factor length is less than four; and then all
three streams are coded by passing arrays of integers to ZLib for
conversion into bitstrings.

Our implementations and experimental framework are available
at https://github.com/unimelbIR/rlz-store.

Baselines and Methodology. Table 1 lists the baselines and new
methods considered as part of the experimental evaluation. Assum-
ing the dictionary budget to be achieved is m, each of the pruning
methods starts with an initial dictionary of size 2m. All compres-
sion ratios reported are calculated as size of the uncompressed dic-
tionary, plus the cost of all required meta data such as block ad-
dresses, plus the cost of compressed collection, all expressed as a
percentage of the original text C. The archive ratio of Tong et al.
[17] uses a standard compression tool such as 7zip to compress
the dictionary as well. The ratios reported below, which represent
the active cost of the decompressor, are all slightly larger than the
corresponding archive ratios. If a dictionary with m/n = 0.5% can
be compressed to 30% of its original size, and if the collection can
be compressed to 20% of its original size, then the archive ratio
will be approximately 20.15%, versus an active ratio of 20.50%.

Parameter Exploration. We explored several properties of our
dictionary-construction algorithm on 64 GiB prefixes of the
datasets: (1) epoch access order; (2) k-mer size; (3) reservoir sam-
pling threshold, t; (4) segment scoring function, g(·); and (5) seg-
ment size, s. These are discussed in the next several paragraphs.

Epoch Access Order. As our algorithm records the k-mers in the
reservoir sample that have already been covered, processing the
epochs sequentially can bias the selection of “useful” segments
towards the beginning of C. To evaluate LMC, therefore, we fix
t = 256, k = 16 and s = 2 kiB, and measure sequential processing
(SEQ) and random-order epoch access (RAND).

Table 2 shows the compression obtained on the 64 GiB prefix
GOV2-64 for m ∈ {16,64,256} MiB and for two scoring func-
tions, `0 and `0.5 norms in g(.). Random access order (RAND)
consistently achieves better compression than sequential (SEQ). In-
terestingly, as m increases, the difference between the two methods
also increases. This phenomenon is caused by the k-mer covering
bias in SEQ. As epochs are processed, “valuable” (high frequency)
k-mers are more likely to be covered by the epochs which are pro-

812



Method Order GOV2-64

16 64 256

LMC-`0
SEQ 19.89 17.27 15.22

RAND 19.82 17.17 15.09

LMC-`0.5
SEQ 19.48 17.14 15.19

RAND 19.36 16.99 15.04

Table 2: Effect of SEQ and RAND epoch access modes on LMC,
with segment-scoring norms of `0 and `0.5, on the GOV2-64 GiB
dataset for dictionaries of sizes 16 MiB, 64 MiB and 256 MiB. All
values are active compression rates as percentages of the collection,
including the uncompressed dictionary and all metadata.

100

100 k

100 M

100

100 k

100 M

100

100 k

100 M

k
: 4

k
: 1

6
k
: 6

4

0 k 4 k 8 k 12 k 16 k 20 k 24 k 28 k 32 k

Text Position

F
re

q
u
e
n
c
y

Figure 4: Frequency of k-mers for the first 32 kiB of the 64 GiB
CC dataset for k ∈ {4,16,64}.

cessed earlier. However, epochs towards the end of the collection
might contain globally the most valuable segments, but the algo-
rithm might devalue them if they contain some already-covered k-
mers. Assuming constant segment size, s, this effect is magnified as
the dictionary size increases, as the epoch size is inversely propor-
tional to the size of the dictionary. However, smaller epochs imply
that more highly frequent k-mers will be covered by earlier epochs,
increasing the coverage bias.

One possible drawback of the RAND approach is increased con-
struction time. However, we found RAND to be only slightly slower
than SEQ, taking less than 10% extra construction time, on both
HDD and solid-state disk (SSD). Overall, since RAND achieves
better compression effectiveness with only a small increase in con-
struction time, all further results for LMC use RAND.

