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ABSTRACT
Vertical selection is the task of predicting relevant verticals
for a Web query so as to enrich the Web search results with
complementary vertical results. We investigate a novel vari-
ant of this task, where the goal is to detect queries with a
question intent. Specifically, we address queries for which
the user would like an answer with a human touch. We call
these CQA-intent queries, since answers to them are typi-
cally found in community question answering (CQA) sites.

A typical approach in vertical selection is using a vertical’s
specific language model of relevant queries and computing
the query-likelihood for each vertical as a selective criterion.
This works quite well for many domains like Shopping, Lo-
cal and Travel. Yet, we claim that queries with CQA intent
are harder to distinguish by modeling content alone, since
they cover many different topics. We propose to also take
the structure of queries into consideration, reasoning that
queries with question intent have quite a different struc-
ture than other queries. We present a supervised classifi-
cation scheme, random forest over word-clusters for variable
length texts, which can model the query structure. Our
experiments show that it substantially improves classifica-
tion performance in the CQA-intent selection task compared
to content-oriented based classification, especially as query
length grows.
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1. INTRODUCTION
Modern Web search engines often combine search results

of specific domains, such as News, Shopping or Travel, with
general Web search results. The common approach is of
using frames that are aggregated into the main results page,
each containing search results from a single domain. Each
such frame should be shown only when its domain results
are highly relevant to the query. Vertical Selection [2] is the
task of selecting the subset of the verticals (domains) most
relevant to a given query.
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mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
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Many domains, such as Travel, Shopping and Local, are
“content-specific”. For such domains, particular keywords
in the query provide, often independently, useful signals
about the domain’s relevance to the query. Examples in-
clude ‘ight ’ and ‘hotel ’ for Travel, ‘camera’ and ‘price’ for
Shopping and ‘restaurant ’ and ‘address’ for Local. There-
fore, much prior work has focused on constructing models
that emphasize such domain-specific keywords for the verti-
cal selection task [28, 2, 14, 27].

In this work, we target a domain of a different type, that of
questions and answers, for answering queries with a question
intent. Such question-intent queries constitute �10% of the
Web queries issued to a search engine [29]. Specifically, we
focus on queries for which the user wants an answer with
a human touch, such as “what to do with apples from tree”
and “red bumps on healing burn”.

In general, such queries, with a complex information need,
will not be satisfied by traditional Web search results. We
call them queries with CQA intent, or simply CQA queries,
since content for them is typically found on Community-
based Question Answering (CQA) Web-sites (e.g. Yahoo
Answers, StackExchange, Answers.com). These websites, in
which users ask any type of question and receive answers
from other users (experts or not), are very popular, overall
attracting hundreds of millions of page views per month. A
CQA vertical can handle CQA queries by providing relevant
question-answer pairs extracted from CQA sites. An exam-
ple of a CQA vertical search result (in the form of a related
question and answer) presented on top of the results page
for a query with CQA intent can be seen in Fig. 1.

We define our task to be the detection of queries with
CQA intent. It is a variant of the vertical selection prob-
lem that is reduced to binary selection (CQA vs. non-CQA
queries). Further refining the task, we are interested in cor-
rectly classifying queries prior to calling the vertical search,
and not as a post-retrieval analysis. The reason is that pre-
retrieval vertical selection can substantially reduce the load
on the vertical search engine: instead of all queries hitting
the general search engine being sent to it, only those that
might truly benefit from the target domain are. Specifically,
in the case of questions with CQA intent, according to the
statistics above, optimal detection of such queries could re-
sult in 90% reduction in load on the CQA vertical with no
performance drop.

The main difference between detecting queries with CQA
intent and detecting queries with content-specific vertical in-
tents lies in the type of input queries. As discussed above,
queries that target many typical vertical domains contain
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Figure 1: An example of a CQA vertical search re-
sult (a related question and human-written answer),
presented on top of the results page for a query with
question intent.

specific content words that hint towards the relevance of this
domain. However, CQA queries address all kinds of con-
tent, including technology, health, gardening and style, to
name a few. On the other hand, CQA queries have a rather
unique structure compared to other Web queries. These
queries express a specific question or situation, e.g. “which
is better DSLR entry level or semi professional cameras” (as
opposed to topical queries such as ‘DSLR camera’). As a
result, they are longer (6-7 terms on average) than the aver-
age Web query [8] and they tend to contain complex syntac-
tic structures. This property notwithstanding, only �30%
of them are formulated as full natural language questions
[29]. For example, from our analysis of thousands of CQA
queries (i.e., Web queries landing on CQA sites), only 40%
of them start with a question word such as ‘why ’, ‘how ’, ‘is’
or ‘should ’.

Consequently, for the task of detecting queries with CQA
intent, we propose to model the structure of a query in
addition to modeling typical content for this domain. To
this end, we introduce several ways to incorporate structure-
oriented signals both for language models and for linear clas-
sifiers. These signals include the exact position of each word
in the query, capturing rigid query structure, the part-of-
speech of each word, representing the syntax of the query,
and word-clusters, which provide high level semantics and
structure for the query. Moreover, we present a random for-
est classifier over variable length texts, which makes use of
word-clusters for representing the input text and also con-
siders the output of a baseline linear classifier. We detail
these models in Sections 3 and 4.

To show the difference between intent detection for CQA
and other domains, we evaluated both our models on two
datasets of Web queries, one for the CQA detection task
and one for the Shopping domain detection task. On both
datasets we compared our models to the language model

approach that is typically used for vertical selection, as well
as to a linear classifier over the query terms. Our results
show that modeling query structure only marginally helps
for the Shopping domain. Yet, in the CQA domain, the
differences are vast. Specifically, our random forest model
substantially outperforms all other models as query length
increases.

Our key contributions are:

1. A novel variant of the vertical selection task: detecting
queries with CQA intent;

2. Methods for utilization of query structure signals within
language models and within supervised classification;

3. A supervised classifier based on random forest over
variable length texts, using word-clusters for input text
representation.

2. RELATED WORK
Identifying the search intent of a user query is a long-

standing research goal in IR that is generally treated as a
classification scheme. Some popular approaches predict the
search intent by mapping the Web query into a predefined
taxonomy of observed search intents [6, 26, 15]. Others map
the search intent into specific domains, or verticals. The
search intent is determined based on the subset of verticals
which will most likely satisfy the user’s need [28, 2, 1, 3, 11].

Typical intent classification methods for vertical selection
rely mostly on evidence found in the vertical content (e.g.
[27, 11]), or the query string, from which features are derived
[2, 1, 12]. Other works focused on intent classification us-
ing click-through data. Li et al. [19] increased the amount
of training data obtained for semi-supervised learning by
click graphs. Specifically, they inferred class membership
of unlabeled queries from those of labeled ones based on
their proximity in the click graph. Hu et al. [14] leveraged
Wikipedia for the intent classification task. The intent of
any input query is identified through mapping the query into
the Wikipedia representation space, spanned by Wikipedia
articles and categories.

Arguello et al. [2, 1], expanded the classification scheme
for vertical selection by combining signals from the verti-
cal content, the query string, and queries previously issued
to the vertical (the vertical’s query log [2], or general Web
queries that resulted in a click on the vertical pages[1]). The
click-through data is used to construct a descriptive lan-
guage model for each vertical’s related queries, and a query’s
likelihood is computed and used to select the most relevant
verticals. Arguello et al. [3] proposed to reuse training data
from a set of operating verticals, which already have sig-
nificant traffic, in order to learn a predictive intent model
for new unrecognized verticals with no landing traffic. Sim-
ilarly to our work, Diaz [12] predicted the query intent for
News articles. He trained a binary classifier that distin-
guishes between newsworthy and non-newsworthy queries,
using queries annotated manually to be deserving or not de-
serving of a news display.

Zhou et al. [31] presented a formal analysis and a set of
extensive user studies to show that in addition to the ver-
tical’s retrieved content, vertical relevance heavily depends
on the user having prior intent for content from a given
vertical, or how oriented each vertical is to the user’s infor-
mation need. Similarly, our work also focuses on identifying
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the user’s search intent based on prior analysis of the user
query, without post-analysis of retrieved content from the
vertical.

White et al. [29] analyzed the intent of Web queries. Any
query beginning with a question indicator or ending with a
question mark was considered to be a question query. They
showed that about 10.3% of queries issued to a search engine
have question intent. However, only 3.2% are formulated as
natural language questions.

Several previous works analyzed CQA queries as part of
their study [21, 22, 8]. Liu et al. [21] defined a CQA query
as a query that results in a visit to a CQA site. They pre-
dicted the satisfaction of searchers who submit a CQA query
by analyzing a large number of such searches and identify-
ing unique characteristics of searcher satisfaction, namely,
the effects of query clarity, query-to-question match, and
answer quality. In successive work, Liu et al. [22] analyzed
the characteristics of Web queries that precede posting a
question on a CQA cite. Lately, Carmel et al. [8] analyzed
a large set of CQA queries that landed on Yahoo Answers
pages. By tagging the title of each clicked page for parts of
speech and syntactically parsing it, they noticed significant
differences in the probability of a title term to appear in
the landing query given the term’s part-of-speech tag, and
similarly given its syntactic role in the title’s dependency
parse tree. This analysis was used for improving query term
weighting for retrieval. We differ from their work by analyz-
ing the structure of the CQA query itself, with the goal being
question intent classification rather than term weighting.

There is also a line of research that analyzes query struc-
ture using linguistic tools, mostly for query analysis [4, 18]
and for improving retrieval [17, 30]. To the best of our
knowledge, there is no prior work that linguistically ana-
lyzes Web queries for question intent detection.

3. INTENT MODELS
We next turn to methods for addressing query structure

when modeling domains in the vertical selection task. Prior
works on vertical selection typically modeled a domain by
looking at terms that are common in queries that hit Web
pages from the target domain. We first describe two such
models, which we refer to as baselines: language models and
supervised classification (Sec. 3.1). We then discuss ways
to revise and extend these baseline models to incorporate
signals for query structure as well (Sec. 3.2). In Sec. 4, we
will present a classification scheme that makes a different
use of such signals.

3.1 Baselines

3.1.1 Language Model
A common approach for modeling a vertical domain is

to construct a language model over the queries that result
in clicks on Web sites from this domain, extracted from a
search-engine query log [19]. For example, the Shopping
domain can be modeled with queries that are followed by
clicks on links from Amazon and eBay.

Following, as a first baseline, we trained a trigram lan-
guage model with Kneser-Ney smoothing [16] for a target
domain D, denoted LMD, using the BerkeleyLM1 package.
Input queries for the construction of the language model

1https://github.com/adampauls/berkeleylm

were extracted from the query log of a commercial search
engine. The queries were selected by randomly sampling
from all queries that led to clicks on a manually constructed
list of websites that are good representatives of the domain
(see Sec. 5.1 for a detailed description of our data-set con-
struction). In addition, we constructed a similar trigram
language model for general Web queries, denoted LMG, by
randomly sampling queries from the overall query log as a
training set.

For the classification task of whether an incoming query
q has intent for domain D, we compute the score

sLM (q,D) = LMD(q)� LMG(q),

where LMX(t) represents the log-probability that the lan-
guage model for domain X estimates for a text t. The higher
the score, the more confident we are that the query has in-
tent forD. We note that since the raw language model scores
are log-probabilities, score subtraction is akin to computing
the probability ratio for the query between the two language
models.