Varying k-mer Size. Figure 4 shows the frequency of each of the
k-mers appearing in the first 32 kiB of the 64 GiB dataset CC-64
for k ∈ {4,16,64}. The maximum number of unique k-mers in a
collection is σ k, where σ is the size of the underlying alphabet.
For small k, and large collections, a large fraction of all existing k-
mers occur frequently. For example for k = 4, many of the k-mers
that arise in the first 32 kiB of the dataset occur more than 100 mil-
lion times across the full collection. When k is large, for example
k = 64 as shown in the third graph of the figure, most k-mers occur
infrequently. We found that when k = 16, across all our text col-
lections, there is a reasonable spread of k-mer frequencies. In our
experiments, each k-mer is hashed to a 8-byte word in O(1) time
using a Karp-Rabin hash function [7].

Varying Segment Size. For their algorithm VLDB, Hoobin et al.
[5] chose a segment size of s = 1 kiB, noting that it worked well

Method Threshold GOV2-64

16 64 256

LMC-`0.5

64 − − 15.02
128 19.36 16.99 15.02
256 19.36 16.99 15.04
512 19.37 17.01 15.06

1024 19.40 17.04 −
2048 19.45 17.07 −
4096 19.49 − −

Table 3: Effect of reservoir sample threshold, t, on active compres-
sion effectiveness, using the GOV2-64 dataset and dictionaries of
sizes 16, 64, and 256 MiB.

in practice. We explored a range of s values with VLDB, LMC and
AIRS, and found that the performance of LMC is insensitive to s,
whereas AIRS and VLDB become less effective as s increases. We
conjecture that for AIRS, larger values of s incur more local string
repetitions, whereas for LMC, those repetitions are accounted for in
the design of the function g(·). We fix s = 2 kiB for LMC in the
remaining experimentation, and fix s = 1 kiB for AIRS and VLDB.

Varying Reservoir Sampler Thresholds. The reservoir sampler
filters out infrequent k-mers, which are less “valuable” to the dic-
tionary. The reservoir sampler additionally reduces the size of the
string covering problem. For example, if t = 256, then the expected
number of k-mers in the reservoir sample is ≈ n/256. In terms of
space usage, for every 16-mer in the sample, eight bytes are needed
to store its hash value, making the total sample size n/32 bytes.

To explore the impact of t on the effectiveness of LMC, we fix
s = 2 kiB and k = 16. We additionally fix the scoring function to
be based on the `0.5 norm. Table 3 shows active compression ef-
fectiveness using the 64 GiB GOV2-64 dataset. For each dictionary
size, the difference in compression ratios is relatively small, indi-
cating that LMC is insensitive to the threshold value over a broad
range. Our heuristic is to set t = n/2m to allow sufficiently many
useful k-mers to be stored in the reservoir. For a dictionary of size
64 MiB, t would be 512, and the corresponding results in Table 3
show that a smaller value of t barely improves compression effec-
tiveness. However, for a dictionary of size 16 MiB, t is calculated
to be 2048. In this case, for smaller t values, the compression ef-
fectiveness gradually increases, and we set an upper bound of 256
for t. That is, we set t = min{n/2m,256}. In terms of runtime,
reservoir sampling algorithms can be implemented in time that is
linear in the number of k-mer samples [9, 18]. In our experiments,
for each of the 64 GiB datasets, sampling with t = 256 required less
than 30 minutes; the sampling runtime decreases as t increases.

Varying Scoring Function. To test the impact of scoring func-
tions based on different norms, we fix the dictionary size at m =
64 MiB. The p values range from 0 to 2, the squared norm. Within
a segment, the `0 norm equates to the total number of uncovered k-
mers (at least identified by the reservoir sampler), while the `1 norm
is the sum of the (estimated) frequencies of these k-mers. Figure 5
shows that on the GOV2-64 dataset, values of p > 1 achieve worse
compression ratios as the norm value increases. The best values
are between 0 and 1 and, overall, the `0.5 computation performs
best; this setting balances evaluating the total number of uncovered
k-mers and with evaluating the sum of their frequencies. Table 4,
which gives further active compression effectiveness scores, shows
that for some combinations of datasets and dictionary size the `0

813



Method GOV2-64 CC-64 KERNEL-64

16 64 256 16 64 256 16 64 256

VLDB 21.58 18.89 16.57 − − − − − −
AIRS 21.29 18.74 16.49 22.80 20.12 16.96 29.00 22.88 13.43
REM 21.19 18.42 16.05 22.67 19.87 16.33 28.77 22.12 11.00
CARE 20.35 17.88 15.68 21.87 19.13 15.47 28.09 21.61 9.85