The procedure described above for generating the training
set is used in all the models that are presented in this paper.
We note that this procedure is noisy. Landing queries for
websites that are strongly related to D are taken as posi-
tive examples for the vertical selection task. Still, anecdotal
landing queries may be irrelevant, for example due to user
exploration. Similarly, randomly sampling queries from the
query log as negative examples for a target domain would
obviously contain some queries that are relevant to this do-
main. However, most vertical domains are targeted by only
a small percentage of the queries in the log. Therefore, the
vast majority of sampled queries are true negative exam-
ples. On the other hand, since our models are statistical in
nature, and are learned over hundreds of thousands of exam-
ples, we expect that the relatively small amount of noise in
the training set will not hurt their performance significantly
considering the large training set size.

3.1.2 Linear Classifier
Another common approach for vertical selection in prior

work is learning a supervised classifier based on click-through
data [19, 1]. To this end, we trained a linear classifier for
the task. The input to the classifier is a (sparse) feature
vector representing the query as a bag-of-words. Specifi-
cally, each query term is a feature (dimension) in the vector
and the value of each feature is 1 if the term appeared in
the input query, or 0 otherwise. For example, the query
“aloe lotion where buy” induces the sparse feature vector
f‘aloe′ : 1, ‘buy′ : 1, ‘lotion′ : 1, ‘where′ : 1g.

For training, we utilized the AROW online training pro-
cedure [10]. It is an efficient algorithm that can handle mil-
lions of training examples and millions of features; its per-
formance was shown to be similar to SVM also for IR tasks
[8].

3.2 Modeling Structure
Our hypothesis in this paper states that the structure of

queries with question intent is distinguishable from that of
other queries. We next describe several text representations
that are meant to capture the query’s structure, and how
we incorporate them within the various models for vertical
selection.
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3.2.1 Word position in query
The absolute position of each word in the query may hint

at the type of query. A common example in CQA queries
is those that start with a WH word, e.g. “where can i sell
mercury” and “how to get a boxer body”. If structure is an
important facet of CQA queries, words of certain classes
may tend to be in relatively stationary locations, while in
general Web queries the word order is more arbitrary and
thus these signals will not be of much use. We especially
expect that position information may help in recognizing
CQA queries when attached to function words such as WH
words, prepositions, articles, etc.

To this end, on top of the word features described above
for the linear classifier, we also induce more fine-grained fea-
tures containing each word associated with its absolute po-
sition in the query. For example, for the query “buy aloe lo-
tion where” we also generate the binary features f‘buy 1 ’:1,
‘aloe 2 ’:1, ‘lotion 3 ’:1, ‘where 4 ’:1g.

3.2.2 Part-of-speech tags
Part-of-speech (POS) tagging is a method where each

word in a given text is assigned a POS tag from a set of
roughly 40 possible tags [24]. Each POS tag represents a
category of words that have similar grammatical properties.
For example, the text “how to hide camera in a bag” will be
tagged as “WRB TO VB NN IN DT NN ”, marking ‘how ’ as
a wh-adverb (WRB), ‘hide’ as a base verb form (VB), ‘cam-
era’ and ‘bag ’ as common nouns (NN) and ‘in’ as preposition
(IN). This text representation is structure-oriented: the se-
mantically unrelated sentence “how to access ip phone over
the internet” will receive a very similar tag sequence, “WRB
TO VB NN NN IN DT NN”. Conversely, the word ‘hide’
which acts as a verb in the first query, will receive the noun
tag in the query“quality hide jacket”, demonstrating the rep-
resentation’s sensitivity to structural context. We therefore
extract POS information from the inferred tag sequence per
input query to enhance our baseline models, expecting this
information to be leveraged to capture the query structure.

To this end, we used the OpenNLP2 toolkit to train a
specialized POS tagger model for Web queries, following the
method described in [13]. For the supervised linear classi-
fication model, we provide each POS tag as an additional
feature, whose value is the number of times the specific tag
appears in the query. For example, for “how to hide cam-
era in a bag”, we induce the features f‘WRB ’:1, ‘TO ’:1,
‘VB ’:1, ‘IN ’:1, ‘DT ’:1, ‘NN ’:2g. In addition, we also gen-
erate the composite features combining the POS tag and
its position in the query. For the same example query,
the additional (binary) features are f‘WRB 1 ’:1, ‘TO 2 ’:1,
‘VB 3 ’:1, ‘NN 4 ’:1, ‘IN 5 ’:1, ‘DT 6 ’:1, ‘NN 7 ’:1g. This fea-
ture representation enables generalization of word-position
signals. For example, all queries that start with a WH word
would be represented by the feature ‘WRB 1 ’.

In the case of language models, which do not use a bag-
of-word vector representation but rather learn probabilities
over sequences, we replace each word with its POS tag and
feed the transformed query to the model. Therefore, the
resulting language model is trained to recognize POS tag
sequences of the target domain. However, preliminary anal-
ysis showed that the granularity obtained by this method is
too coarse, implying that content words cannot be removed

2https://opennlp.apache.org/

Cluster Example words
C3 login, online, mail, home, school, bank
C4 how, happened, to, this, yourselves
C6 google, yahoo, download, gmail, tv, hotmail
C10 facebook, twitter, chris, michael, jennifer
C22 constricted, favoritism, diet, tuberculosis
C28 2015, 2014, news, game, vs, nfl, club

Table 1: Example word clusters

altogether from the model. Consequently, we introduced a
backoff to the language model generation. Specifically, for
each domain we created a joined list of �200 most-frequent
words in the domain and in general queries, based on pre-
analysis of the training queries. If a query word appears on
the list it is not replaced by its POS tag and is kept as is.
The transformed queries in each training set were used to
train two POS-tag language models, PLMD and PLMGD ,
in a similar manner to the baseline language model. Here too
the deciding score for an incoming query was computed by
subtracting the general model score from the domain model
score.

We emphasize that for training and testing each language
model (of a specific domain), the transformed input query,
following the backoff procedure, may be different for the
same original input query. For example, the query “buy aloe
lotion where”, POS tagged as “VB NN NN WH ”, is trans-
formed for the CQA domain with“VB NN NN where”, while
under the Shopping domain it is transformed to“buy NN NN
where”. This is due to the fact that while ‘where’ is a fre-
quent word in both domains, and ‘aloe’ and ‘lotion’ are rare
in both domains, ‘buy ’ is frequent in the Shopping domain
but rare in the CQA domain.

3.2.3 Word clusters over embedded representations
Part-of-speech tagging is one way to group words into clus-

ters that capture some notion of structure in texts. However,
there are many other word clustering algorithms which may
further assist in differentiating queries of a target domain
from general Web queries. Quite a few clustering algorithms
for words were proposed over the years, e.g. Brown Clusters
[7] to name one. Lately, word embedding approaches showed
good performance in different Natural Language Processing
tasks compared to prior word representations [9, 23, 25].
These models embed words into low-space vector represen-
tations that still preserve some aspects of the word semantics
such as its closeness in embedded space to related words. We
therefore experimented with word clusters that are induced
from embedded word vectors.

Specifically, in this work we employ the SkipGram algo-
rithm [25] which learns word embedding in an unsupervised
way by optimizing the vector similarity of each word to con-
text words in a small window around its occurrences in a
large corpus. We learned3 the mapping of 300, 000 words to
a 100-dimension embedded space over a corpus consisting of
7.5 million Web queries, sampled randomly from a query log.
We then clustered the learned word vectors into 30 clusters
using the K-means algorithm. We experimented with other
amounts of clusters as well on a held-out dataset, and found
that number of clusters at the range of several dozens (30-

3We used the word2vec implementation in https://code.
google.com/p/word2vec/
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50) performed the best in out task. It is interesting to note
that this range is similar to the number of POS tags. We
chose the smallest amount that provided best performance
(30).

Inspecting the various clusters, we found that the seman-
tic cue in the clusters is coarse and captures words of dif-
ferent classes together: socially-oriented commercial names
like facebook share a cluster with people’s names like chris;
other technologically-oriented commercial names like google
are in a cluster with other technological concepts like down-
load and tv ; another cluster includes words from the re-
porting domain, such as event-related concepts like years
and game, as well as sports concepts like n and club. On
the other hand, some clusters are more focused on function
words, grouping WH words, prepositions and determiners.
Overall, the clusters combine words based on semantic re-
latedness with structural resemblance. Table 1 illustrates a
few of the generated clusters.

We utilize the clusters in the same way we utilize POS
tags. For the linear classification model, we provide each
word’s cluster ID as an additional feature, whose value is the
number of times the cluster appears in the query. For exam-
ple, for“how to hide camera in a bag”, we induce the features
f‘C4 ’:5, ‘C8 ’:1, ‘C18 ’:1g. We also generate the composite
features referring to cluster IDs with word positions, e.g.
f‘C4 1 ’:1, ‘C4 2 ’:1, ‘C4 3 ’:1, ‘C8 4 ’:1, ‘C4 5 ’:1, ‘C4 6 ’:1,
‘C18 7 ’:1g for this example. For the language model rep-
resentation, each word is replaced by its cluster ID and the
resulting sequence is fed into the model. Consequently, such
language model models the sequence of cluster ids instead
of the sequence of words.

4. RANDOM FOREST FOR MODELING
QUERY STRUCTURE

We expect that the structure of CQA queries would in-
clude relationships between the query words that imply par-
ticular question semantics. To better model the complex
structure of CQA queries we employ a variant of the Ran-
dom Forest algorithm [5], which is a non-linear classifier that
can represent relationships between different input elements.
Our random forest variant follows the overall architecture of
random forests - each tree in the forest is constructed on a
subset of the input, and each tree uses randomness in the
process of selecting features to split leaves on. However, the
techniques we use in building the trees, in particular the
choice of variables and values used to split nodes of the tree,
are fairly distinct.

We next present our random forest model. First, we de-
scribe its overall structure (Sec. 4.1), its input and output.
Then, we detail our forest learning algorithm (Sec. 4.2). Fi-
nally, we discuss some intuitions on what our model learns
to represent (Sec. 4.3).

4.1 Random Forest Architecture
The input to our random forest is all categorical, and is

given as key-value pairs. In particular, each example is rep-
resented by two types of inputs. The first type is a single
Boolean value – the decision of the baseline AROW linear
classifier, as described in Sec 3.1.2. This input is based on
information about each word independently of each other.
The second type of input is a list of pairs, each has the word
position in the query as the key, and the word-cluster ID of

the word in the corresponding position as the value (cluster
IDs are generated as described in Sec. 3.2.3). For example,
for the input query “how to hide camera in a bag”, the in-
put to the random forest is fhAROW : falsei, h1 : C4i, h2 :
C4i, h3 : C4i, h4 : C8i, h5 : C4i, h6 : C4i, h7 : C18ig. There-
fore, this classifier relies on a basic modeling of the contents
of the query (captured by the Boolean signal from the lin-
ear classifier) and focuses on modeling the structure of the
query by analyzing the word clusters in the various query
positions.

The output of the model is a probability distribution over
the possible output classes. An example for our CQA intent
classification task may be fG : 0.3, CQA : 0.7g, which means
that the forest assessment of an input query is that it is a
general Web query (G) with 30% probability, and a CQA
query (CQA) with 70% probability.

Our random forest is composed of binary trees and a
weight associated with each tree. Each tree is composed
of internal nodes and leaves. Each leaf contains a probabil-
ity distribution over the possible output classes, which may
serve as the model’s output. Each decision rule in an inter-
nal node contains a subset of input key-value pairs, which
are evaluated as a disjunction. When classifying an input
instance, the model accepts the rule if at least one of the
keys of the input matches an associated value in the deci-
sion rule. An example rule is

(
AROW : ‘false′ _ 1 : ‘C4′

)
,

stating that this rule should be accepted only if at least one
of the two statements is true: (a) the AROW classifier de-
cision for the input query is ‘false’; (b) the first word in the
query is mapped to cluster 4.