LMC

`0 19.82 17.17 15.09 21.19 17.66 14.06 27.64 19.36 7.22
`0.5 19.36 16.99 15.04 20.94 17.69 14.11 27.14 19.33 7.27
`1 19.58 17.07 15.06 21.18 17.94 14.19 27.48 19.64 7.36

L+C `0.5 19.47 16.99 14.95 20.94 17.67 14.19 27.17 19.63 8.47

Table 4: Active compression rates for three 64 GiB data sets using dictionaries of size 16 MiB, 64 MiB and 256 MiB, and the full range of
RLZ variants discussed in this paper. Table 1 describes the settings used. The VLDB implementation was only executed on GOV2-64.

17.0

17.1

17.2

17.3

0 0.5 1 1.5 2
Norm

C
o
m
pr
es
si
o
n
R
at
io

[%
]

Figure 5: Effect of p in the `p norm of g(·) on compression effec-
tiveness, for the 64 GiB GOV2 dataset with 64 MiB dictionaries.

norm is slightly better than the `0.5 norm. Since the difference is
minor, we choose LMC-`0.5 as the default scoring function for the
remaining experiments.

Overall Comparison. Table 4 gives results for four previous RLZ
variants for the three 64 GiB datasets, and the three dictionary sizes
that we have been using throughout, seeking in part to establish that
our experimental results are comparable to those reported in previ-
ous work [4, 5, 12, 17]. For GOV2-64, as reported by Petri et al.
[12], AIRS achieves minor compression gains over VLDB. As it is
outperformed by the more recent AIRS, we chose to not evaluate
VLDB on CC-64 and KERNEL-64; in addition, pruning using REM

[4, 17] achieves a minor gain over AIRS for all dictionary sizes and
datasets. Similarly CARE improves over REM by roughly 0.4% to
1.25%, which is similar to the gains reported by Tong et al. [17] for
GOV2-100. On GOV2-100, Tong et al. [17] also report REM being
outperformed by VLDB when the dictionary is halved, an effect we
did not observe in our experiments.

The relative performance of all methods is similar for both of
the webcrawl datasets (GOV2-64 and CC-64), which suggests that
RLZ is consistent for this type of input. As a further reference
point, ZLib (using -9) compressed the two webcrawl datasets to
20.84% and 19.48%, respectively, when applied in a per-block
manner to the 64 kiB blocks used throughout our experimentation.

The KERNEL-64 dataset compresses better than the webcrawl
datasets with the large 256 MiB dictionary, but not with the smaller
16 MiB and 64 MiB dictionaries. This is because this dataset con-

Method GOV2-426

64 256 1024

AIRS 12.92 11.45 10.17
CARE 12.14 10.74 9.47

LMC-`0.5 11.59 10.25 9.05

Table 5: Active compression rates for the 426 GiB GOV2-FULL
dataset for dictionaries of 64 MiB, 256 MiB, and 1024 MiB.

sists of different versions of linux kernel source code, appended
together. There are only limited repetitions within each version of
the source code, but it is highly repetitive across different versions.
This dataset compresses to 22.78% using ZLib.

The performance of LMC is good for all scoring functions, with
the `0.5 norm performing best or close to best on all dataset and
dictionary size combinations. The LMC approach also outperforms
AIRS and all pruning methods, over all data sets and dictionary
sizes, regardless of which scoring-function norm is used – that is,
its superiority is not affected by the choice of norm. For the we-
bcrawl datasets we observe an absolute improvements of LMC to
AIRS of 1.5% to 2.8%, which correspond to relative gains of up
to 17%. Similarly, the absolute improvements compared to CARE

range from 0.5% to 1.44%, or relative advantages of up to 7.5%.
For the KERNEL-64 dataset, the relative compression improvement
of LMC is much greater than for the webcrawl datasets. For KER-
NEL-64 and a 256 MiB dictionary, LMC almost halves (with a 46%
relative benefit) the space usage of the AIRS method, reducing the
absolute compression ratio from 13.43% to 7.22%. In the same
setting, LMC also outperforms CARE by 2.63%, a relative improve-
ment of 27%. Combining CARE pruning with LMC (L+C) leads
to minor improvements in one instance (GOV2-64 with 256 MiB
dictionary) and is unhelpful in all other combinations. This sug-
gests that CARE pruning fails to identify good candidate segments
in LMC dictionaries.