When classifying an input query using the forest we first
evaluate the input on each tree by beginning at the root and
traversing the tree until a leaf is reached, following the edges
according to its conformance with each rule encountered.
The output of the tree is probability distribution over classes
in the leaf that was reached. The final output of the forest
is a weighted sum of the class distributions output by all of
the trees in the forest.

Our selected encoding of the input query as pairs of word-
positions and their respective cluster id values allows us to
employ the random forest architecture over variable length
input. Together with the nature of our decision rules, which
are not limited to a single variable, this model enjoys a fairly
high level of expressiveness. For example, since at each tree
node specific text positions are inspected, a rule can ex-
press a convolutional operator, e.g. ‘one of the �rst three
words is in C15 ’. Missing positions, which may occur due
to short texts, are handled by considering the inspected po-
sition/value pair in the mode as a mismatch. For example,
if a part of a decision rule is ‘5:C8′ (the fifth text position
contains a word mapped to cluster 8), this part of the rule
does not hold for queries of length less than 5.

We note that during our research we also trained our ran-
dom forest using the query words directly, instead of their
mapped clusters. However, this resulted in severe over-
fitting. We suspect that this is due to the large word vo-
cabulary and the sparse nature of the examples, for which
linear classification is more robust.

4.2 Random Forest Learning
The input to the training process of the forest is a set of

labeled examples S and the number of target trees in the
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Algorithm 1 Reweigh Trees

1: function Reweigh-Trees
Require: a set of labeled examples Si; trees learned so far
fTjgi−1

1 and their weights fwjgi−1
1 ; re-weighting con-

stants αs, α`

2: for all s2Si do
3: if s is correctly labeled by forest then
4: α αs

5: else
6: α α`

7: for all 1 � j < i do
8: if Tj classified s correctly then
9: wj  wj + α

10: else
11: wj  wj � α

forest NRF . The output is a set of trees and, for each tree,
a weight associated with it.

Our learning algorithm starts by randomly splitting the
training set S into NRF + 1 training subsets fSigNRF+1

1 .
Each subset is sampled while keeping a balanced distribu-
tion of positive and negative examples, without repetitions
(8i6=jSi \ Sj = ;). The training algorithm iterates once
over all sampled subsets. For each subset, it first tunes the
weights of all currently learned trees in the forest. Then, for
each subset except the last one, the algorithm generates a
new tree that attempts to optimize the classification for this
specific subset. The weight of the new tree is initially set to
04. We next describe the algorithm parts for re-weighting
existing trees and for learning a new tree given a training
subset Si.

The procedure that re-weighs existing trees in the forest
is described in Algorithm 1. It increases the weight of trees
that have correctly classified an example, and decreases the
weight of trees that misclassify an example. To this end,
it uses two different increment constants: αs is used when
the forest as a whole has correctly classified an example,
and α` is used when the forest has misclassified an example.
One can think of αs as a small change in weight reflecting
the model’s increased confidence in the correctness of the
tree, while α` is larger and helps to correct a mistake in
classification.

For each training subset a new tree is learned and added
to the forest. The tree starts with a single leaf node, contain-
ing the class distribution in the training subset Si. Then,
the tree structure is constructed in an iterative manner by
splitting leaves of sufficient size. This process is summarized
in Algorithm 2. In Step 5 of the algorithm, all leaves that
are big enough to be considered for splitting are selected.
In Step 6, a decision rule for splitting is chosen per selected
node (see Algorithm 3), and the algorithm picks the one
that results in highest information gain. This leaf is split
according to the rule and the resulting new leaves are added
to the tree.

The process by which a candidate decision rule is created
for a node is summarized in Algorithm 3. The rule is built
in a greedy manner, beginning with an empty rule. The
algorithm randomly samples a single example e from all the
examples in Si that reach the target node at inference time

4The last subset is only used to tune the weights, otherwise
the weight of the last learned tree would remain 0.

Algorithm 2 Learn Tree

1: function Learn-Tree
Require: A set of labeled examples Si; maximum num-

ber of nodes max-nodes; minimal node size for split
split-size

2: root fSig
3: N  frootg
4: while jN j � max-nodes do
5: BL fl2leaves(N) s.t. jlj � split-sizeg
6: best-split argmaxl∈BLIG(l,Descision-Rule(l))
7: best-split.split(Descision-Rule(best-split))
8: N  N [ best-split.children()

Algorithm 3 Get Decision Rule for Leaf

1: function Decision-Rule
Require: A leaf l containing a set of labeled examples El;

max number of unsuccessful attempts to add to rule
max-tries; minimum information gain for adding to rule
min-ig

2: rule ;
3: failed-attempts 0
4: while failed-attempts < max-tries do
5: e Uniformly-Sample(El)
6: hk : vi  Uniformly-Sample(e)
7: if IG(l, rule [ hk : vi) > IG(l, rule) + min-ig

then
8: rule rule [ hk : vi
9: else

10: failed-attempts failed-attempts+ 1
return rule

(Step 5). It next randomly samples a single key-value pair
hk : vi from e (Step 6) and checks if adding hk : vi to
the currently constructed rule would improve its splitting
performance, increasing information gain in a non-negligible
manner. If performance is improved, hk : vi is added to the
rule. This procedure is repeated as long as performance is
increased or up to a limit of failed attempts.

To illustrate the process of building a decision rule in a
node, consider a node that contains the following six labeled
examples:
� G : fhAROW : falsei, h1 : C1i, h2 : C5ig
� G : fhAROW : truei, h1 : C3ig
� G : fhAROW : falsei, h1 : C3i, h2 : C4i, h3 : C5ig
� CQA : fhAROW : truei, h1 : C2i, h2 : C4i, h3 : C5ig
� CQA : fhAROW : truei, h1 : C3ig
� CQA : fhAROW : truei, h1 : C5i, h2 : C6i, h3 : C1i, h4 :
C2ig
For simplicity we disregard node size. Let’s say the minimal
information gain we want is 0.3. We begin with the empty
rule and an information gain of 0. First the key-value pair
h1 : C3i from the second example is randomly picked. This
rule splits the node into two sets, with two general query
(G) examples going together with one CQA example, say
to the left subset. This split results in information gain
greater than 0.3, so this key-value pair is added to the rule.
Next, hAROW : falsei is randomly picked from the first
example, which moves the remaining G example to the left.
As this also improves the information gain by more than 0.3
over the previous best gain, the rule now becomes

(
1:‘C3 ’ _

788



Model CQA Shopping
PosLM 0.84 0.85
BasicLM 0.87 0.88
ClusterLM 0.87 0.88
RandomForest 0.91 0.90
BasicAROW 0.91 0.92
FullAROW 0.94 0.94

Table 2: AUC scores for each model on each domain.

AROW:‘false’
)
. After several additional iterations in which

no improvement to the rule is found, the procedure ends.

4.3 What the Model Actually Learns
It is often hard to interpret the results of a non linear

classifier that contains many complex elements, which is our
case with a forest containing complicated decision rules in
its trees’ nodes. In an effort to understand some of what is
learned, we examined the splitting rule in the root of each
of the trees in the learned forest.

The classification signal extracted using the linear model
naturally served as a strong predictor. In each of the tree
roots the result of the linear classification was one of the
variables in the rule. However, it rarely constituted the en-
tire splitting rule. The following examples are splitting rules
in the roots of trees, as observed.

(1)
(
1:‘C13 ’ _AROW:‘false’

)
— The most frequent words

in cluster C13 are www.google.com, Amazon, www.friv.com,
HomeDepot, ebay.com, expedia, .co.uk, bt, hulu, hosting.
Site names and brands at the beginning of a query (posi-
tion 1) may indicate navigational intent.

(2)
(
1:‘C4 ’ _ 2:‘C4 ’ _ 2:‘C6 ’ _ 3:‘C4 ’ _ 4:‘C4 ’ _ 6:‘C4 ’

_ 7:‘C10 ’ _ AROW:‘true’
)

— The most frequent words in
cluster 4 are function words, like in, for, to, the, and, a, un-
de�ned, how, on, is. The model here recognizes that words
from cluster 4 in most locations indicate a full natural lan-
guage question and favor a true result. This is not a very
structural result, but rather shows how the rule can also
capture location irrelevant information.

(3)
(
1:‘C4 ’ _ 4:‘C22 ’ _ 7:‘C4 ’ _ AROW:‘true’

)
— The

most common words in cluster C22 are symptoms, pain,
treatment, skin, cancer, natural, surgery, diet, breast, ef-
fects. These words are indicative of health-related queries,
which are common for CQA website search. Word position
information may be relevant here, since health-related words
at the beginning of the query may indicate a more topical
query without a specific question intent.

5. EXPERIMENTS

5.1 Experimental Settings

Data Sets.

As a training set, we obtained a log of all queries issued to
a general search engine over the period of June 1-21, 2015.
We marked CQA queries as those landed on three leading
CQA sites: Yahoo Answers, Answers.com, and Quora, and
Shopping queries as those landed on two leading Shopping
sites: eBay and Amazon. We randomly selected 300,000
CQA queries, 300,000 Shopping queries, and 300,000 Web
queries, uniformly sampled from the query log. A held out

Figure 2: Query length distribution for the CQA
domain, the Shopping domain, and the Web domain
in our test sets.

set of 1,000 queries was randomly extracted from each train-
ing set for parameter tuning. We then extracted a test set
using the same procedure out of the query log for August
1-7, 2015, sampling 11,000 queries per domain.

All queries in our experiments were cleaned by lower-
casing and removing foreign characters and punctuation char-
acters. The queries were then split into word tokens by
whitespace, after which tokens beginning with the ‘site:’
prefix were also removed.

Tested Models.

We trained and evaluated the models presented in Sec. 3.1
on each domain. We tested the language model and the
linear classifier baselines (which use only the words in the
query), denoted by BasicLM and BasicAROW respectively.
For AROW training, the R parameter was set to 100, and
10 iterations were performed on the input.

We also tested models that address the query structure.
Specifically, we constructed a language model over POS tags,
denoted by PosLM, and a language model over cluster words,
denoted by ClusterLM (see Sec. 3.2). We also evaluated an
AROW classifier, denoted by FullAROW, which gets as in-
put both word features and the structure-oriented features
introduced in Sec. 3.2. The same AROW parameters of the
baseline model were used.

Finally, we assessed our random forest model (Sec. 4),
denoted by RandomForest. For each domain, the size of
the training subsets Si was set to 10, 000, the maximum
number of nodes per tree was set to 150 and the minimal
node size for split was set to 40. The minimal information
gain for selection was set to 5. The number of trees in the
forest (NRF ) was set to 15, the update constants were set
to αs = 0.01, α` = 0.05.

5.2 Results
We evaluated each tested model on the vertical selection

task both for the CQA domain and for the Shopping domain.
We measured the performance of each classifier over every
test-set in our experiments using Area under the ROC Curve
(AUC) [20], which avoids the subjectivity of threshold selec-
tion and reflects the main objective of query type identifica-
tion, i.e. filtering before sending to a vertical search engine,
better than either precision or recall measures. We com-
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(a) (b)

Figure 3: AUC per domain and model. Each point represents the AUC value (Y-axis) over all queries of a
given length (X-axis) and above.