Similar relativities are observed for the full 426 GiB GOV2
dataset, shown in Table 5. The LMC-`0.5 approach achieves a
1.12% absolute improvement over AIRS for the 1 GiB dictionary
(an 11% relative improvement), and is the best compression ratio
reported for a compressor supporting efficient random access for
this dataset. The same trend can be observed for the 64 MiB and
256 MiB dictionaries. As an overall statement of what we have
achieved, observe that if AIRS is taken as a reference point, then
the new LMC approach approximately doubles the improvements
achieved by the previous CARE mechanism.

814



Figure 6: Average factor length per dictionary chunk of 256 kiB for the 64 GiB KERNEL dataset with three different 256 MiB dictionaries.

Dict.
Mean Factor Length Literals (%)

AIRS CARE LMC AIRS CARE LMC

collection = CC-64
16 13.80 14.95 15.42 23.73 20.56 23.52
64 17.88 19.67 20.63 21.96 20.54 24.38
256 24.78 28.30 30.49 22.51 25.26 26.99
collection = KERNEL-64
16 11.77 12.49 12.77 6.95 4.84 7.89
64 16.81 18.38 20.00 2.99 1.81 2.93
256 33.05 47.57 64.79 1.27 0.80 0.90

Table 6: Mean factor length and percentage of literals for AIRS,
CARE and LMC-`0.5 using m ∈ {16,64,256}MiB and KERNEL-64
and CC-64.

Table 6 shows the mean (across blocks) average factor length and
percentage of literals for AIRS, CARE and LMC-`0.5, for KERNEL-
64 and CC-64, and for three different dictionary sizes. Because
the number of input bytes in each dataset is fixed, the mean fac-
tor length is an indicator of compression performance. Across all
datasets, CARE produces longer factors than AIRS, while LMC in
turn generates longer factors than CARE.

Discussion and Analysis. Figure 6 demonstrates that this im-
provement occurs uniformly across the whole dictionary. To con-
struct the visualization, each of the 256 MiB dictionaries was split
into 1,024 = 32×32 chunks, each of 256 kiB. The factors associ-
ated with each chunk were then tabulated as the original 64 GiB
KERNEL-64 collection was being factored, and then, for each
chunk, the average length of the associated factors was computed
and plotted in a 32×32 grid (left to right and top to bottom). The
deeper the shading, the greater the average factor length associated
with that chunk. Note that while the relationship is not exactly one-
to-one, corresponding cells across the three panes reflect groups
of dictionary segments drawn from the same general parts of the
original collection. Compared to the other two methods, the LMC

approach generates longer factors right across the whole of the dic-
tionary. There is also a clear pattern of repeated local variability in
the lower third of each pane, which indicates the existence in that
third of the collection of similar cycles of highly-repetitive content
that is being identified and exploited by the RLZ paradigm.

The right-hand pane of Table 6 lists the percentage of factors that
are represented as literals for the three methods; it provides a view
that is in marked contrast to the observations made earlier about av-
erage factor lengths. While CARE produces shorter factors, it also
tends to produce fewer literals than LMC. The webcrawl dataset ex-
hibits a significantly larger number of literals than the more repeti-
tive KERNEL dataset, and the efficient encoding of literals using a
third stream has a non-trivial impact on overall compression effec-
tiveness for webcrawl data.

Overall, LMC trades longer factors on average against degraded
performance for short factors. Decreasing the number of literals
produced, or identifying a better way of handling them, is a clear
next challenge in terms of further improving the performance of
RLZ systems on webcrawl data.

5. CONCLUSION AND FUTURE WORK
We have described a constructive approach to RLZ dictionary

creation, and achieved substantially improved compression out-
comes as a result. Rather than taking the first segment in each
epoch and then pruning a too-large dictionary to get down to the
required size, which is the approach used in previous work, we di-
rectly create a dictionary of the desired size by identifying the most
useful segment to represent each epoch. The usefulness of a seg-
ment is estimated by aggregating scores from the k-mers compris-
ing the segment. Across the set of large test files we investigated,
consistent compression improvements are obtained, ranging from
modest to very good, a clear endorsement of the new mechanism.