Table 3: Number of test queries of length N or more in each domain
Domain length ≥ 1 length ≥ 3 length ≥ 5 length ≥ 7 length ≥ 9

CQA 11000 10313 7585 4317 2047
Shopping 11000 6702 2821 849 280
General 11000 5473 1963 611 195

puted statistical significance between model performance us-
ing the following procedure: a) the test set was split into 11
distinct subsets; b) AUC was measured for each model on
each subset; c) the AUC results of the two models for the
subsets were compared using the Mann-Whitney test.

The overall results for our datasets are shown in Table 2.
These results show that all models perform well for both
domains. As expected, the three supervised discrimina-
tive models, BasicAROW, FullAROW and RandomForest,
outperform the language models BasicLM and PosLM. We
note that the language model over clusters ClusterLM per-
formed on par with the baseline language model BasicLM.
We therefore do not present its results in the more detailed
analyses. All supervised models improve over the language
models with statistical significance at p < 0.01.

In both domains, FullAROW significantly outperforms all
other models (p < 0.01), which may hint towards the benefit
of using our structure-oriented features. The overall results,
however, only depict part of the story. Many recurring gen-
eral Web queries are simple navigational queries, such as
‘facebook ’ or ‘citibank ’, which may turn the classification
task into an easy one. Yet, looking at query length dis-
tribution for general Web queries as well as for each of the
domains in our test sets (Figure 2) reveals some of the differ-
ences between the two domains. Indeed, while general Web
query length distribution behaves like a dropping long-tail
curve, as expected, and the Shopping domain shows strong
tendency towards short queries as well, most queries in the
CQA domain are much longer. As a consequence, if we use
a simple classifier based only on query length, the AUC for
the Shopping domain is 0.57 but for the CQA domain it is
0.83. It is therefore important to look at the performance of
the models for queries of different lengths. This is especially
important for the CQA domain, since most of its associated
queries (6-7 terms on average) are longer than average Web
queries, and while the fraction of long general Web queries is

small, their absolute volume in the overall query log still ex-
ceeds that of CQA queries. Therefore it is crucial for vertical
selection models to do well also on long queries.

Accordingly, we analyzed the models’ performance for dif-
ferent query lengths. Figure 3 presents the AUC score per
domain and model by query length, where each query length
N refers to all queries in the test set that have � N words
(Table 2 corresponds to the results for N = 1). The test set
sizes per query length cutoff and domain appear in Table 3.
We note that while some test sets are unbalanced, the AUC
metric depends on the rate of acceptance on domain exam-
ples vs. rate of acceptance on general examples, therefore it
is robust for this kind of imbalance.

We first look at the AUC scores for the Shopping do-
main (Figure 3(b)). For this domain the length of the query
appears to have no effect on model performance (the per-
formance of each model for the different query subsets is
virtually the same). Specifically, the top performers are the
two linear classifiers, BasicAROW and FullAROW, which
perform comparably, followed closely by the random forest
model. These results indicate that the Shopping domain is
modeled well by content keywords and that query structure,
if present at all, is quite loose in this domain. The gain of
the linear classifiers over RandomForest is statistically sig-
nificant at p < 0.01 for all length-specific test sets.

Observing the most important positive features, out of the
500, 000 features used in the FullAROW classifier, strength-
ens this conclusion: while some relate to navigational hints
for sites like Amazon or eBay, many are related to products,
e.g. ‘book ’, ‘dvd ’, ‘toys’ and ‘albums’. Similarly, important
negative features contain hints of navigational queries, such
as ‘twitter ’ or ‘tumblr ’, but also strong indication of domains
other than Shopping, such as ‘installation’ and ‘insurance’.
On the other hand, structure-oriented features are not abun-
dant in the top features.
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Table 4: Example queries of different lengths for each domain
Length General Queries CQA Queries Shopping Queries

1
· facebook · quroa · ebay
· lebron · monocytes · vaz-2106

3
· greenhill humane society · mentalist vs sherlock · paradice pool vacume
· george michael horrible · divorce rate asian · used golf clubs

5
· cars with bad hail damage · how long do mosquitoes live · ebay motors 2001 head lights
· david foster wallace suicide note · great niece or grand niece · furniture for my �rst dollhouse

7

· Emergency Garage Door Repair in
Jacksonville, FL

· will denatured alcohol damage wood
oors ooring

· duct work for Broan PM250 exhaust
fan

· song with lyrics you shouldn’t have
promised

· rash upper body going to the head · Reebok Men’s DMX Max Mania
Walking Shoes

9

· jon stewart daily show says good-
bye to fox news

· how can i tell if my tattoo is infected · window tiers 17 l x 20 w for bath-
rooms

· bank of america online sign in to
online banking

· di�erence between board of nursing
and professional nursing organizations

· Legends of the diamond Limited Edi-
tion Forever Colectibles Guerrero

Queries of length ≥ 1 Queries of length ≥ 3 Queries of length ≥ 5 Queries of length ≥ 7

Figure 4: ROC for CQA queries by length and model. The X-value represents the proportion of general
queries which were accepted by the model. The Y-value represents the proportion of the vertical queries
that were accepted.

Next, we analyze the model performance for the CQA
domain (Figure 3(a)). The results reveal a very different
model behavior. For test sets of query lengths � 1 and � 2
the linear classifiers significantly outperform RandomForest
at p < 0.01. Yet, once the test sets are confined to long
queries, the performance of both the linear classifiers and the
language models drops significantly. The only model that
maintains a high level of classification is the RandomForest
model. The gap keeps increasing as query length grows, and
is evident also in the ROC curves for specific query lengths,
presented in Figure 4. At test sets of query lengths � 5...95,
RandomForest improvement over all other models is statisti-
cally significant at p < 0.01. As shown in Figure 2, roughly
66% of CQA queries are of length 5 or more. This means
that for a majority of the full query set, content-oriented
features alone are not enough for modeling the difference
between CQA queries and other long queries. On the other
hand, PosLM, which models only structure, performs the
worst, showing that a combination of content and structure
bearing signals is necessary. Only our proposed Random-
Forest model manages to learn the discriminating features
of long queries as well as those of short ones, and success-
fully differentiates between CQA queries and other queries
even at queries of length 9 and above.