There are many avenues that might lead to further gains. For
convenience and speed, epoch lengths have been taken to be uni-
form; however, the delineation of epochs could be allowed to de-
pend on the collection content. In particular, relaxing the current
presumption that the segment that represents each epoch is contigu-
ous within the collection would allow segments to be constructed
as a type of reassembly problem. In future work we plan to ex-
amine methods for constructing a synthetic segment that captures
the nature of the text in a particular epoch, but without necessarily
being a substring of that epoch.

Acknowledgment. This work was funded by the Australian Re-
search Council’s Discovery Project scheme (DP140103256), and
by the Victorian Life Sciences Computation Initiative (VR0280),
on its Peak Computing Facility at the University of Melbourne, an
initiative of the Victorian State Government, Australia.

815



References
[1] G. Cormode and S. Muthukrishnan. An improved data stream

summary: the count-min sketch and its applications. J. Alg., 55(1):
58–75, 2005.

[2] G. Cormode, H. J. Karloff, and A. Wirth. Set cover algorithms for
very large datasets. In Proc. CIKM, pages 479–488, 2010.

[3] S. Gog, T. Beller, A. Moffat, and M. Petri. From theory to practice:
Plug and play with succinct data structures. In Proc. SEA, pages
326–337, 2014.

[4] C. Hoobin, S. J. Puglisi, and J. Zobel. Sample selection for
dictionary-based corpus compression. In Proc. SIGIR, pages
1137–1138, 2011.

[5] C. Hoobin, S. J. Puglisi, and J. Zobel. Relative Lempel-Ziv
factorization for efficient storage and retrieval of web collections.
PVLDB, 5(3):265–273, 2011.

[6] C. Hoobin, S. J. Puglisi, and J. Zobel. Sample selection for
dictionary-based corpus compression. In Proc. SIGIR, pages
1137–1138, 2011.

[7] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching
algorithms. IBM J. Res. Dev., 31(2):249–260, 1987.

[8] S. Kuruppu, S. J. Puglisi, and J. Zobel. Relative Lempel-Ziv
compression of genomes for large-scale storage and retrieval. In
Proc. SPIRE, pages 201–206, 2010.

[9] K.-H. Li. Reservoir-sampling algorithms of time complexity
O(n(1+ log(N/n))). ACM Trans. Math. Soft., 20(4):481–493, 1994.

[10] C. L. Lim, A. Moffat, and A. Wirth. Lazy and eager approaches for
the set cover problem. In Proc. Aust. Comp. Sc. Conf., pages 19–27,
2014.

[11] A. Panconesi and A. Srinivasan. Randomized distributed edge
coloring via an extension of the Chernoff-Hoeffding bounds. SIAM J.
Comp., 26(2):350–368, 1997.

[12] M. Petri, A. Moffat, P. C. Nagesh, and A. Wirth. Access time
tradeoffs in archive compression. In Proc. Asia Info. Retri. Soc.
Conf., pages 15–28, 2015.

[13] B. Saha and L. Getoor. On maximum coverage in the streaming
model & application to multi-topic blog-watch. In Proc. SIAM Conf.
Data Min., pages 697–708, 2009.

[14] J. A. Storer. NP-completeness results concerning data compression.
Technical Report 234, Princeton University. Computer Sciences
Laboratory, 1977.

[15] J. A. Storer and T. G. Szymanski. Data compression via textual
substitution. J. ACM, 29(4):928–951, 1982.

[16] J. Tong, A. Wirth, and J. Zobel. Compact auxiliary dictionaries for
incremental compression of large repositories. In Proc. CIKM, pages
1629–1638, 2014.

[17] J. Tong, A. Wirth, and J. Zobel. Principled dictionary pruning for
low-memory corpus compression. In Proc. SIGIR, pages 283–292,
2014.

[18] J. S. Vitter. Random sampling with a reservoir. ACM Trans. Math.
Soft., 11(1):37–57, 1985.

[19] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images, Second Edition.
Morgan Kaufmann, 1999.

[20] J. Ziv and A. Lempel. A universal algorithm for sequential data
compression. IEEE Trans. Inf. Th., IT-23(3):337–343, 1977.

[21] J. Ziv and A. Lempel. Compression of individual sequences via
variable rate coding. IEEE Trans. Inf. Th., IT-24(5):530–536, 1978.

816


	Introduction
	Background and Related Work
	Targeted Construction
	Experiments
	Conclusion and Future Work