Table 4 presents examples for queries of different length
in each domain, which illustrate the differences between the
tested domains. For general queries and the Shopping do-
main, queries are more topical in nature, and even long
queries are usually not strongly structured, and may be
viewed as a bag of keywords. On the other hand, CQA

5For test sets � 3 and � 4 the difference between the three
supervised models is not statistically significant.

queries resemble complete questions, and the relationships
between words are stronger.

To gain a more fine-grained understanding of the model
performance on the different domains, we also regarded each
specific website, which was used for extracting queries either
for the CQA or the Shopping domain, as a specialized “do-
main”. This experiment further tests the robustness of the
different models to idiosyncrasies of various websites. As
before, we constructed a training set and a test set where
positive examples were queries landing on the target web-
site, while negative examples were sampled uniformly from
the query log. Overall, we had 5 different specialized do-
mains, and each model was trained and tested on each web-
site’s data. We found that the results for the specialized
domains strongly adhere to the trend shown in the main re-
sults, namely that once query length grows above 3, the Ran-
domForest model substantially outperforms all other models
for the three CQA websites, while for the Shopping websites
all models performed well for all query lengths, with the
linear classifiers at the lead followed closely by the Random-
Forest model.

Our experiments show the importance of designing verti-
cal selection models with the capability to handle queries of
different lengths. In this work, we investigated single classi-
fiers, designed for all queries, that are robust to query length.
A different approach would be to train a classifier per query
length. This may show some advantage over a single clas-
sifier, but will cost more in terms of space constraints (M
models in memory per M query lengths instead of a single
model). This deserves further investigation which we leave
for future work. Overall, the presented results indicate that
a single classifier can handle all queries of different length
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Table 5: Error analysis: types of errors, example queries and the error’s frequency.
Type of Error Examples Frequency (%)

False Positives

Explicit CQA question format
· how to dress when you are obese and 50s and look pregnant but not

80%· if you get married does your credit combine
A speci�c scenario - implicit
CQA question intent

· most powerful air rie on the market
15%· i have white spots on my toe nails

Others
· she liked books more than anything else burnett

5%· lyrics to until we meet again hymn

False Negatives
Non-whitespace separated
queries

· should.you.drink.co�ee before.running
35%· whatsideofyourbodyisyourhearton

Non-standard navigational
· QOURA

5%· qura.cpm

Rare words
· hypocalcemiaqt

5%· erienerphobia

Uncommon names, locations,
non-English words

· abvimas manali
15%· Bir Atrium Makati Map

Non-CQA, suggesting user
exploration

· po300
40%· QUANTITY: Size Chart

robustly and with high performance when constructing an
appropriate classification model.

5.3 Error Analysis
We examined the 100 general Web queries that got the

highest scores by the RandomForest model, and the 100
CQA queries that got the lowest scores. These queries con-
stitute the top false positive and false negative errors of this
model, respectively. The various types of errors we found, as
well as example queries per type, are presented in Table 5.

From the table it is fairly clear that the vast majority of
general queries that got a high score (false positives) are
simply CQA queries sampled from the general query log,
and as expected these queries are ranked high. We already
discussed the noisy nature of our data-set (see last paragraph
in Sec 3.1.1). It does imply, however, that our model’s true
performance should be somewhat higher than estimated.

On the other hand, false negative errors (CQA queries
that received low scores) are more diverse. Still, they can
largely be categorized into two types. The first type in-
cludes queries that require better text processing, such as
spelling correction and considering ‘.’ as a word separa-
tor (a common error in mobile usage). The second type of
errors concerns rare words that do not appear in our word-
to-cluster mapping, and therefore are treated in a default,
non-optimized manner. The issue of rare terms is known for
word embedding in general, and in the future we would like
to address it for this task but also in a more generic setting.

6. CONCLUSIONS
We introduced the novel task of detecting queries with

question intent as a variant of the vertical selection prob-
lem. Typically, queries with question intent can be success-
fully answered by a CQA vertical, hence we focus on CQA
queries, i.e. those that landed on CQA sites. Since the struc-
ture of CQA queries is quite different from the structure of
general Web queries, we proposed to model the structure
of a query, on top of its content, for this task. We intro-
duced two classification schemes that take query structure
into consideration. In the first approach, we induce features
from the query structure as an input to supervised linear

classification. In the second approach, word clusters and
their positions in the query are used as input to a random
forest classifier to identify discriminative structural elements
in the query.

We evaluated our proposed classifiers against the popular
language model approach for vertical selection, as well as a
linear classifier over the query terms. To show the differ-
ence between the CQA domain and other domains, we as-
sessed the classification models on two datasets, one for the
CQA detection task and one for the Shopping domain de-
tection task. Our results show that while keyword modeling
seems enough for the Shopping domain, for the CQA do-
main structure modeling substantially boosts classification
performance as query length increases, differentiating be-
tween non-CQA long queries, such as a name of a long movie
or the location of a university, and CQA queries, which pose
a specific question or scenario.

Since CQA query structure is complex, we want to test
in future work whether additional advanced text process-
ing techniques, such as Dependency Parsing and Abstract
Meaning Representation, can help in detecting such queries.
We would also like to identify other domains where query
structure plays an important role, and where our structure-
based classification schemes can bring value. Finally, our
best-performing model for long queries, random forest over
variable length text, is a general classification scheme. We
would like to find other tasks in which it may be found ben-
eficial.
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